CSE 3318 Notes 15: Shortest Paths
(Last updated 1/5/24 11:43 AM)
CILRS 223,232
15.A. CONCEPTS
(Aside: https://dl-acm-org.ezproxy.uta.edu/doi/10.1145/2530531 )

Input:

Directed graph with non-negative edge weights (stored as adj. matrix for Floyd-Warshall)
Dijkstra - source vertex

Qutput:

Dijkstra — tree that gives a shortest path from sourcc to cach vertex
Floyd-Warshall —shortest path between each pair of vertices (“all-pairs™) as matrix

15.B. DIIKSTRA’S ALGORITHM — three versions

0 1 2 3 4 5 6 7
0(-) 0 e o0 o0 oo a
* 10(0) 20(0) 15(0)
v 11€1) 20(1)
13(4) * 18(4)
* 14(2) 16(2) 20(2)
* 15(3)
18(7) *
*

s



Similar to Prim’s MST:
S = vertices whose shortest path is known (initially just the source)

Length of path
Predecessor (vertex) on path (AKA shortest path tree)

T &= vertices whose shortest path is not known
Each phase moves a T vertex to S by virtue of that vertex having the shortest path among all T vertices.
Third version may be viewed as being BFS with the FIFO queuc replaced by a priority queue.

1. “Mecmoryless” - Only saves shortest path tree and current partition.
( https://ranger.uta.edu/~weems/NOTES3318/dijkstraMemoryless.c )

Place desired source vertex x € Vin S

T=V-{x}
x.distance = 0
x.pred = (-1)
while T # &
i Find the edge (s, t) overall t € T and all s € S with minimum value for s.distance + weight(s, t)
(i.e. scan adj. list for each s)
t.distance = s.distance + weight(s, t)
tpred=s
T=T-{t}
S=Su {t}

Since no substantial data structures arc uscd, this takes @(EV ) time.

2. Maintains\T-table that provides the predecessor vertex in S for each vertex t € T to give the shortest
pOSSiblC path"t-hmugh Stot. { https://ranger.uta.edu/~weens/NOTES3318/dijkstraTable.c )

Eliminates scanning all S adjacency lists in cvery phasc, but still scans the list of the last vertex moved
from T to S.

Placc desired source vertex x € Vin S

T=V-{x}
x.distance 0
x.pred = (-1)

forcachte T
Initialize t.distance with weight of (x, £) (or o if non-existent) and t.pred = x



while T#
Scan T entries to find vertex t with minimum value for t.distance
T=T-{t}
S=Swu {t}
for cach vertex % in adjacency list of t (i.c. (£,X)) ] \
if x e T and t.distance + weight(t, x) < x.distance ( )
_x.distance = t.distance + weight(t, x) '
x.pred =1t

Analysis:

Initializing the T-table takes ©(V).
Scans of T-table entries contribute @(VQJ_
Traversals of adjacency lists contributc ©(E).

@(Vz +FE ) = (")(V?‘) overall worst-case.

3. Replace T-table by a min-hecap.

( https://ranger.uta.edu/-weems /NOTES3318/dijkstraHeap.cpp )

The time for updating distances and predeeessors increascs, but the time for sclection of the next vertex
to move from T to S improves.

Placc desired source vertex x € Vin S
T=V-i{x}
x.distance = 0
x.pred = (-1)
foreachte T -
Tnitialize T-heap with weight (as the priority) of (x, t) (of o if non-existent) and t.pred = x
minHeapInit(T-heap) //a £ixDown at each parentnode in heap

while T # &
Usc¢heapExtractMin # £ixDown */ to obtain T-heap entry with minimum t.distance
T=T-{t} | 7
S=Su {t}

foreach vertex x in adjacency list of t (i.e. (t, x))
if x € T and t.distance + weight(t, x) < x.distance
x.distance = t.distance + weight(t, x)

Analysis:

Initializing the T-heap takes @(V).

Total cost for heapExtractMins is O(V log V).

Traversals of adjacency lists and minHeapChanges contribute @(E log V).
©(ElogV) overall worst-case, since E> V.



Which version is the fastest?

Theory Sparse (E =0(V)) Dense (E = Q(VZ ))
1. o(EV) @(V"B) o(v)
2. o) o 'vz) i @['V?')
3. O(ElogV) S 8(ViogV) @(Vz logV)

—— e ———

15.C. FLOYD-WARSHALL ALGORITIIM

Based on adjacency matrices. Will examine three versions:

) oy ~
| Warshall’s Algorithm f}— After ®(V™) preprocessing, processes each path existence query n ©(1) time.
— ———— \

Warshall's Algorithni with Successors (or predecessors or transitive vertices) - After @(V3 )
preprocessing, provides a path in response to a path existence query in O(V) time (similar to dynamic
programming backtrace).

Floyd-Warshall Algorithm (with Successors) - After @(V3) preprocessing, provides cach shortest path
in O(V) time.

Warshall’s Algorithm:

for (3=0; j<V; jt++) J kK__
for (i=0; i<v; i++) B
if (A{i1{3D)
for (k=0; k<V; kt++) i 1 |
if (A[310k]) T
Ali)[k]=1;
j 1
0 1 2 3 4
o L L a4
N
G 1o J 4 o1
\/\ 2 _ 1 J‘ ‘ v
. 3 _ 1
2) ©) LR |

\
\
k



If zero-edge paths are useful for an application (i.c. reflexive, self-loops), the diagonal may be all ones.

f

(0) ' 01234'_..5

Why does it work?
a. Correct i; usc of transitivity.
b Is 1t complete!
When Paths That Can Be Detected
Before j=0 ’ Xy,

Afer j=0 xS 0y

Aflerj=1 . c— 13
x=>0-=>1-y
x= 150y

After =2 X2y
™ X502y
Xx=>1—>2->y
X320y
Xx=2—>1l-y
x20>51-52-y
x2032>51by
Xx-2l—-0->2->y
x5152-50-y
x=>2>0->1-y
X >2~~-m>l~~>0_—?'y

After j=p x - Permutation of subsef of 0 ... _E.r—) y

.

Afer j=V-1_ ALL PATHS

e



Math. Tnduction: \V

Perm of subsct of 0 ... p+1

{
[ 5 4 — 3 — 2 — 10. During the scan of which column will Warshall’s algorithm record the

/ Sup' ic that there is only one path from vertex 5 to vertex 10 in a directed graph:
\ prescnce of this path?

Warshall’s Algorithm with Successors
Successor Matrix

Buc-ee’s directions:

S[IOO][ZOO]@ s{201[2001=37 5| 37)1 200 =200

CO——() = smm@

(-1 othenwvise)

Initialize:

Warshall Matrix Updatc: O




for (j=0; J<V; jt++)
for (i=0; i<V; i++) F g
if (s[i1031 t= (-1)) //
for (k=0; k<V; k++) L~
if ([succli][k]l==(-1) && succ[j]l[k]l=(-1))
succ[i][k] = succ[i][]]:

Suppose code is removed for this graph:

(0 —(1)
Complcte Examplc ( https://ranger.uta.edu/-weems/NOTES331 é_)warshall .c ) Ifsaving paths usfng SUCCECSSOrs:
o 1 2 3 4 o1 2 3 4
0 1 -1 -1 3 -1 0 -1 -1 -1 3 -1
1 -1 -1 -1 3 4 1 -1 -1 -1 3 4
2 -1 1 -1 -1 -1 2 -1 1 -1 1 1
3 -1 -1 2 -1 -1 3 k1 2 2 2 2
4 -1 -1 -1 -1 -1 4 -1 -1 -1 -1 -1

o 1 2 3 4 o 1 2 3 4
0o -1 -1 -1 3 -1 o -1 3 3 3 3
1 1 -1 -1 3 4 1 -1 3 3 3 4
2 -1 1 -1 -1 -1 2 -1 1 1 1 1
3 -1 =1 2 -1 -1 3 -1 2 2 2 2
4 -1 -1 -1 -1 -1 4 -1 -1 -1 -1 -1

o 1 2 3 4 0o 1 2 3 4
0o -1 -1 -1 3 -1 o -1 3 3 3 3
1 -1 -1 -1 3 4 1 -1 3 3 3 4
2 -1 1 -1 1 1 2 -1 1 1 1 1
3 -1 -1 2 -1 -1 3 -1 2 2 2 2
4 -1 -1 -1 -1 -1 4 -1 -1 -1 -1 -1



Other ways to save path information:

Predecessors (warshallPred.c) Transitive/Intermediate/Column (warshallcol.c)
- @ ),
@ (8)

L{; ]"vaqu%j%\ ey @__}i -

—

LA AR S €Y AVAVAVAVAV YR (Y

&)
==
-

A

for (j=0;]j<n;jt++)
for (i=0;i<n;i++)
if (pred[i]([]j]!=(-1))
for (k=0;k<n;k++)
if (pred[il[k]==(-1) && pred[jl[k]li=(-1))
pred[i][k]=pred[]j]l[k];

. Floyd-Warshal) Algorithm with Successors (/https://ranger.uta.edu/~weens/NOTES3318/£loydWarshall.c )

After j = p has been processed, the shortest path from cach x to cach y that uscs only verticesin 0. .. p
as intermediate vertices is recorded in matrix.

for (3=0;3<n;j++)

for (i=0;i<n;i++)
if (dist[i][j]<oo)
for (k=0;k<n;k++)
if (dist[j][k]<o00)
{

newDist=dist[i][j}+dist{j1[k];
if (newDist<dist[i][k])
{
dist[i][k]=newDist;
succ[i][kl=succ[i][j];

0 1 5
|

1 5 1
1

2 1

i

31 10
Y
G) 4



9

0 1 2 3 4 7] 1 2 3 4
0 oo 11 12 oo 5. 4] 0(9397 11 12 24 22
1 o0 00 52 13 oo 1 oo 57 3 Bb2"
= 2% 83 22 T’B
2 00 00 00 00 14 2 o0 00 0 00 _
bl
3 10 g9o° -0 00 184 3 [1.¢ 20 20 30 30
— A0 20 50
4 o0 00 00 00 00 4 00 00 00 00 00
-y g
@ 1 2 3 4 0 1 2 3 4
@ 00 11 12‘0{1 5 4 e 31 11 12 21 22
1 o o0 52 1.3 o0 1 23 33 33 13 43
— oLty
2 00 00 00 00 14 2 oo 00 00 00 14
3 10 20 20,9;0’0 6 @ 3 106 220 20 306 30
4 00 00 00 00 00 4 oo 00 00 00 00|
= e
] 1 2 3 4 ) 1 2 3 4
@ 00 11 12 21 _54 @ 31 11 12 21 22
1 oo 00 52 13 _o0 1 23 33 33 13 43
2 oo 00 00 00 14 2 o0 00 00 00 14
3 10 20 20 30 60 3, 10 20 26 30 30
———— O -
4 o0 00 00 00 00 4 00 00 00 00 00
’q

Note: In this example, zero-edge paths are not considered.

| [

2 ho L tsm



