CSE 3318 Notes 15: Shortest Paths

(Last updated 1/5/24 11:43 AM)

CLRS 22.3, 23.2

15.A. CONCEPTS

(Aside: https://dl-acm-org.ezproxy.uta.edu/doi/10.1145/2530531)

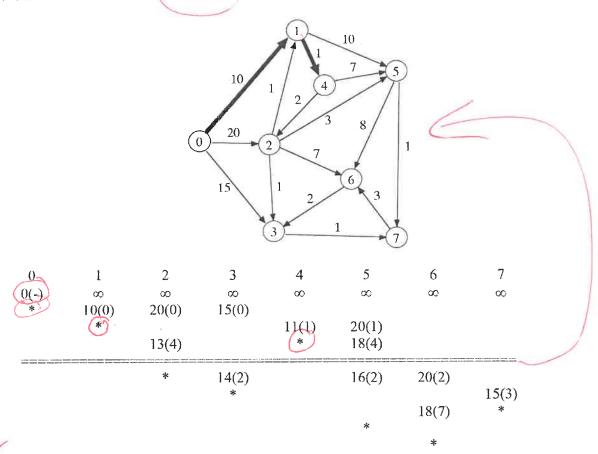
Input:

Directed graph with *non-negative* edge weights (stored as adj. matrix for Floyd-Warshall) Dijkstra—source vertex

Output:

Dijkstra – tree that gives a shortest path from source to each vertex Floyd-Warshall – shortest path between each pair of vertices ("all-pairs") as matrix

15.B. DIJKSTRA'S ALGORITHM - three versions



Similar to Prim's MST:

 $\overrightarrow{S} \neq \text{vertices}$ whose shortest path is known (initially just the source)

```
Length of path
Predecessor (vertex) on path (AKA shortest path tree)
```

T = vertices whose shortest path is not known

Each phase moves a T vertex to S by virtue of that vertex having the shortest path among all T vertices.

Third version may be viewed as being BFS with the FIFO queue replaced by a priority queue.

1. "Memoryless" - Only saves shortest path tree and current partition.

(https://ranger.uta.edu/~weems/NOTES3318/dijkstraMemoryless.c)

```
Place desired source vertex x \in V in S
T = V - \{x\}
x. distance = 0
x. pred = (-1)
while T \neq \emptyset
\text{Find the edge } (s, t) \text{ over all } t \in T \text{ and all } s \in S \text{ with minimum value for } s. distance + weight(s, t)
\text{(i.e. scan adj. list for each } s)
t. distance = s. distance + weight(s, t)
t. pred = s
T = T - \{t\}
S = S \cup \{t\}
```

Since no substantial data structures are used, this takes $\Theta(EV)$ time.

2. Maintains T-table that provides the predecessor vertex in S for each vertex t ∈ T to give the shortest possible path through S to t. (https://ranger.uta.edu/~weems/NOTES3318/dijkstraTable.c)

Eliminates scanning all S adjacency lists in every phase, but still scans the list of the last vertex moved from T to S.

```
Place desired source vertex x \in V in S
T = V - \{x\}
x. distance = 0
x. pred = (-1)
for each t \in T
Initialize t. distance with weight of <math>(x, t) (or \infty if non-existent) and t. pred = x
```

```
while T \neq \emptyset
```

Scan T entries to find vertex t with minimum value for t.distance

$$T = T - \{t\}$$

$$S = S \cup \{t\}$$

for each vertex x in adjacency list of t (i.e. (t, x))

if x ∈ T and t.distance + weight(t, x) < x.distance x.distance = t.distance + weight(t, x) x.pred = t

Analysis:

Initializing the T-table takes $\Theta(V)$.

Scans of T-table entries contribute $\Theta(V^2)$

Traversals of adjacency lists contribute $\Theta(E)$.

$$\Theta(V^2 + E) = \Theta(V^2)$$
 overall worst-case.

3. Replace T-table by a min-heap.

```
(https://ranger.uta.edu/-weems/NOTES3318/dijkstraHeap.cpp)
```

The time for updating distances and predecessors increases, but the time for selection of the next vertex to move from T to S improves.

Place desired source vertex $x \in V$ in S

$$T = V - \{x\}$$

x.distance = 0

x.pred = (-1)

for each $t \in T$

Initialize T-heap with weight (as the priority) of (x, t) (or ∞ if non-existent) and t.pred = x minHeapInit(T-heap) // a fixDown at each parent node in heap while $T \neq \emptyset$

Use heapExtractMin / fixDown */ to obtain T-heap entry with minimum t.distance

= log V

$$T = T - \{t\}$$

$$S = S \cup \{t\}$$

for each vertex x in adjacency list of t (i.e. (t, x))

if $x \in T$ and t.distance + weight(t, x) < x.distance x.distance = t.distance + weight(t, x)

x.pred = t

minHeapChange(T-heap) // fixUp

Analysis:

Initializing the T-heap takes $\Theta(V)$.

Total cost for heapExtractMins is $\Theta(V \log V)$.

Traversals of adjacency lists and minHeapChanges contribute $\Theta(E \log V)$.

 $\Theta(E \log V)$ overall worst-case, since E > V.

Which version is the fastest?

Theory Sparse
$$(E = O(V))$$
 Dense $(E = \Omega(V^2))$

1. $\Theta(EV)$ $\Theta(V^2)$ $\Theta(V^2)$

2. $\Theta(V^2)$ $\Theta(V^2)$ $\Theta(V^2)$

3. $\Theta(E \log V)$ $\Theta(V \log V)$ $\Theta(V^2 \log V)$

15.C. FLOYD-WARSHALL ALGORITHM

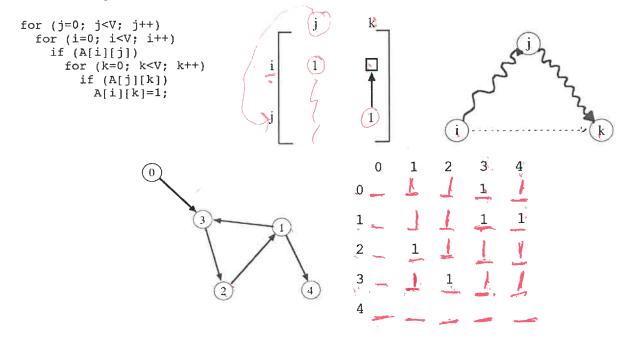
Based on adjacency matrices. Will examine three versions:

Warshall's Algorithm – After $\Theta(V^3)$ preprocessing, processes each path existence query in $\Theta(1)$ time.

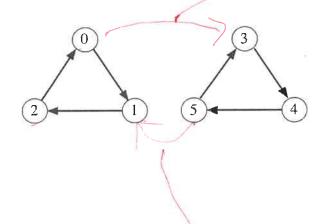
Warshall's Algorithm with Successors (or predecessors or transitive vertices) - After $\Theta(V^3)$ preprocessing, provides a path in response to a path existence query in O(V) time (similar to dynamic programming backtrace).

Floyd-Warshall Algorithm (with Successors) - After $\Theta(V^3)$ preprocessing, provides each *shortest* path in O(V) time.

Warshall's Algorithm:



If zero-edge paths are useful for an application (i.e. reflexive, self-loops), the diagonal may be all ones.



	0	1	2	3	4	5
0	l	1	t		U	1
1	1	1	1			
2	1	(1			
3	/		1	1	1	ľ
4		9) L	1	^ 1
_			/	1	1	

Why does it work?

- a. Correct in use of transitivity.
- b. Is it complete?

When

Before j=0

After j=0

After j=1

After j=2

Paths That Can Be Detected

$$x \rightarrow y$$

$$x \rightarrow 0 \rightarrow y$$

$$x \to 1 \to y$$

 $x \to 0 \to 1 \to y$

$$x \to 1 \to 0 \to y$$

$$x \rightarrow 2 \rightarrow y$$

$$x \to 0 \to 2 \to y$$

$$x \to 1 \to 2 \to y$$

$$x \rightarrow 2 \rightarrow 0 \rightarrow y$$

$$x \rightarrow 2 \rightarrow 1 \rightarrow y$$

$$x \to 0 \to 1 \to 2 \to y$$

$$x \to 0 \to 2 \to 1 \to y$$

$$x \rightarrow 1 \rightarrow 0 \rightarrow 2 \rightarrow y$$

$$x \rightarrow 1 \rightarrow 2 \rightarrow 0 \rightarrow y$$

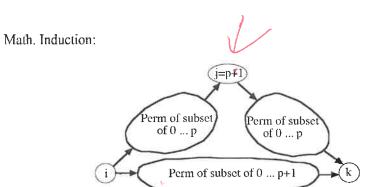
$$x \rightarrow 2 \rightarrow 0 \rightarrow 1 \rightarrow y$$

$$\sqrt{2} \rightarrow 1 \rightarrow 0 \rightarrow v$$

After j=V-1

$$x \rightarrow Permutation of subset of 0 ... p \rightarrow y$$

ALL PATHS

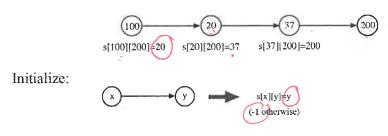


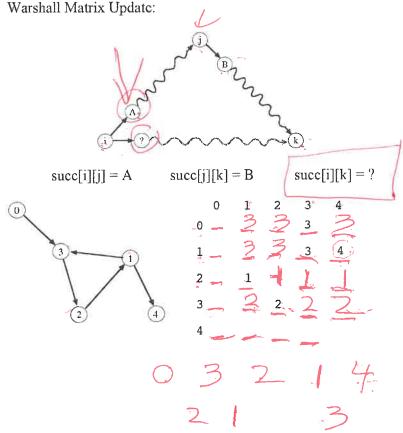
Suppose that there is only one path from vertex 5 to vertex 10 in a directed graph: $5 \rightarrow 7 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 10$. During the scan of which column will Warshall's algorithm record the presence of this path?

Warshall's Algorithm with Successors

Successor Matrix

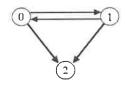
Buc-ee's directions:





```
for (j=0; j<V; j++)
  for (i=0; i<V; i++)
   if (s[i][j] != (-1))
      for (k=0; k<V; k++)
      if (succ[i][k]==(-1) && succ[j][k]!=(-1))
      succ[i][k] = succ[i][j];</pre>
```

Suppose code in box is removed for this graph:



Complete Example (https://ranger.uta.edu/-weems/NOTES3318/warshall.c) saving paths using successors:

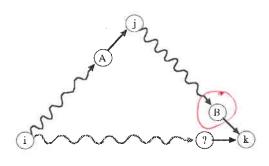
0 1 2 3 4	0 -1 -1 -1 -1	1 -1 -1 1 -1	2 -1 -1 -1 2 -1	3 3 -1 -1 -1	4 -1 -1 -1 -1
0 1 2 3 4	$ \begin{array}{r} 0 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{array} $	1 -1 -1 -1 -1	2 -1 -1 -1 2 -1	3 3 -1 -1 -1	4 -1 4 -1 -1
0 1 2 3 4	0 -1 -1 -1 -1 -1	1 -1 -1 -1 -1 -1	2 -1 -1 -1 2 -1	3 3 3 1 -1 -1	4 -1 4 1 -1 -1

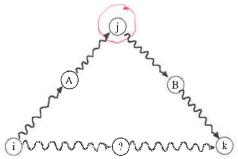
			1			
		0	1	2	3	4
	0	-1	-1	-1	3	-1
	1	-1	-1	-1	3	$-1 \\ 4$
	2	-1	1	-1	1	1
	3	-1	2	2	2	2
	4	-1	-1	-1	-1	-1
-		0	1	2	- -	4
	0	-1	3	3	3	3
	1		3	3	3	4
	2	$-1 \\ -1$	1	1	1	1
	3	-1	2	2	2	2
	4	-1	-1	-1	-1	-1
-						
		0	1	2	3	4
	0	-1	3	3	3	3
	1	-1	3	3	3	4
	2	-1	1	1	1	1
	3	-1	2	2	2	2
	4	-1	-1	-1	-1	-1

Other ways to save path information:

Predecessors (warshallPred.c)

Transitive/Intermediate/Column (warshallCol.c)



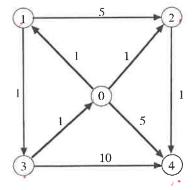


```
for (j=0;j<n;j++)
  for (i=0;i<n;i++)
    if (pred[i][j]!=(-1))
      for (k=0;k<n;k++)
        if (pred[i][k]==(-1) && pred[j][k]!=(-1))
            pred[i][k]=pred[j][k];</pre>
```

Floyd-Warshall Algorithm with Successors (https://ranger.uta.edu/-weems/NOTES3318/floydWarshall.c)

After j = p has been processed, the *shortest path* from each x to each y that uses *only* vertices in 0 . . . p as intermediate vertices is recorded in matrix.

```
for (j=0;j<n;j++)
{
  for (i=0;i<n;i++)
    if (dist[i][j]<00)
     for (k=0;k<n;k++)
        if (dist[j][k]<00)
        {
        newDist=dist[i][j]+dist[j][k];
        if (newDist<dist[i][k])
        {
            dist[i][k]=newDist;
            succ[i][k]=succ[i][j];
        }
     }
}</pre>
```



	0	1	2	3	4
0		1	1		5
1			5	1	
2					1
3	1				10
4					

0	0	1 1, 1	2	3	4 5 4	i	0	0	1 1, 1	2 1 2	3, 2,41	4 2 2
1	00	00	5 2	1 3	00		1	00 2 3	33	52	1,3,	623
2	00	00	00	00	1 4		2	00	00	00	00	1 4
3	1 0	00	20	00	10-4		3	1.0	2 0	2 0	3 -0	~3 .0
4	00	00	00	00	00		4	00	00	00	00	00
	0	1)	2-	3	4	-		0	1	2	3	4
0	00	1 1	1 2	-00	5 4		0	3 1	1 1	1 2	2 1	2 2
1	00	00	5,2	1, 3	00		1	2 3	3 3	3 3	1 3	4 3
2	00	00	00	00 <	1 4		2	00	00	00	00	1 4
3	1 0	2 0	2 0	900	6 0		3	1 0	2 0	2 0	3 0	3 0
4	00	00	00	00	00		4	00	00	00	00	00
						_						
	0	1	(2)	3	4			0	1	2	3	4
0-	00	1 1	1 2	2 1	5.4		0	3 1	1 1	1 2	2.1	2 2
1	00	00	5-2	1 3	00	•	1	2 3	3 3	3 3	1 3	4 3
2	00	00	00	00	1 4	•	2	00	00	00	00	1 4
3	1 0	2 0	2 0	3 0	50	•	3,	1 0	2 0	2 0	3 0	3 0
4	00	00	00	00	00		4	00	00	00	oď	00
						-						

Note: In this example, zero-edge paths are not considered.

3-70.72 ->40