4.			1 -	
CSE 2	2320-004		Name	CC
Test 3				appears on your UTA ID Car
Fall 20	019			
Multip	ole Choice:			
۷.	Write the letter or value for CIRCLED ANSWERS Do 2 points each	or your answer on the look NOT COUNT.	line () to the l	LEFT of each problem.
1. For	r which graph representation	n is querying for the p	resence of an edge si	upported by binary search?
	A. Adjacency lists (order C. Adjacency matrix		ncy lists (unordered) essed adjacency lists	(ordered)
2. For pro	a double hash table with a bes for unsuccessful search	$\alpha = 0.9$ (without deletion is:	ons), the upper bound	d on the expected number of
3. Wh	ich disjoint subset impleme	entation implements th	e find operation in	a amatant time 2
Δ		mation implements th	e rind operation in	constant time?
!]	A. Implementation 1 C. Implementation 3	B. Implementation D. All three implex		
4. Sup	pose a depth-first search or a path of tree edges from v	n a directed graph yield vertex X to Z. If there	ds a path of tree edge is also an edge from	es from vertex X to vertex Y Z to X, then its type will be:
1	A. Back	B. Cross	C. Forward	D. Tree 75 7
5. Whi	ich algorithm maintains mu	ltiple subtrees?		Y Z
13	A. Dijkstra's	B. Kruskal's	C. Prim's	D. Warshall's
o. The	number of potential probe ne) is:	sequences when using	double hashing with	a table with m entries (m is
	A. $O(\log m)$ B. m	C. $m(m-1)$	D. <i>m</i> !	
. Whi	ch of the following cannot	occur when additional	edges are included i	n a directed graph?
C A	A. The number of strong co. 3. The number of strong co. 5. The number of strong co. 6. The graph acquires a cyc.	omponents may remain omponents may decrea omponents may increase omponents may remain of the control of the contro	the same.	

8. Suppose an instance of bipartite matching has 4 vertices in the left column, 8 vertices in the right column, and 20 edges. The number of edges in the corresponding instance of network flow is:

9. The relationship of the net flow across a cut and the amount of flow from the source to the sink is:

- A. The amount of flow does not exceed the net flow.
- B. They are equal.
- C. The net flow does not exceed the amount of flow.
- D. There is no relationship.
- 10. What is the number of strongly connected components in this graph?

4

11. The capacity of the following cut is _____. (S vertices are bold.)

12. A topological ordering of a directed graph may be computed by:

- A. Ordering the vertices by descending discovery time after DFS
- B. Ordering the vertices by descending finish time after DFS
- C. Ordering the vertices by ascending finish time after DFS
- D. Ordering the vertices by ascending discovery time after DFS
- 13. During a breadth-first search, the status of a white vertex is:

- B. It has been completely processed.
- D. It is in the priority queue.

14. What is the number of strongly connected components in this graph?

15. The worst-case time for Prim's algorithm implemented with a minheap is:

- A. $\theta(E \log V)$ B. $\theta(V^2 + E)$ C. $\theta(V \log E)$
- D. $\theta(V \log V)$

16. During depth-first search on an undirected graph, a cycle is indicated by which edge type?

- A. Back
- B. Cross
- C. Forward
- D. Tree

The worst-case time for the memoryless version of Dijkstra's algorithm is: 17.

- $A. \theta(V^2 + E)$
- B. $\theta(E \log V)$ C. $\theta(EV)$
- D. $\theta(V^2 \log V)$

18. Before searching for a minimum cut in a network, it is useful to do the following:

- A. Determine the type of each edge using depth-first search.
- B. Find and record augmenting paths until none remain.
- C. Find one augmenting path to determine the source-side vertices.
- D. Perform a breadth-first search on the input network.

19. What is the expected number of probes for an unsuccessful search in hashing by chaining when there are 1000 items stored in a structure with 100 linked lists?

20. What is the Edmonds-Karp variant?

- A. Searching a residual network for an augmenting path of maximum capacity.
- B. Using the capacity of cuts to bound the amount of flow.
- C. Using BFS to search a residual network for an augmenting path.
- D. Using DFS to search a residual network for an augmenting path.

Long Answer

1. What are the entries in the heap (for Prim's algorithm) before <u>and</u> after moving the next vertex and edge into the minimum spanning tree? DO NOT COMPLETE THE ENTIRE MST!!! Edges already in the MST are the thick ones. Edges not currently in the MST are the narrow ones. You do <u>not</u> need to show the binary tree for the heap ordering. 10 points.

2. Consider the following hash table whose keys were stored by double hashing using $h_1(\text{key}) = \text{key } \% 11 \text{ and } h_2(\text{key}) = 1 + (\text{key } \% 10).$ Show your work.

Suppose 222 is to be inserted (using double hashing). Which slot will be used? (5 points)

Suppose 222 is to be inserted (using double masning). Which
$$\frac{2}{2}$$
 $\frac{2}{2}$ $\frac{2}$

b. Suppose 2002 is to be inserted (using double hashing) after 222 has been stored. Which slot will be used? (5 points)

uppose 2002 is to be inserted (using double hashing) after 222 has been stored. The used? (5 points)

$$\begin{array}{c}
182 \\
11 \\
2002
\end{array}$$

$$\begin{array}{c}
2 \\
11 \\
90 \\
88 \\
22 \\
22 \\
0 = h
\end{array}$$

$$\begin{array}{c}
2 \\
2 \\
2 \\
0 \\
0
\end{array}$$

$$\begin{array}{c}
2 \\
4 \\
0
\end{array}$$

$$\begin{array}{c}
3 \\
2 \\
2 \\
0
\end{array}$$

$$\begin{array}{c}
2 \\
4 \\
0
\end{array}$$

$$\begin{array}{c}
3 \\
3 \\
2 \\
0
\end{array}$$

$$\begin{array}{c}
3 \\
4 \\
0
\end{array}$$

$$\begin{array}{c}
3 \\
3 \\
4 \\
0
\end{array}$$

$$\begin{array}{c}
4 \\
0
\end{array}$$

3. Show the *compressed* adjacency list representation for this weighted, directed graph. (Answers using conventional adjacency lists will receive no credit.) 10 points.

0 1 2 3 4 If either distance or successon is wrong then the entire entry thentries wong Herdries word = lost points

1

4. Demonstrate the Floyd-Warshall algorithm, <u>with successors</u>, for the following input adjacency matrix. (oo represents infinity) The paths indicated in the final matrix must have <u>at least one</u> edge. You <u>are not</u> required to show the intermediate matrices. 10 points.

	0	1	2	3	4
0	00	00	3	00	4
1	00	00	11	12	4
2	8	6	00	5	00
3	15	00	20	00	00
4	00	00	5	00	00

5. Perform depth-first search on the following graph, including start/finish times and edge types (T=tree, B=back, C=cross, F=forward.) Assume that the adjacency lists are **ordered**. Write your answer in the tables below. 10 points.

Vertex	Start	Finish	Edge Type	Edge Type
0	1	16	0 2	4 5
1	3	12	15	5 6 <u>T</u>
2	2	15	17 <u>T</u>	61 <u>B</u>
3	17	18	2 1	72 <u>B</u>
4	13	14	24 <u>T</u>	78
5	4	7	3 0	86
6	5	6	3 7 <u>C</u>	
7	8	11	3 8	
8	9	10	40 B	

33 slot 5 / 2 error = 1 point

6. Give augmenting paths for determining a maximum flow and give a minimum cut for the following network. 0 is the source and 7 is the sink. 10 points.

Minimum Cut:

S vertices:

0, 2, 3, 5, 6

T vertices:

7,1,4

Augmenting Paths and Contribution to Flow:

$$0, 2, 1, 7/2$$

 $0, 3, 4, 7/2$
 $0, 3, 6, 7/1$
 $0, 5, 6, 7/1$
 $0, 5, 6, 7/1$
 $0, 5, 6, 7/1$