## Multiple Choice:

- 1. Write the letter of your answer on the line (\_\_\_\_\_) to the LEFT of each problem.
- 2. CIRCLED ANSWERS DO NOT COUNT.
- 3. 3 points each
- 1. The time to run the code below is in:



- A.  $\Theta(n \log n)$  B.  $\Theta(n^2)$  C.  $\Theta(n^3)$  D.  $\Theta(n)$

2. A sort is said to be stable when:



- A. Items with the same key will appear in the same order in the output as in the input.
- B. It removes duplicate copies of any key in the final output.
- C. It runs in  $O(n \log n)$  time.
- D. The expected time and the worst-case time are the same.
- 3. Which of the following is not true?

$$\underline{D}$$
 A.  $n^3 \in \Omega(n^2)$ 

B. 
$$n^2 \in \Omega(n \log n)$$

C. 
$$g(n) \in O(f(n)) \Leftrightarrow f(n) \in \Omega(g(n))$$
 D.  $\log \log n \in \Omega(\log n)$ 

D. 
$$\log \log n \in \Omega(\log n)$$

4. The number of calls to merge() while performing mergesort on n items is in:



- A.  $\Theta(\log n)$  B.  $\Theta(1)$
- C.  $\Theta(n)$  D.  $\Theta(n \log n)$
- 5. Which of the following facts can be proven using one of the limit theorems?

- A.  $g(n) \in \Theta(f(n)) \Leftrightarrow f(n) \in \Theta(g(n))$  B.  $3^n \in \Omega(2^n)$

C.  $n^2 \in \Omega(n^3)$ 

- D.  $n^2 \in O(n \log n)$
- 6. Which of the following best approximates  $H_m H_n$ ? (m > n)

- A.  $H_{m-n}$  B. 1/(m-n) C.  $\ln(m/n)$  D.  $\ln(m-n)$

| 7. | Johnson's | rule | is | an | example | of: |
|----|-----------|------|----|----|---------|-----|
|    |           |      |    |    |         |     |



- A. a dynamic programming technique that gives an optimal solution
  B. a dynamic programming technique that gives an approximate solution
  - C. a greedy technique that gives an optimal solution
  - D. a greedy technique that gives an approximate solution
- 8. The time to run the code below is in:



- A.  $\Theta(n \log n)$  B.  $\Theta(n^2)$  C.  $\Theta(n^3)$  D.  $\Theta(n)$

- 9. Suppose you have correctly determined some c and  $n_0$  to prove that  $g(n) \in \Omega(f(n))$ . Which of the following is not necessarily true?



10. Suppose you are using the substitution method to establish a  $\Theta$  bound on a recurrence T(n) and that you already know that  $T(n) \in \Omega(\log n)$  and  $T(n) \in O(n^2)$ . Which of the following cannot be shown as an improvement?



B. 
$$T(n) \in \Omega(n^2)$$

C. 
$$T(n) \in \Omega(n^3)$$

- 11. What is n, the number of elements, for the largest table that can be processed by binary search using no more than 7 probes?



- B. 64
- C. 127
- D. 255
- 12. When solving the activity scheduling problem (unweighted interval scheduling), the intervals are processed in the following order.



- A. Ascending order of start time
  C. Ascending order of finish time
  D. Descending order of finish time
  - B. Descending order of interval length
- 13. Which of the following functions is not in  $\Omega(n^2)$ ?



- A.  $n^2 \lg n$  B.  $n^3$  C. n D.  $n^2$

- 14. What is the value of  $\sum_{k=0}^{\infty} \left(\frac{2}{3}\right)^k$ ?
- $\frac{1}{2}$  A.  $\frac{1}{3}$
- B.  $\frac{2}{3}$
- C.  $\frac{3}{2}$
- D. 3
- 15. When solving the fractional knapsack problem, the items are processed in the following order.
- - A. Ascending order of weight C. Descending order of weight
- B. Ascending order of \$\$\$/lb
- D. Descending order of \$\$\$/lb

## Long Answer

- 1. Give the tree corresponding to the following instance of optimal matrix multiplication. 5 points
- 5 4 3 2 3 4

2. Use dynamic programming to solve the following instance of weighted interval scheduling. Be sure to indicate the intervals in your solution and the sum achieved. 10 points





F CDAB

3. Give a Huffman code tree for the following symbols and probabilities. Besides the tree, be sure to compute the expected bits per symbol. 10 points

A 0.12 3 .36

B 0.13 3 .39

C 0.15 3 .45

D 0.15 3 .45

E 0.2 2 .40

F 0.25 2 .5

The answer is not unique

.55 bits/symbol expected

4. Complete the C function below that is intended to verify (in linear time) that a maxHeap stored in an int array named heap has its n priorities stored correctly. If the maxHeap is correct, then return 1. Otherwise, return 0. n will not be negative. 10 points

(Details of input/output, allocation, error checking, comments and style <u>are unnecessary</u>. Calls to other functions are also unnecessary.)

int verify(int n, int heap[])

{
int vint vfor vif vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[vtheap[v

return \$5

}

5, T(n) is in O(n2 log n) T(K) \ < c k 2 18/2 K for Ky  $t(\frac{n}{2}) \leq c(\frac{n}{2})^2 \log_2 \frac{n}{2}$ = c n² (log 2 n - () = C h2 (82 h - Cn? 十(4)=4丁(岩)+4 54[cm2/4/824-42/+12 = cn²log2n - cn² + n2 5 cn2682 n when e>/

5. Use the substitution method to show that  $T(n) = 4T(\frac{n}{2}) + n^2$  is in  $O(n^2 \log n)$ . (You do not need to show that T(n) is in  $\Omega(n^2 \log n)$ .) 10 points

6. T(n) is in  $G(n^2 / g n)$ = 4T(2)+112 7(1) =7 ~ 2 14 - (m) 10 T(1) Hlaves = 4/824 = 4 624 n2(1+ (og n) = G(n2 (og h) 6. Use the recursion-tree method to show that  $T(n) = 4T(\frac{n}{2}) + n^2$  is in  $\Theta(n^2 \log n)$ . 10 points