Homework – 3

(Solution - Set)

Homework for Notes 14 - 15

3.72. Adjacency Matrix:

I/P pairs :- 0 - 2, 1 - 4, 2 - 5, 3 - 6, 0 - 4, 6 - 0, & 1 - 3

	0	1	2	3	4	5	6
0	1	0	1	0	1	0	1
1	0	1	0	1	1	0	0
2	1	0	1	0	0	1	0
3	0	1	0	1	0	0	1
4	1	1	0	0	1	0	0
5	0	0	1	0	0	1	0
6	1	0	0	1	0	0	1

3.73. Adjacency List:

0	->	2	->	4	->	6
1	->	4	->	3		
2	->	0	->	5		
3	->	6	->	1		
4	->	1	->	0		
5	->	2				
6	->	3	->	0		

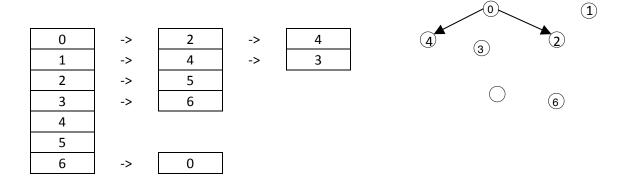
3.74. Directed Graph:

Adjacency Matrix:

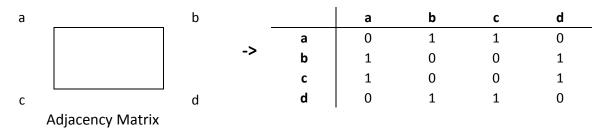
	0	1	2	3	4	5	6
0	1	0	1	0	1	0	0
1	0	1	0	1	1	0	0
2	0	0	1	0	0	1	0
3	0	0	0	1	0	0	1
4	0	0	0	0	1	0	0
5	0	0	0	0	0	1	0

Adjacency List:

Graph:



17.19.



If the graph is undirected, then the adjacency matrix of the 2^{nd} graph is same as the adjacency matrix of 1^{st} graph.

For a directed graph, Adj (Graph (G')) = Transpose of Adj (Graph (G))

<u>17.25.</u>

Adjacency List:

1 -> 4 2 -> 5 -> 9 3 -> 7 -> 8 4 -> 9 -> 1 -> 6 5 -> 0 -> 2 6 -> 0 -> 4 -> 2 7 -> 8 -> 3	0	->	5	->	6		
3 -> 7 -> 8 4 -> 9 -> 1 -> 6 5 -> 0 -> 2 -> 2 6 -> 0 -> 4 -> 2 7 -> 8 -> 3	1	->	4				
4 -> 9 -> 1 -> 6 5 -> 0 -> 2 -> 2 6 -> 0 -> 4 -> 2 7 -> 8 -> 3	2	->	5	->	9	->	6
5 -> 0 -> 2 6 -> 0 -> 4 -> 2 7 -> 8 -> 3	3	->	7	->	8		
6 -> 0 -> 4 -> 2 7 -> 8 -> 3	4	->	9	->	1	->	6
7 -> 8 -> 3	5	->	0	->	2		
	6	->	0	->	4	->	2
	7	->	8	->	3		
8 -> 7 -> 3	8	->	7	->	3		
9 -> 4 -> 2	9	->	4	->	2		

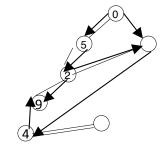
0

BFS Traversal Results:

Answer.

19.30. Adjacency List of Digraph

0	->	5	->	6
1	->	4		
2	->	6	->	9
3	->	7	->	8
4	->	9		
5	->	2		
6	->	4		
7	->	8		
8	->			



BFS Traversal Results:

3.
$$3-7,7-8$$

Answer.

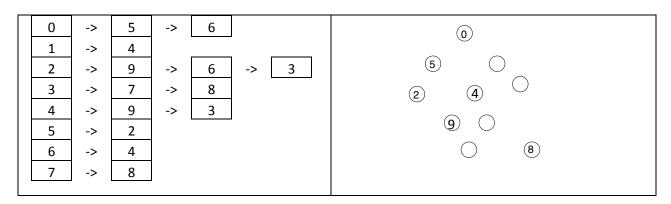
<u>18.9</u>

0	->	5	->	6		
1	->	4				
2	->	5	->	9	->	6
3	->	7	->	8		
4	->	1	->	9	->	6
5	->	2	->	0		
6	->	0	->	2	->	4

•												
7		->	3		->	8						
8		->	3		->		7					
9		->	4		->	2	2		i .			
1 st Tr	ee								2 nd T	ree		
0-0									3-3			
	0-5									3-7		
		5-2									7-8	
		2-5										8-7
			2-9									7-3
				9-4								
					4-1							
						1-4						
						4 - 9						
						4 - 6						
							6 –					
							6 –					
							6 –	ь				
0	1	2	3	4	5	6	7	8	9			
0	*	*	*	*	*	*	*	*	*			
0	*	*	*	*	1	*	*	*	*			
0	*	2	*	*	1	*	*	*	*			
0	*	2	*	*	1	*	*	*	3			
0	*	2	*	4	1	*	*	*	3			
0	5	2	*	4	1	*	*	*	3			
0	5	2	*	4	1	6	*	*	3			
0	5	2	7	4	1	6	*	*	3			
0	5	2	7	4	1	6	8	*	3			

0 5 2 7 4 1 6 8 9 3

<u> 19.95</u>



DFS Forest:

$$0-5$$
 , $5-2$, $0-6$, $6-4$, $4-9$, $4-3$, $3-7$, $1-4$

Topological Sort: Ordering:

19.96

Preorder numbering can be used to do a topological sort. Since preorder numbering simulates the behavior of a DFS in a graph which in turn can be considered as topological sort for that component.

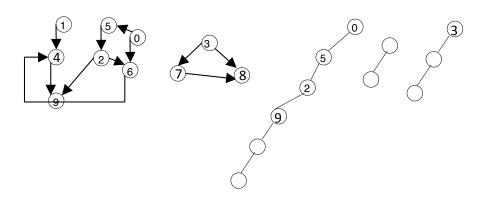
For example:

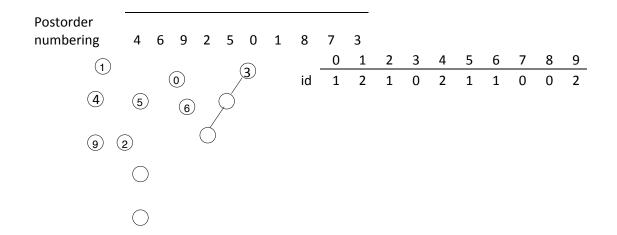
0

1

DFS in this graph produces $0 \rightarrow 1 \rightarrow 2$ which is the topological sorting and inorder number of the vertices (Answer)

19.124





20.1

Suppose the weight set of the graph = $\{ w_1, w_2, \ldots, w_n \}$ in ascending order. where $w_1 \le w_2 \ldots \le w_n$. When we add (multiply) a factor say T with all of this,

They scale by,

$$w_1 + t_1$$
 (*t₁), $w_2 + t_2$ (*t₂) $\leq \dots \dots$ and so on

Hence the proof.

But if the factor is -ve, say t₁

Then if we multiply (-t₁)

i.e,
$$w_1 * (-t_1)$$
, $w_2 * (-t_2)$, and so on

the ordering property reverses

i.e if previously $w_1 \le w_2 \le \dots w_n$

now $w_1 * (-t_1) \ge w_2 * (-t_2)$ ---- and so on because of the multiplication by a

-ve values (proved)

20.4 Maximum ST:-

Perform any spanning tree algo. M (say Prim's and Kruskal) by examining the edge in order of non-increasing weights (largest first, smallest last). If two or more edge have the same weights, order them arbitrarily (Answer)

<u>20.5</u>

Has a unique MST if the edge weights are distinct.

The unique MST will be produced by using Kruskal's algorithm. (Answer)

20.27

