
CSE 3318 Notes 3:  Summations 
 

(Last updated 1/5/24 10:26 AM) 
 
CLRS, appendix A 
 
3.A.  GEOMETRIC SERIES (review) 
 

 [Not hard to verify by math induction] 

 
 

 

 
 
3.B.  HARMONIC SERIES 
 

 

 
3.C.  APPROXIMATION BY INTEGRALS (p. 1150-1151) 
 

For a monotonically increasing  function: 
 

 

 
Since: 
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3.D.  BOUNDING SUMMATIONS USING MATH INDUCTION AND INEQUALITIES 
 

[Techniques are especially important for recurrences in Notes 04] 
 

Show  [Trivial to show using integration or  .] 

 
a. Show O(n3) 
 

(i)  

 
(ii) Suppose this holds for n:   
 

  

 
 Now go on to n + 1 and show that the bound still holds 
 

  

 
 The bridging step (???) separates the bounding term ( ) from everything else (x): 
 

  

 So ??? is now  

 
 
 
 Can drop [ . . . ] (through £) if it cannot become positive.  Happens if  c ³ 1 
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b. Show W(n3) 
 

(i)  

 
(ii) Suppose this holds for n:   
 

  

 
 Now go on to n + 1 and show that the bound still holds 
 

  

 
 The bridging step (???) involves the same algebra as before. 
 
 Can drop [ . . . ] (through ³) if it cannot become negative.  Happens if  0 < c £ 1/3 

 

Suppose we attempt to show  

a. Show O(n2) 
 

(i)  

 
(ii) Suppose this holds for n:   
 

  

 
 Now attempt to go on to n + 1. 
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 The bridging step (???) separates the bounding term ( ) from everything else (x): 

 

  

 

 So ??? is now  

 
 Can drop [ . . . ] (through £) if it cannot become positive.  Fails as n grows. 
 

b. Can still show W(n2) 
 

(i)  

 
(ii) Suppose this holds for n:   
 

  

 
 Now go on to n + 1. 
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 The bridging step separates the bounding term ( ) from everything else (x): 

 

  

 

 So ??? is now  

 
 Can drop [ . . . ] (through ³) if it cannot become negative. 
 

Happens if 0 < c £ 1 (or for “sufficiently large” n). 
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