CSE 3318 Notes 11: Rooted Trees
(Last updated 1/10/24 2:14 PM)

CLRS 10.3, 12.1-12.3,17.1, 13.2
11.A. TREES
Representing Trees (main memory, disk devices in CSE 3330)
Binary tree
Mandatory

Left
Right

Optional

Parent

Key

Data
Subtree Size

Rooted tree with linked siblings

(8) (&) (¥) BY BN /FN

Mandatory Optional
First Child Last Child
Right Sibling Left Sibling
Parent
Key
Data

Subtree Size

11.B. Binary Tree Traversals (review)
1% Visit — Preorder
2" Visit — Inorder

3" Visit — Postorder

23

11.C. BINARY SEARCH TREES

Basic property — Go left for smaller keys. Go right for larger keys. (Use of sentinel)

recTraversal (Node h)

{
if (h!=null)

{

recTraversal(h.1l);

recTraversal(h.r);

Preorder
DBCEHFAIG
Inorder
CBHEDAGIF
Postorder

CHEBGIAFD

Which traversal lists the keys in ascending order?

Operations: (see https://ranger.uta.edu/~weems/NOTES3318/BST/bst.c)

1.

Search (searchr)

Suppose that only numbers in 1 . .. 100 appear as keys in a binary search tree. While
searching for 50, which of the following sequences of keys could not be examined?

A. 10, 30, 70, 60, 50 B. 100, 20, 80, 30, 50
C. 1, 100, 20, 70, 50 D. 10, 40, 70, , 50

Minimum / maximum in tree
Successor/predecessor of a node
Insert (STinsertR)

Give the unbalanced binary search tree that results when the keys 60, 30, 80, 40, 70, 50, 10,
90 are inserted, in the given order, into an initially empty tree. (5 points)

Deletion of key and associated data is contained in:
a. Leaf
b. Node with one child
c. Node with two children
1. Find node’s successor (convention)
2. Move key and data (but not pointer values) from successor node to node of deletion.
3. Successor has either
a. Zero children — leaf is removed (5.a)
b. One child (right) — point around successor node to remove (5.b)

May also use tombstones and periodically recycle dead nodes.

Implementing operations 6. and 7. efficiently requires maintaining subtree sizes

“incrementally”.

Rank of a key X that appears in tree = number of nodes with keys < X.

Number of nodes on search path to X with keys < key in given node

+

Sizes of their left subtrees

6. Rank of a key (invSelectR).

7. Finds key with a given rank (selectR) - This is the same as flattening tree into an ordered
array and then subscripting (or using inorder traversal).

Time for operations?
From https://ranger.uta.edu/~weems/NOTES3318/BST/bst.c

(z points to the sentinel)

int invSelectR(link h, Key v)
// Inverse of selectR

{

Key t = key(h->item);

int work;

if (h==z)

return -1; // v doesn't appear as a key
if (eq(v, t))

return h->1->N+1;
if (less(v, t))

return invSelectR(h->1,v);
work=invSelectR(h->r,v);
if (work==(-1))

return -1; // v doesn't appear as a key
return 1 + h->1->N + work;

}

int STinvSelect(Key V)
{
return invSelectR(head,v);

}

Item selectR(link h, int i)

// Returns the ith smallest key where i=1 returns the smallest

// key. Thus, this is like flattening the tree inorder into an array
// and applying i as a subscript.

{

int r = h->1->N+1;

if (h == 2z)
{
printf("Impossible situation in selectR\n");
STprintTree();
exit(0);
}
if (i==r)
return h->item;
if (i<r)
return selectR(h->1, i);
return selectR(h->r, i-r);

}

Item STselect(int k)

if (k<1 || k>head->N)

¢ printf("Range error in STselect() k %d N %d\n",6k,head->N);
exit(0);

}

return selectR(head, k);

}

11.D. ROTATIONS

Technique for rebalancing in balanced binary search tree schemes. Takes (1) time.

Left rotation at B Right rotation at B
(AKA rotating edge BC) (AKA rotating edge BA)

