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17.A.  MAXIMUM FLOW CONCEPTS 
 
Given a positive weighted (capacitated) directed graph with a designated source (s) and sink (t), 
determine the maximum possible flow through the “network”, i.e. 
 
 Flow Conservation:  inflow = outflow, except at source (inflow = 0) and sink (outflow = 0) 
 
 Goal:  maximize outflow at source (equivalently, maximize inflow at sink) 
 
Examples: 

    
 
Note:  Solution is not necessarily unique 
 

  
 
Applications: 
 
 Communication system modeling 
 Pipelines 
 Mechanical systems 
 Highways 

Matching (see section 17.H) 
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 2 
Observations: 
 
 A solution can be found that does not have flow on both edges (x, y) and (y, x). 
 (Observation does not say that the smaller capacity edge should be removed.) 
 

 
 
 Solution is not optimal if an “augmenting path” (A.P.) from the source to sink can be found. 
 
 
Example:    A.P. s, b, d, t / 2 units   A.P. s, a, c, t / 2 units 
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 3 
A.P. s, a, d, t / 1 unit  Suppose that first A.P. was s, a, d, t / 3 units 

 

      
 
To fix this problem, an A.P. may “reverse” and “redirect” a flow: 
 
A.P. s, b, d, a, c, t / 2 units 
 
Remaining Question:  If there are no A.P.s (as generalized for previous example), is the flow 
maximized? 
 
YES ⇒ Leads to Ford-Fulkerson Method and Max-flow, Min-cut Theorem. 
 
 
17.B.  FORD-FULKERSON METHOD 
 
Search for A.P.s is facilitated by maintaining a residual network: 
 

1. Initially has the same edges/capacities as input network. 
 
2. The inverse of every edge is included (often with zero capacity). 
 
3. If the flow from vertex u to vertex v is positive, f(u,v) > 0, then the flow from v to u will be 

negative, i.e. f(u,v) = -f(v,u). 
 
4. An A.P. is found in the residual network by finding a path of edges where every edge has 

remaining capacity (“unsaturated”), f(u,v) < c(u,v).  The incremental flow is the minimum 
difference, c(u,v) – f(u,v), along the path. 

 
5. An A.P. is recorded twice in the residual network by: 

 
a. Adding the incremental flow to f(u,v) for every edge in the A.P. 
 
b. Subtracting the incremental flow from f(v,u) for every edge in the reverse path. 
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The initial residual network for A.P.  s, a, d, t / 3 units   A.P.  s, b, d, a, c, t / 2 units 
the last example is: 
 

     
 
 
17.C.  MAX-FLOW MIN-CUT THEOREM 
 
Cut:  A partition of V into two sets S (“source side”) and T (“sink side”) such that 
 

1. S ∩ T = ∅ 
 
2. S ∪ T = V 
 
3. s ∈ S 
 
4. t ∈ T 

 
 

 

 
Capacity of a cut: 
 
 

€ 

capacity(x,y)
y∈T
∑

x∈S
∑  

 
Lemma:  The capacity of any cut is an upper bound on the maximum flow.  (will prove later) 
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Example:

Consider the cut: 
 
 S = {s, b, c} 
 
 T = {t, a, d} 
 
 
 

So the capacity is: 
 
 s → a 20 
 b → t 5 
 c → d 20 
  ---- 
  45

Potentially, the flow could be as large as the cut-capacity (i.e. the flow “across” the cut). 
 
Now consider the cut: 
 
 S = {s, a, b} 
 
 T = {t, c, d} 
 
 

 s → c 10 
 b → t 5 
  ---- 
  15 

The definition of cut does not attempt to avoid counter-intuitive cuts: 
 

 
 
Now consider some cuts for: 
 

 
 
Cut 1: 
 
 S = {s} 
 T = {t, a, b, c, d} 
 
 Capacity = 19 
 

Cut 2: 
 
 S = {s, a, c} 
 T = {t, b, d} 
 
 Capacity = 22 
 

Cut 3: 
 
 S = {s, a, b} 
 T = {t, c, d} 
 
 Capacity = 14 
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In general, a min-cut is determined from the residual network at termination of the max-flow algorithm: 
 

1. S includes all vertices reachable from the source using unsaturated edges. 
 
2. T is everything else. 

 
Initial residual network:    A.P.  s, a, b, t / 7 units 

   
 
A.P.  s, c, d, t / 4 units     A.P.  s, a, b, c, d, t / 3 units 

   
 
The following sequence of A.P.s also leads to the same final residual network: 
 
 s, a, b, c, d, t / 3 units 
 
 s, c, d, a, b, t / 4 units 
 
 s, a, d, c, b, t / 3 units 
 
 s, a, b, c, d, t / 3 units 
 
 s, a, d, t / 1 unit 
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Searching the unsaturated edges of the residual network yields the cut S = {s, a, b}  T= {t, c, d} with 
capacity 14. 
 

 
 
 
17.D.  IMPLEMENTING FORD-FULKERSON 
 
Using Edmonds-Karp BFS 
4: 5<-4<-3<-0 
7: 5<-2<-1<-0 
3: 5<-4<-3<-2<-1<-0 
Edge capacities/flows 
0->3 4/4 
0->1 15/10 
1->2 12/10 
2->5 7/7 
2->3 3/3 
3->4 10/7 
4->5 10/7 
4->1 5/0 
Max flow is: 14 
S side: 0 1 2 
T side: 3 4 5 

Using maximum capacity paths 
7: 5<-2<-1<-0 
4: 5<-4<-3<-0 
3: 5<-4<-3<-2<-1<-0 
Edge capacities/flows 
0->3 4/4 
0->1 15/10 
1->2 12/10 
2->5 7/7 
2->3 3/3 
3->4 10/7 
4->5 10/7 
4->1 5/0 
Max flow is: 14 
S side: 0 1 2 
T side: 3 4 5 

 
 
An inefficient implementation ( http://ranger.uta.edu/~weems/NOTES3318/ff.c ) is easily implemented 
using adjacency matrices for the residual network, but wastes time scanning over nonexistent edges 
during breadth-first search. 
 
An efficient implementation ( http://ranger.uta.edu/~weems/NOTES3318/ffLab.c ) involves additional 
details for building compressed adjacency lists for the residual network.  The following example 
illustrates the phases: 
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% a.out 
4 6 
0 1 1 
0 2 2 
1 2 1 
2 1 1 
1 3 2 
2 3 1 
Input & inverses: 
  i tail head  cap 
  0   0    1     1 
  1   1    0     0 
  2   0    2     2 
  3   2    0     0 
  4   1    2     1 
  5   2    1     0 
  6   2    1     1 
  7   1    2     0 
  8   1    3     2 
  9   3    1     0 
 10   2    3     1 
 11   3    2     0 
qsort CPU 0.000027 
Sorted edges: 
  i tail head  cap 
  0   0    1     1 
  1   0    2     2 
  2   1    0     0 
  3   1    2     0 
  4   1    2     1 
  5   1    3     2 
  6   2    0     0 
  7   2    1     1 
  8   2    1     0 
  9   2    3     1 
 10   3    1     0 
 11   3    2     0 

Coalesced edges: 
  i tail head  cap 
  0   0    1     1 
  1   0    2     2 
  2   1    0     0 
  3   1    2     1 
  4   1    3     2 
  5   2    0     0 
  6   2    1     1 
  7   2    3     1 
  8   3    1     0 
  9   3    2     0 
set inverses CPU 0.000035 
Initialized residual network: 
Vertex firstEdge 
   0      0 
   1      2 
   2      5 
   3      8 
================= 
   4     10 
  i tail head  cap  inv 
  0   0    1     1    2 
  1   0    2     2    5 
  2   1    0     0    0 
  3   1    2     1    6 
  4   1    3     2    8 
  5   2    0     0    1 
  6   2    1     1    3 
  7   2    3     1    9 
  8   3    1     0    4 
  9   3    2     0    7 
3<-1<-0 adds 1 incremental flow 
3<-2<-0 adds 1 incremental flow 
3<-1<-2<-0 adds 1 incremental flow 
3 augmenting paths 
S side of min-cut: 
0 
T side of min-cut: 
1 
2 
3 
total flow is 3 
Ford-Fulkerson time 0.000293 
flows along edges: 
0->1 has 1 
0->2 has 2 
1->3 has 2 
2->1 has 1 
2->3 has 1 
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17.E.  FORD-FULKERSON CORRECTNESS 
 
Definitions:  Given a cut (S, T): 
 
1. Capacity = sum of capacities over the edges going from the S-side to the T-side: 
 
 

€ 

capacity(x,y)
y∈T
∑

x∈S
∑  

 
2. Given a flow assignment (observes flow conservation) for a network, the net flow across a cut is the 

sum: 
 
  

€ 

f (x,y)
y∈T
∑

x∈S
∑ − f (x,y)

y∈S
∑

x∈T
∑  

 
(Consider only the positive flow values, not the negative flow values.) 

 
 

 
Cut 1: 
 
 S = {s} 
 T = {t, a, b, c, d} 
 
 Capacity = 19 
 
 Flow Across Cut =  

Cut 2: 
 
 S = {s, a, c} 
 T = {t, b, d} 
 
 Capacity = 22 
 
 Flow Across Cut =  

Cut 3: 
 
 S = {s, a, b} 
 T = {t, c, d} 
 
 Capacity = 14 
 
 Flow Across Cut =  
 

 
Claim 1:  Net flow across any cut = Amount of flow (from source to sink) 
 

s

a

c d

b

t

15/10

4/4

3/3
7/7

10/7

5/

10/7

12/10



 10 

 
 

 Amount of flow = f(a) + f(b) + f(c) = f(h) + f(i) + f(c) 
 
 Observe S’:  f(a) + f(g) = f(f) + f(h), so f(a) = f(h) + f(f) – f(g) 
 
 Net flow across cut = f(b) + f(c) + f(h) + f(f) – f(g), but previous step allows substitution of f(a) 
 
                                 = f(b) + f(c) + f(a) = Amount of flow 
 
Claim 2:  Flow from s to t is bounded by any cut’s capacity 
 
 Capacity of cut ≥ f(b) + f(c) + f(f) + f(h) and f(f) + f(h) ≥ f(a)  (since f(f) + f(h) = f(a) + f(g)) 
 
 Thus, capacity of cut ≥ f(a) + f(b) + f(c) = Amount of flow 
 
 (Note:  In a min-cut f(g) = 0.) 
 
Max-flow Min-cut Theorem:  If f is a flow assignment, then the following are equivalent: 
 

1. f is a max-flow. 
 
2. No A.P.s in residual network. 
 
3. The amount of flow for f is the same as the capacity of some cut 
 
Proof:  1 ⇒ 2 ⇒ 3 ⇒ 1 
 
1 ⇒ 2:  By contradiction.  If there is an A.P., then the flow may be increased. 
 
2 ⇒ 3:  If there are no A.P.s, then search on unsaturated edges of residual network gives a min-cut. 
 
3 ⇒ 1:  By contradiction.  If f is not a max-flow, then f cannot be as large as the capacity of any cut. 
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17.F.  FORD-FULKERSON COMPLEXITY ISSUES 
 
Will assume that capacities are integers.  Otherwise, termination (due to arithmetic accuracy or irrational 
numbers) becomes an issue. 
 
The original Ford-Fulkerson technique makes no assumption about choosing an A.P. 
 
Classic bad case (unlikely in practice). 
 

 
 
Can lead to 2M A.P.s that each contribute one unit of flow. 
 
Since the number of bits (in the input file) to represent a number of magnitude M is Θ(log M), Ford-
Fulkerson has the theoretical potential to take exponential time. 
 
 
17.G.  EDMONDS-KARP VARIANT OF FORD-FULKERSON 
 
Concept:  Choose A.P. using BFS on residual network to obtain a path with smallest number of edges. 
 
Guarantees O(VE) A.P.s and O(VE2) time. 
 
Critical edge on an A.P. 
 
 Based on min { capacity – flow } for all edges in an A.P. 
 
 No capacity will remain on edge after A.P. is recorded (saturated). 
 
Observations 
 
 Edge may be the critical edge for several A.P.s. 
 
 A vertex cannot get closer to source in later rounds of BFS.  (See Lemma 26.7 in CLRS) 
 
 Flow must be sent in opposite direction by another A.P. before an edge can become critical  

again. 
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First time critical 
 

  
 
Later 
 

  
 
Second time critical 
 

  
 
The number of distinct distances available for the tail of a repeated critical edge is bounded above by 
(V-2)/2.  The number of edges that become critical is bounded above by E.  Thus, O(VE) A.P.s overall. 
 
 
17.H.  BIPARTITE MATCHING - Classic application of network flows. 
 
Consider a bipartite graph with two disjoint sets of vertices, U (employees) and V (jobs), along with a 
set of edges showing which employees can handle which jobs (no teamwork and no multi-tasking 
superstars). 
 
You would like to choose the maximum size subset of edges to match employees to jobs. 
 
Example: 
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The following construction gives a corresponding instance of network flow. 
 
 Include source (s) and sink (t). 
 
 Direct all edges from U to V. 
 
 Include an edge from the source to each U vertex. 
 
 Include an edge from each V vertex to the sink. 
 
 Set each capacity to one. 
 
For the example: 
 

 
 
Suppose the first two A.P.s are s, 0, A, t and s, 2, C, t.  (This may be done during a preprocessing phase 
that scans the adjacency list structure for unpaired vertices.) 
 

  
 
But recall that in the residual network there will be a unit of residual capacity on C → 2 and A → 0, so 
the A.P. s, 1, C, 2, A, 0, B, t is available. 
 

  
 
This gives a (perfect) matching of {(0, B), (1, C), (2, A)}.  Note that each A.P. causes a net increase of 
only one pair. 
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