
A taxonomy of distributed termination detection algorithms

Je� Matocha 1, Tracy Camp *

Department of Computer Science, The University of Alabama, P.O. Box 870290, Tuscaloosa, AL 35487-0290, USA

Received 1 December 1996; received in revised form 10 April 1997; accepted 10 May 1997

Abstract

An important problem in the ®eld of distributed systems is that of detecting the termination of a distributed computation.

Distributed termination detection (DTD) is a di�cult problem due to the fact that there is no simple way of gaining knowledge of

the global state of the system. Of the algorithms proposed in the last 15 years, there are many similarities. We have categorized these

algorithms based on the following factors: algorithm type (e.g., wave, credit-recovery), required network topology, algorithm

symmetry, required process knowledge, communication protocol (synchronous or asynchronous), communication channel behavior

(®rst-in ®rst-out (FIFO) or non-FIFO), message optimality, and fault tolerance. This methodology is intended to guide future

research in DTD algorithms (since research continues on these algorithms) as well as to provide a classi®cation survey for this

area. Ó 1998 Elsevier Science Inc. All rights reserved.

1. Introduction

In the ®eld of distributed systems, the problem of
detecting the termination of a distributed computation
has been well studied. Distributed termination detection
(DTD) was introduced in 1980 independently by Fran-
cez (Francez, 1980) and Dijkstra and Scholten (Dijkstra
and Scholten, 1980). Since its introduction, and espe-
cially during the mid-1980s, DTD has been a popular
problem to research. Although it is not popular as a
research topic today, one or two new algorithms a year
continue to be presented. DTD is di�cult to achieve
e�ciently as it is a global state detection problem. The
global state of a distributed system consists of states of
each of the processes in the system and the states of the
channels in the system. Because processes in a distrib-
uted system do not share clocks or memory, synchro-
nization problems make the detection of global state
di�cult. An algorithm which accomplishes global state
determination has been presented by Chandy and
Lamport (Chandy and Lamport, 1985), and termination
detection has been solved using this global state ap-
proach (Misra and Chandy, 1982; Misra, 1983; Chandy
and Misra, 1985, 1986a). Of course, there are many

DTD algorithms that are not based on the global state
approach by Chandy and Lamport.

DTD has also been viewed as a problem of system
consensus. All processes in the system must be ready to
terminate and all processes must then agree (either by
some information gathering or by information passing)
that the computation is terminated. In this paper,
however, we shall informally show that DTD is a harder
problem than consensus (see Section 2.8).

Researchers have placed the problem of DTD in the
larger category of quiescence detection (Chandy and
Misra, 1986a; Mattern, 1989). Quiescence is de®ned as
the state in which there are no messages in the system
and all processes are waiting. Both termination and
deadlock ®t under the heading of quiescence and are
treated similarly in some of the proposed algorithms.
The problems are similar since they both concern sens-
ing when the system is in a state where there is no way to
continue processing.

A distributed system is de®ned as a set of n processes,
P � fp0; p1; . . . ; png, which are distributed across a net-
work, and a set of communication channels, E, by which
the processes can transfer information. The communi-
cation channels are sometimes considered as directed
channels in DTD algorithms, but are most often bidi-
rectional. This set theoretic de®nition of a distributed
system can be naturally represented as a graph. Thus,
processes are often discussed as nodes or vertices and
communication channels are often discussed as edges.

The Journal of Systems and Software 43 (1998) 207±221

* Corresponding author. Tel.: +1 205 348 9516; fax: +1 205 348 0219;

e-mail: cap@cs.ua.edu.
1 E-mail: camp@cs.ua.edu

0164-1212/98/$ ± see front matter Ó 1998 Elsevier Science Inc. All rights reserved.

PII: S 0 1 6 4 - 1 2 1 2 (9 8) 1 0 0 3 4 - 1

We make the following assumptions about any distrib-
uted system.
· There is no shared memory. Hence, information that

is to be shared must be transmitted from one process
to another by a message along some channel in E.

· There is no common clock. For example, there is no
way to ensure that all processes perform some action
at exactly three o'clock.

· Communication takes arbitrary, but ®nite, time. In
other words, a process cannot predict when a message
is to be delivered and, therefore, the sender does not
know when the receiving process is cognizant of the
information within the message.
The computation that is being executed by the dis-

tributed system is called the basic computation. Messages
that are involved in this basic computation are called
basic messages. We de®ne M to be the number of basic
messages used in the computation. Processes in the
system can be in either of two states: active, in which the
process is currently working on the basic computation,
or passive, in which the process is currently waiting to be
either activated or terminated. We de®ne a model of a
distributed system to constrain the action of active and
passive processes. Processes behave according to the
following rules.
1. Initially, each process in the system is either active or

passive.
2. An active process may become passive at any time.
3. Only an active process may send a basic message to

another process.
4. A passive process can only become active if it receives

a basic message.
The above assumptions ensure that the system be-

haves in a predictable manner. If one can determine that
all processes in the system are passive and there are no
basic messages in transit, one has detected termination.
These two conditions are the necessary and su�cient
conditions for detecting termination given the four rules
of distributed systems behavior above.

In order to discern the conditions for DTD, each
process executes an algorithm in addition to its basic
computation. The DTD algorithm runs concurrently,
but does not interfere, with the basic computation.
Running this DTD algorithm introduces more messages
into the system. The messages used expressly for de-
tecting termination are called control messages. Control
messages are sent and received by both active and pas-
sive processes, but do not modify their active or passive
status.

The algorithms which have been presented in the
literature have been proposed in a logical progression
throughout the years. In this paper, a categorization of
the past work in DTD algorithms is presented. We
classify the algorithms based on similarities, and we il-
lustrate how each algorithm ®ts each category. The
categories that we de®ne to classify the DTD algorithms

are intended to aid in developing future algorithms, for
furthering the study of this type of algorithm, as well as
for choosing a DTD algorithm for use in one's own
implementation.

We de®ne the following categories for classifying
DTD algorithms in this paper.
1. Type of algorithm ± For example, a wave algorithm is

a popular type of DTD algorithm.
2. Necessary network topology ± For those algorithms

where it is necessary to exploit the underlying topol-
ogy of the network in order to detect termination cor-
rectly.

3. Algorithm symmetry ± If an algorithm is symmetric,
each process runs an identical algorithm.

4. Process knowledge ± For example, a process that re-
quires information about the network in order to per-
form its duty, has special knowledge.

5. Communication protocol ± Each algorithm assumes
either synchronous or asynchronous communication.

6. Message arrival ± Each algorithm assumes either
®rst-in ®rst-out (FIFO) message channels or no re-
strictions on the arrival of messages.

7. Message optimality ± If an algorithm, in its worst
case, uses the number of messages which researchers
have proven to be a lower bound on the number of
messages necessary to detect termination, it is consid-
ered message optimal.

8. Fault tolerance ± If a system can detect termination
when there are portions of the system that do not
work as expected, it is considered fault tolerant.
We de®ne the eight categories and classify the current

DTD algorithms into these categories in Section 2. We
discuss each of the categories in detail as well as the
motivation for choosing them. Within the discussion, we
indicate any dependencies of a classi®cation; for exam-
ple, the fact that synchronous communication implies
FIFO message ordering. In Section 3, we conclude the
paper with a discussion of the research possibilities in
the area.

2. Classi®cation categories

In studying DTD algorithms, we noted eight areas
which are useful in comparing the proposed algorithms
in the literature. In the following sections, each of the
eight categories is described with a discussion of how a
proposed algorithm relates to the category. The type of
algorithm category is helpful for classifying any type of
algorithm, distributed or otherwise. Communication
protocol, message arrival, and constraints on the net-
work are similar in that they describe constraints which
the algorithm places on its execution environment.
Message optimality is a measure of algorithmic com-
plexity, which is always an important item to inspect.
Process symmetry and process knowledge are similar

208 J. Matocha, T. Camp / The Journal of Systems and Software 43 (1998) 207±221

and are considered by some to be a single classi®cation
unit. Lastly, any real-world distributed system must be
concerned with fault tolerance. These categories, though
chosen in this paper for DTD algorithms, are general
enough to apply to any distributed algorithm.

2.1. Type of algorithm

In order to classify a DTD algorithm by type, one
must determine the general action of the algorithm.
DTD algorithms range in type from theoretically based
methods to ad hoc methods. In a few cases, a method is
derived from other distributed problems (e.g., global
state detection); typically, however, a method has been
developed speci®cally for the problem of DTD.

The most popular method of constructing DTD al-
gorithms has been to create a wave algorithm. A wave
algorithm is one in which a message is passed to each
node in the graph (directly or indirectly) by a single
initiator or a set of initiators. Each process then returns
information to the initiator(s). These ``waves'' of mes-
sage passing collect information about the global state
of the system. The nature of wave algorithms makes
them applicable to detecting termination.

Tel (1994) formally de®nes a wave algorithm as one
that satis®es the following three requirements:
1. The wave must terminate.
2. The initiator must make a decision.
3. The decision is preceded by an event in each process.
These conditions guarantee that there is a decision after
something happens in each process. The only way to
ensure each process does something is to pass a wave
throughout the network. The information which is col-
lected during the wave is a piece of the global state, al-
though it may be inconsistent. Since DTD is a global
state detection problem, it is natural that wave algo-
rithms are popular for the proposed solutions.

Typically, wave algorithms exploit a feature of the
network's topology. First, we discuss waves in a net-
work in which there is a cycle that contains each process
in P . These cyclic algorithms are simple examples of the
wave algorithm type. One early example of this type is
presented in Dijkstra et al. (1983). For the token and
each node in the system, there is a color attribute, which
is set initially to white. When the initiator (p0) becomes
passive, it sends a white token to its successor (pnÿ1).
When the current token holder (pi) becomes passive, it
passes the token to its successor (piÿ1�. If pi is a white
node, it passes the token with whatever color it received.
If pi is a black node, it passes a black token. A node
becomes black if it sends a basic message to another
node. In addition to being initially white, each process
becomes white upon forwarding the token to its suc-
cessor. When p0 receives a white token, is white itself,
and is passive, termination has been detected. Note that
in this algorithm:

1. each wave eventually terminates;
2. p0 makes a decision after collecting information (i.e.,

the token color); and
3. pi �06 i < n� receive and pass the token prior to the

decision.
There are other wave algorithms that take advantage

of a logical cycle within the network (Francez et al.,
1981; Rana, 1983; Arora and Sharma, 1983; Kumar,
1985; Mattern, 1987a; Muller, 1987; Sanders, 1987;
Hazari and Zedan, 1987; Mayo and Kearns, 1994). The
network topology is further restricted for the algorithm
in (Misra, 1983). In this case, the network is assumed to
be a token ring network; thus, no other communication
channels between processes are available. DTD is much
simpler to determine in this restricted graph than in an
arbitrary graph.

A tree network is another logical topology that is
naturally exploited for wave algorithms. That is, a tree
must be transposed upon the existing network. A wave
algorithm in a logical tree network is typically one in
which the root initiates the computation. The algorithm
splits the token into pieces, one piece for each child,
during the wave down the tree, and then combines the
pieces of the token into a single token during the wave
up the tree. When a non-leaf node collects tokens from
each of its children, it sends a single token to its parent
node. At the root of the tree, a piece of the global state is
known when the root has collected tokens from all its
children. Due to the transitive nature of the algorithm,
the root can determine when all other nodes have passed
their tokens. In Francez's seminal paper (Francez,
1980), a tree-based wave algorithm is described. Upon
the initiation of the check for termination, the tree is
``frozen'' by a wave, thus pausing the basic computa-
tion. The root, upon receiving knowledge that all nodes
are frozen, passes another wave to detect a consistent
global state of the system. Naturally, the freezing aspect
is detrimental to the basic computation. Therefore, more
recent tree based wave algorithms do not use freezing to
obtain a consistent global state of the system (Francez
and Rodeh, 1982; Topor, 1984; Lai, 1986).

A clique, also called a complete graph, is a graph which
has connections from each node to every other node. On
these graphs, one can superimpose a cycle or a tree on
which to run a wave algorithm. The algorithm presented
in (Szymanski et al., 1985a, b) requires a clique graph as a
topology and uses a tree-based wave algorithm. Of course,
requiring a clique is a larger restriction than requiring that
a tree is superimposed upon the network. There are two
algorithms that use wave algorithms without making any
assumptions about the underlying topology of the net-
work (Chandy and Misra, 1985; Mattern, 1987b). Of
course, algorithms that make no assumption about the
network are the most ¯exible wave algorithms.

Wave algorithms are elegant and natural solutions to
DTD, but there is one property of wave algorithms that

J. Matocha, T. Camp / The Journal of Systems and Software 43 (1998) 207±221 209

make them unattractive for implementation. Typically
wave algorithms are repetitive, thus making them inef-
®cient. That is, the DTD algorithm sends wave after
wave until termination is detected. Many of the above
algorithms have a message complexity of O�M � n� in
the worst case. (Recall that M is the number of basic
messages and n is the number of processes in the dis-
tributed system.) In other words, there is possibly one
wave for every message in the basic computation.

Two wave algorithms do not exhibit the repetitive
nature of the previously mentioned algorithms. In these
non-repetitive wave algorithms, the initiator is di�erent
for each wave (Huang, 1988; Haldar and Subramanian,
1988). When a process becomes passive, it initiates a
wave to detect the termination status of the system by
sending a token around a cycle or a tree. Upon receipt of
a token at an active process, the token is purged. When
the last active process becomes passive, it senses, by
receiving tokens from all processes either directly or
indirectly, that the entire system is passive. The average
case message complexity for these non-repetitive forms
of wave algorithms is less than the repetitive wave al-
gorithms. Unfortunately, the worst case continues to be
O�M � n�.

Although the majority of distributed termination
detection algorithms are wave algorithms, other types of
DTD algorithms exist. One such type of non-wave al-
gorithms is what we call parental responsibility algo-
rithms. This type of DTD algorithm builds trees based
on the message passing of the basic computation (
computation trees). The de®nition of passive is extended
in these algorithms; a parent cannot become passive
until all of its children are passive. When the root of the
computation tree becomes passive, it can determine that
termination has occurred.

Dijkstra and Scholten's parental responsibility algo-
rithm (Dijkstra and Scholten, 1980) infers information
about other processes by requiring that when process pi

activates process pj �i 6� j�, pi becomes responsible for pj.
When pj becomes passive, it reports its new status to pi.
Obviously, pi cannot become passive until all of the
processes for which it is responsible have become pas-
sive. With Dijkstra and Scholten's parental responsi-
bility algorithm, the root is the last process waiting to
become passive; when the root becomes passive, termi-
nation is detected. This algorithm, though one of the
seminal DTD algorithms, is message optimal. That is,
the message complexity is O�M�. (See Section 2.7 for
further discussion of optimal message complexity.)
Other algorithms that use a parental responsibility al-
gorithm are (Misra and Chandy, 1982; Cohen and
Lehmann, 1983; Lai and Wu, 1995).

One algorithm uses a combined technique of parental
responsibility and wave algorithms (Shavit and Francez,
1986). The algorithm is de®ned for a forest. Each tree in
the forest runs the Dijkstra and Scholten parental re-

sponsibility algorithm; a wave is circulated among the
roots of trees in the forest in order to detect termination
of all the trees.

Another clever way to detect termination, which does
not fall into the above two types, is the credit/recovery
or weight throwing algorithm. These algorithms stem
from a similar technique in distributed garbage collec-
tion. Mattern presents an algorithm that begins with one
total credit in the distributed system (Mattern, 1989).
Each active process holds a portion of the credit. When
process pi communicates with process pj �i 6� j�, pi sends
pj a fraction, f , of the credit it holds (0 < f < pi's
holding). When a process becomes passive, it sends the
credit it holds to an active process. When a process
holds exactly one credit and becomes passive, it detects
that termination has occurred.

This elegant credit/recovery solution has been used in
several proposed algorithms (Rokusawa et al., 1988;
Venkatesan, 1989; Tseng, 1995). These algorithms are
subject to problems in their implementation due to the
divisions of the credit. In (Huang, 1989), there is a de-
scription of a ``space-e�cient scheme to encode the
weights''.

Table 1 lists all the algorithms that we classify in this
paper along with their associated type. The column la-
beled ``Other'' in Table 1 is for algorithms which we
have not discussed in this section, as the type of these
algorithms is ad hoc. We explore other aspects of these
four algorithms in later sections.

2.2. Network topology

In many distributed termination detection algo-
rithms, it is sometimes assumed that a particular to-
pology is present in the network. If a certain topology is
present, it is easier to write a correct and e�cient DTD
algorithm. Many DTD algorithms make assumptions
about the topology of the communication network for
this reason.

The most common structure which algorithms expect
is a Hamiltonian cycle. A graph contains a Hamiltonian
cycle if there is a cycle which uses no edge more than
once and contains each process in P exactly once. Many
algorithms use a Hamiltonian cycle superimposed upon
the existing network as the DTD network on which the
control messages travel (Francez et al., 1981; Dijkstra et
al., 1983; Arora and Sharma, 1983; Kumar, 1985;
Mattern, 1987a; Muller, 1987; Sanders, 1987; Hazari
and Zedan, 1987; Mayo and Kearns, 1994). A Hamil-
tonian cycle is a topological trait that lends itself to wave
algorithms, a popular DTD algorithm type as illustrated
in Section 2.1. Finding a Hamiltonian cycle in a graph
has been proven to be NP-completem (Cormen et al.,
1990), thus creating problems for the use of these algo-
rithms. Other algorithms require that the network is
con®gured as a ring, which is a trivial Hamiltonian cycle

210 J. Matocha, T. Camp / The Journal of Systems and Software 43 (1998) 207±221

(Rana, 1983; Misra, 1983; Haldar and Subramanian,
1988).

Some algorithms use a tree that is built from the
computation (a computation tree), where the calling
process is the parent and the called process is the child
(Francez, 1980; Dijkstra and Scholten, 1980; Misra and
Chandy, 1982; Francez and Rodeh, 1982; Cohen and
Lehmann, 1983; Mattern, 1987a, 1989; Lai and Wu,
1995). Computation tree algorithms use the same
channels for control communication that are used for
basic messages, except in the opposite direction. There-
fore it is assumed that the channels are bidirectional.
Computations which operate as de®ned here are called
di�using because they begin with a single process (the
root) and then branch out from it. All basic computa-
tions may not lend themselves to di�using algorithms.
Therefore, algorithms that require di�usion place re-
strictions on the kinds of computations with which they
may execute.

As mentioned in Section 2.1, the algorithm from
Shavit and Francez uses a combined approach (Shavit

and Francez, 1986). This algorithm combines the pa-
rental responsibility algorithm of Dijkstra and Scholten
(Dijkstra and Scholten, 1980) with a cycle-based wave
algorithm. Each tree in the forest runs Dijkstra and
Scholten's algorithm and a wave gathers information
from the roots to detect termination. The combined
approach allows the computation to be non-di�using. In
di�using computations, Shavit and Francez's algorithm
will exhibit the optimal message complexity as exhibited
by Dijkstra and Scholten's algorithm. In a forest of
di�using computations, the complexity of the wave al-
gorithm is inherent. Therefore, the generality gained by
the combined approach (over Dijkstra and Scholten's
approach) increases the message complexity.

Many algorithms have no requirement on the net-
work topology. Included are algorithms which require a
spanning tree. Early algorithms discuss spanning trees
that are created at compile-time. Spanning tree creation
can be done easily at run-time, however, and therefore
require no preset tree in the network. Algorithms
needing a spanning tree include (Topor, 1984; Lai, 1986;

Table 1

Algorithms and their associated type

Algorithm Cyclic

wave

Tree

wave

General

wave

Non-repetitive

wave

Parental

responsibility

Credit/

recovery

Other

(Francez, 1980) X

(Dijkstra and Scholten, 1980) X

(Francez et al., 1981) X

(Misra and Chandy, 1982) X

(Francez and Rodeh, 1982) X

(Cohen and Lehmann, 1983) X

(Dijkstra et al., 1983) X

(Rana, 1983) X

(Misra, 1983) X

(Arora and Sharma, 1983) X

(Topor, 1984) X

(Szymanski et al., 1985a) X

(Szymanski et al., 1985b) X

(Kumar, 1985) X

(Chandy and Misra, 1985) X

(Lai, 1986) X

(Shavit and Francez, 1986) X X

(Skyum and Eriksen, 1986) X

(Mattern, 1987a) X

(Mattern, 1987b) X

(Muller, 1987) X

(Sanders, 1987) X

(Hazari and Zedan, 1987) X

(Rokusawa et al., 1988) X

(Huang, 1988) X

(Haldar and Subramanian, 1988) X

(Mattern, 1989) X

(Venkatesan, 1989) X

(Huang, 1989) X

(Chandrasekaran and Venkatesan, 1990) X

(Ye and Keane, 1991) X

(Lai et al., 1992) X

(Mayo and Kearns, 1994) X

(Tseng, 1995) X

(Lai and Wu, 1995) X

J. Matocha, T. Camp / The Journal of Systems and Software 43 (1998) 207±221 211

Venkatesan, 1989; Chandrasekaran and Venkatesan,
1990; Lai et al., 1992). Algorithms that have no re-
quirement on the network topology (and do not create a
spanning tree) include (Szymanski et al., 1985a, b;
Chandy and Misra, 1985; Skyum and Eriksen, 1986;
Mattern, 1987b; Rokusawa et al., 1988; Huang,
1988, 1989; Ye and Keane, 1991; Tseng, 1995). Table 2
lists all the DTD algorithms discussed in this paper and
the associated network topology requirement.

2.3. Algorithm symmetry

A DTD algorithm is symmetric if each process exe-
cutes an identical algorithm. Symmetric algorithms are
those in which no process is distinguished from the
others for any purpose. Thus, if a DTD algorithm uses a
unique identi®cation for the processes, the algorithm is
considered asymmetric. One can argue, however, that
this type of asymmetric algorithm can become sym-
metric by checking a condition to distinguish the process
identi®cation. Another example of asymmetry in a DTD
algorithm is one with a set of leaf processes, a set of

interior processes, and a single root process, as in
(Francez, 1980; Francez and Rodeh, 1982; Topor, 1984;
Lai, 1986); in this case, a test of node type must be made
and appropriate code executed. We consider any infor-
mation to distinguish a process as special process
knowledge (see Section 2.4). We designate these algo-
rithms as ``Specialized'' in Table 3.

The largest percentage of asymmetric DTD algo-
rithms are asymmetric due to one process being desig-
nated (before run-time) as the initiator/detector
(Dijkstra and Scholten, 1980; Misra and Chandy, 1982;
Cohen and Lehmann, 1983; Dijkstra et al., 1983; Ro-
kusawa et al., 1988; Mattern, 1989; Tseng, 1995; Lai and
Wu, 1995). Often, the initiator/detector is merely the
root of the tree, which is natural for algorithms that use
computation trees. Huang proposes an algorithm in
which a central agent is chosen before run-time (Huang,
1989). This algorithm, as well as the initiator/detector
algorithms, requires asymmetry throughout its execu-
tion.

Algorithms that require a spanning tree are asym-
metric due to a distinguished root node (Venkatesan,

Table 2

Algorithms and their necessary network topology

Algorithm Hamiltonian cycle Computation tree Spanning tree No requirement Other

(Francez, 1980) X

(Dijkstra and Scholten, 1980) X

(Francez et al., 1981) X

(Misra and Chandy, 1982) X

(Francez and Rodeh, 1982) X

(Cohen and Lehmann, 1983) X

(Dijkstra et al., 1983) X

(Rana, 1983) X

(Misra, 1983) X

(Arora and Sharma, 1983) X

(Topor, 1984) X

(Szymanski et al., 1985a) X

(Szymanski et al., 1985b) X

(Kumar, 1985) X

(Chandy and Misra, 1985) X

(Lai, 1986) X

(Shavit and Francez, 1986) X

(Skyum and Eriksen, 1986) X

(Mattern, 1987a) X X

(Mattern, 1987b) X

(Muller, 1987) X

(Sanders, 1987) X

(Hazari and Zedan, 1987) X

(Rokusawa et al., 1988) X

(Huang, 1988) X

(Haldar and Subramanian, 1988) X

(Mattern, 1989) X

(Venkatesan, 1989) X

(Huang, 1989) X

(Chandrasekaran and Venkatesan, 1990) X

(Ye and Keane, 1991) X

(Lai et al., 1992) X

(Mayo and Kearns, 1994) X

(Tseng, 1995) X

(Lai and Wu, 1995) X

212 J. Matocha, T. Camp / The Journal of Systems and Software 43 (1998) 207±221

1989; Chandrasekaran and Venkatesan, 1990; Lai et al.,
1992). Asymmetry in this case is similar to the algo-
rithms with an initiator/detector or a central agent. In all
three of these asymmetric algorithms, bottleneck prob-
lems exist. Also, fault tolerance is di�cult since the
distinguished node is important and would be di�cult to
recover after failure.

Other algorithms are initially asymmetric, to ensure
that there is a single token in the network (Misra, 1983;
Arora and Sharma, 1983; Kumar, 1985; Chandy and
Misra, 1985; Shavit and Francez, 1986; Sanders, 1987;
Ye and Keane, 1991). These algorithms start the com-
putation with an initiator holding the token. Following
the initialization, there is no asymmetry.

Algorithms which are symmetric are more ¯exible
than asymmetric algorithms. Symmetric algorithms in-
clude (Francez et al., 1981; Rana, 1983; Szymanski et
al., 1985a, b; Skyum and Eriksen, 1986; Mattern,
1987a, b; Muller, 1987; Hazari and Zedan, 1987;
Huang, 1988; Haldar and Subramanian, 1988; Mayo
and Kearns, 1994). Symmetry is important to allow less

reliance on a special process in the system. Moving from
asymmetry to symmetry also brings an algorithm a step
closer to a fault tolerant solution (see Section 2.8). Ta-
ble 3 lists each DTD algorithm with its associated
symmetry characteristic.

2.4. Process knowledge

Many DTD algorithms assume that the processes
have knowledge of the system initially. The information
typically required is necessary at compile-time and
causes the algorithm to be less general. For example, an
algorithm may require knowledge of the static size of the
network. Requiring this type of information initially is
detrimental to the algorithm's usefulness, since it is
compile-time knowledge and restricts the network of
processes from changing.

In a ring network, it is a typical assumption that a
process knows its successors (Francez et al., 1981;
Dijkstra et al., 1983; Rana, 1983; Misra, 1983; Arora
and Sharma, 1983; Kumar, 1985; Mattern, 1987a, b;

Table 3

Algorithms and their process symmetry

Algorithm Specialized p0 only p0 at run time Token Symmetric

(Francez, 1980) X

(Dijkstra and Scholten, 1980) X

(Francez et al., 1981) X

(Misra and Chandy, 1982) X

(Francez and Rodeh, 1982) X

(Cohen and Lehmann, 1983) X

(Dijkstra et al., 1983) X

(Rana, 1983) X

(Misra, 1983) X

(Arora and Sharma, 1983) X

(Topor, 1984) X

(Szymanski et al., 1985a) X

(Szymanski et al., 1985b) X

(Kumar, 1985) X

(Chandy and Misra, 1985) X

(Lai, 1986) X

(Shavit and Francez, 1986) X

(Skyum and Eriksen, 1986) X

(Mattern, 1987a) X

(Mattern, 1987b) X

(Muller, 1987) X

(Sanders, 1987) X

(Hazari and Zedan, 1987) X

(Rokusawa et al., 1988) X

(Huang, 1988) X

(Haldar and Subramanian, 1988) X

(Mattern, 1989) X

(Venkatesan, 1989) X

(Huang, 1989) (central agent)

(Chandrasekaran and Venkatesan, 1990) X

(Ye and Keane, 1991) X

(Lai et al., 1992) X

(Mayo and Kearns, 1994) X

(Tseng, 1995) X

(Lai and Wu, 1995) X

J. Matocha, T. Camp / The Journal of Systems and Software 43 (1998) 207±221 213

Muller, 1987; Sanders, 1987; Hazari and Zedan, 1987;
Haldar and Subramanian, 1988; Mayo and Kearns,
1994). In (Arora and Sharma, 1983), the authors also
require that each process has knowledge of the (shortest)
distance to every other process in the system.

Algorithms using tree structures often require all
processes to know whether they are a root, leaf, or inte-
rior node as well as the process's parent and children
(Francez, 1980; Dijkstra and Scholten, 1980; Francez and
Rodeh, 1982; Topor, 1984; Lai, 1986; Venkatesan, 1989;
Chandrasekaran and Venkatesan, 1990; Lai et al., 1992).
In algorithms that use a computation tree, the node type
information is determined, and will change, during the
execution of the computation. In addition to this dy-
namic information requirement, (Misra and Chandy,
1982) requires knowledge of a process's neighbors. In-
ferring neighbors from the network should be simple.

Due to the central agent in Huang's algorithm
(Huang, 1989), it is di�erent from previously mentioned
algorithms. Huang requires that all processes in the
system know which process is the central agent. Re-
quiring this information is not the same as in algorithms
which have an initiator/detector; algorithms do not re-
quire that a process (other than the initiator/detector
itself) knows which process is the initiator/detector.

In a few cases, algorithms require processes to know
global information about the network environment.
Three algorithms require that all processes know an
upper bound on the diameter of the network (Szymanski
et al., 1985a, b; Skyum and Eriksen, 1986). Huang re-
quires that each process has a list of all the processes in
the system (Huang, 1988).

Lamport's logical clocks (Lamport, 1978) have
greatly a�ected distributed systems, including DTD al-
gorithms. Two algorithms require logical clocks (Rana,
1983; Mayo and Kearns, 1994). As opposed to Rana's
clock (Rana, 1983), Mayo and Kearns create an algo-
rithm for ``roughly synchronized clocks''. In this algo-
rithm, d represents the maximum time that any two
clocks may be apart in the entire system.

There are many algorithms that require no informa-
tion about the system environment (Cohen and Leh-
mann, 1983; Shavit and Francez, 1986; Rokusawa et al.,
1988; Mattern, 1989; Ye and Keane, 1991; Tseng, 1995;
Lai and Wu, 1995). Of course, algorithms which need no
system information are the most general algorithms in
terms of special knowledge. Table 4 lists all algorithms
and their required process knowledge.

2.5. Communication protocol

Early DTD algorithms were based on Hoare's Com-
municating Sequential Processes (CSP) notation (Hoare,
1978). Since CSP is a synchronous protocol for message
passing, these early algorithms are elegant DTD algo-
rithms (Francez, 1980; Francez et al., 1981; Misra and

Chandy, 1982; Francez and Rodeh, 1982; Cohen and
Lehmann, 1983). Synchronous message passing is
equivalent to requiring message travel to be instanta-
neous. Thus, CSP-based DTD algorithms need not be
concerned with the possibility that there are messages in
transit, thereby reducing the necessary and su�cient
conditions for DTD to merely deciding if all processes in
the system are passive. Elegant solutions are possible
with synchronous communication compared to asyn-
chronous communication. The instantaneous commu-
nication granted by CSP further ensures that all messages
arrive in the order in which they are sent (well-ordered
message passing). This ordering is a stronger property
than the FIFO message ordering that we discuss in the
next section. Other algorithms require synchronous
message passing, but are not written in CSP (Dijkstra et
al., 1983; Arora and Sharma, 1983; Topor, 1984; Szy-
manski et al., 1985a, b; Mayo and Kearns, 1994).

Realizing that synchronous communication is re-
strictive, some authors write their algorithm in CSP, yet
prove their algorithm correct in the asynchronous case.
Rana's algorithm is written in CSP, although a section is
included which states how the algorithm is ``easily
modi®ed for'' asynchronous message passing (Rana,
1983). Chandy and Misra present an algorithm which is
expressed in CSP, but can execute in asynchronous
systems (Chandy and Misra, 1985).

Although synchronous communication can be mod-
eled in an asynchronous system, it is not considered a
better technique. The overhead of creating a synchro-
nous system is great and, therefore, an asynchronous
system is preferred. Algorithms with asynchronous
communication are more ¯exible, realistic, and e�cient
than those that use synchronous communication.
Asynchronous communication algorithms include
(Dijkstra and Scholten, 1980; Misra, 1983; Kumar,
1985; Lai, 1986; Shavit and Francez, 1986; Skyum and
Eriksen, 1986; Mattern, 1987a, b; Muller, 1987; San-
ders, 1987; Hazari and Zedan, 1987; Rokusawa et al.,
1988; Huang, 1988; Haldar and Subramanian, 1988;
Mattern, 1989; Venkatesan, 1989; Huang, 1989; Chan-
drasekaran and Venkatesan, 1990; Ye and Keane, 1991;
Lai et al., 1992; Tseng, 1995; Lai and Wu, 1995).
Asynchronous communication has the attribute that
messages have arbitrary (but ®nite) time of travel in the
system. Detecting whether there are any messages in
transit is a di�cult task in a DTD algorithm. In Table 5,
we list the DTD algorithms and the protocol they need
for communication.

2.6. Message arrival

If a channel is required to deliver messages in the
order in which they are sent, it is called a FIFO channel.
If a FIFO channel is required by a DTD algorithm, the
solution to detecting termination is easier to create. A

214 J. Matocha, T. Camp / The Journal of Systems and Software 43 (1998) 207±221

few asynchronous DTD algorithms require FIFO
channels (Misra, 1983; Skyum and Eriksen, 1986; Ha-
zari and Zedan, 1987; Haldar and Subramanian, 1988;
Venkatesan, 1989; Chandrasekaran and Venkatesan,
1990). A FIFO channel is also implicit in any synchro-
nous communicating systems; see Section 2.5 for a list of
the synchronous DTD algorithms. A FIFO channel can
be achieved with the network protocol (e.g. TCP). This
protocol ensures that messages, although not always
received in order, are delivered to the application in a
FIFO order.

A protocol written for non-FIFO channels is more
general since it will execute on either a non-FIFO or
FIFO channel with no modi®cations. Unrestricted al-
gorithms include (Dijkstra and Scholten, 1980; Kumar,
1985; Lai, 1986; Shavit and Francez, 1986; Mattern,
1987a, b; Muller, 1987; Sanders, 1987; Rokusawa et al.,
1988; Huang, 1988; Mattern, 1989; Huang, 1989; Ye
and Keane, 1991; Lai et al., 1992; Tseng, 1995; Lai and
Wu, 1995). The algorithm in (Chandy and Misra, 1985)
is unique. The algorithm does not require FIFO chan-

nels, however, it uses a message to ``¯ush the channel'' in
order to ensure that no messages are in transit. In Ta-
ble 6, we list the DTD algorithms and classify them
according to their message arrival properties.

2.7. Message optimality

Chandy and Misra proved in 1986 that there is a
worst case lower bound on the number of control mes-
sages used by any DTD algorithm with asynchronous
communication (Chandy and Misra, 1986b). They
proved that the best asynchronous solutions to the DTD
problem have a worst case (lower bound) of X�M�
control messages, where M is the number of basic mes-
sages in the computation. This bound means that for
each message sent in the basic computation, there is a
constant number of control messages to determine when
termination has occurred. Interestingly, one of the ®rst
proposed algorithms used exactly M control messages
(Dijkstra and Scholten, 1980). Other early algorithms
used extremely high numbers of control messages. Wave

Table 4

Algorithms and their process knowledge

Algorithm Successors Node information Upper bound on net diameter Other No information

(Francez, 1980) X

(Dijkstra and Scholten, 1980) X

(Francez et al., 1981) X

(Misra and Chandy, 1982) X

(Francez and Rodeh, 1982) X

(Cohen and Lehmann, 1983) X

(Dijkstra et al., 1983) X

(Rana, 1983) X logical clocks

(Misra, 1983) X

(Arora and Sharma, 1983) X distance function

(Topor, 1984) X

(Szymanski et al., 1985a) X

(Szymanski et al., 1985b) X

(Kumar, 1985) X

(Chandy and Misra, 1985) X

(Lai, 1986) X

(Shavit and Francez, 1986) X

(Skyum and Eriksen, 1986) X

(Mattern, 1987a) X

(Mattern, 1987b) X

(Muller, 1987) X

(Sanders, 1987) X

(Hazari and Zedan, 1987) X

(Rokusawa et al., 1988) X

(Huang, 1988) list of pis

(Haldar and Subramanian, 1988) X

(Mattern, 1989) X

(Venkatesan, 1989) X

(Huang, 1989) central agent

(Chandrasekaran and Venkatesan, 1990) X

(Ye and Keane, 1991) X

(Lai et al., 1992) X

(Mayo and Kearns, 1994) X logical clocks

(Tseng, 1995) X

(Lai and Wu, 1995) X

J. Matocha, T. Camp / The Journal of Systems and Software 43 (1998) 207±221 215

algorithms, with their repetitive nature, use many more
messages than the minimum (typically O�M � n�). Each
wave is O�n� since each process must answer to the
initiator. For each basic message, of which there are M ,
a single wave might be used. Other algorithms that ex-
hibit message optimality in terms of M are (Cohen and
Lehmann, 1983; Mattern, 1989; Venkatesan, 1989;
Huang, 1989; Chandrasekaran and Venkatesan, 1990;
Lai et al., 1992). Two algorithms by Mattern (Mattern,
1987a, b) exhibit O�M� behavior in graphs that are stars
or are complete. Lai and Wu present a fault tolerant
algorithm which exhibits optimal behavior in the case
that there are no faults (Lai and Wu, 1995). All other
algorithms do not exhibit optimal behavior.

Chandrasekaran and Venkatesan proved in 1990 that
there is another lower bound for the number of control
messages to detect termination (Chandrasekaran and
Venkatesan, 1990). They proved that any algorithm
must use ``at least jEj messages, where jEj is the number
of links in the network''. They combine the results of
their proof with the results from (Chandy and Misra,
1986b) to state that ``any asynchronous algorithm that

solves the distributed termination detection problem
uses at least X�jEj �M� messages in the worst case''.
Therefore, all algorithms listed above that ful®ll O�M�
control messages, ful®ll this bound if M > jEj (a natural
assumption).

DTD algorithms use the number of messages re-
quired as a measure of complexity. One might consider
message length to be a better measure of complexity;
however, the di�erence in transmission time between a
message of O�1� bits and O�n� bits is negligible. The
time taken to access the transmission medium, on the
other hand, is much greater than the actual transfer
time. Table 7 lists the algorithms according to their
message optimality. As can be seen in the table, most
algorithms are not optimal in the number of control
message transmissions.

2.8. Fault tolerance

Fault tolerance is the requirement that an algorithm
continues to work regardless of problems in the net-
work or at individual nodes. This robust action of an

Table 5

Algorithms and their communication protocol

Algorithm Synchronous Communication Asynchronous Communication

(Francez, 1980) X (CSP)

(Dijkstra and Scholten, 1980) X

(Francez et al., 1981) X (CSP)

(Misra and Chandy, 1982) X (CSP)

(Francez and Rodeh, 1982) X (CSP)

(Cohen and Lehmann, 1983) X (CSP)

(Dijkstra et al., 1983) X

(Rana, 1983) X (CSP) ``easily modi®ed for''

(Misra, 1983) X

(Arora and Sharma, 1983) X

(Topor, 1984) X

(Szymanski et al., 1985a) X

(Szymanski et al., 1985b) X

(Kumar, 1985) X

(Chandy and Misra, 1985) X (though in CSP)

(Lai, 1986) X

(Shavit and Francez, 1986) X

(Skyum and Eriksen, 1986) X

(Mattern, 1987a) X

(Mattern, 1987b) X

(Muller, 1987) X

(Sanders, 1987) X

(Hazari and Zedan, 1987) X

(Rokusawa et al., 1988) X

(Huang, 1988) X

(Haldar and Subramanian, 1988) X

(Mattern, 1989) X

(Venkatesan, 1989) X

(Huang, 1989) X

(Chandrasekaran and Venkatesan, 1990) X

(Ye and Keane, 1991) X

(Lai et al., 1992) X

(Mayo and Kearns, 1994) X

(Tseng, 1995) X

(Lai and Wu, 1995) X

216 J. Matocha, T. Camp / The Journal of Systems and Software 43 (1998) 207±221

algorithm is especially important when considering dis-
tributed systems which may be executing on a wide area
network. With the explosive growth of the Internet,
widely distributed computations continue to be an im-
portant research topic. Clearly, DTD with asynchro-
nous communication is a di�cult problem in the midst
of faulty system components. In 1985, Fischer et al.
proved that it is not always possible to gain consensus of
the reliable processes in a system, even if the processes
are trying to agree on something as simple as a binary
number (Fischer et al., 1985). It has also been proven in
(Koo and Toueg, 1988) that it is not possible to gain
global common knowledge of the simple binary number
in a system with the weaker ``transient faults'', i.e., faults
that occur for an arbitrary, but ®nite length of time.
Therefore, the standard model of a distributed system is
often modi®ed in order to make detection of termination
in a faulty system possible.

The fail-stop fault model is one with the assumption
that any node that fails will immediately stop upon
failure and not transmit or receive any messages from
that point forward. An extended statement of the nec-

essary and su�cient conditions for termination is made
for the cases with fail-stop faults in the system. Termi-
nation is now de®ned as the state in which all processes
are either passive or faulty and there are no deliverable
messages in the system. There have been four fault tol-
erant algorithms based on the fail-stop model (Misra,
1983; Venkatesan, 1989; Tseng, 1995; Lai and Wu,
1995). An extra requirement necessary to gain global
common knowledge is that faulty processes are assumed
to be detectable within a ®nite period of time. Further-
more, messages that are undeliverable (directed toward a
faulty process) are either discarded or are returned to
the sender.

The fail-stop fault tolerant algorithm proposed by
Lai and Wu (Lai and Wu, 1995) is a modi®cation of
Dijkstra and Scholten's parental responsibility algo-
rithm (Dijkstra and Scholten, 1980) described in Sec-
tion 2.1. The authors of the fault tolerant algorithm
begin by noting the problems that must be solved in
order to produce a fault tolerant algorithm:
1. Root failures must be followed by some non-faulty

process being designated as the new coordinator.

Table 6

Algorithms and their restrictions on message arrival

Algorithm FIFO No restriction

(Francez, 1980) X (Synchronous)

(Dijkstra and Scholten, 1980) X

(Francez et al., 1981) X (Synchronous)

(Misra and Chandy, 1982) X (Synchronous)

(Francez and Rodeh, 1982) X (Synchronous)

(Cohen and Lehmann, 1983) X (Synchronous)

(Dijkstra et al., 1983) X (Synchronous)

(Rana, 1983) X (Synchronous)

(Misra, 1983) X

(Arora and Sharma, 1983) X (Synchronous)

(Topor, 1984) X (Synchronous)

(Szymanski et al., 1985a) X (Synchronous)

(Szymanski et al., 1985b) X (Synchronous)

(Kumar, 1985) X

(Chandy and Misra, 1985) X (Used to ¯ush channels)

(Lai, 1986) X

(Shavit and Francez, 1986) X

(Skyum and Eriksen, 1986) X

(Mattern, 1987a) X

(Mattern, 1987b) X

(Muller, 1987) X

(Sanders, 1987) X

(Hazari and Zedan, 1987) X

(Rokusawa et al., 1988) X

(Huang, 1988) X

(Haldar and Subramanian, 1988) X

(Mattern, 1989) X

(Venkatesan, 1989) X

(Huang, 1989) X

(Chandrasekaran and Venkatesan, 1990) X

(Ye and Keane, 1991) X

(Lai et al., 1992) X

(Mayo and Kearns, 1994) X (Synchronous)

(Tseng, 1995) X

(Lai and Wu, 1995) X

J. Matocha, T. Camp / The Journal of Systems and Software 43 (1998) 207±221 217

2. A non-faulty process needs to know if it has received
all messages from a process that has since become
faulty.

3. Processes that become faulty may be responsible for a
tree of processes. This tree of processes must be reas-
signed to a non-faulty parent.
The ®rst problem is solved by ensuring the non-faulty

process with the lowest index is designated as the co-
ordinator. The second problem is solved by a FAIL-
FLUSH service the authors assume is present in the
network protocol. This service is initiated by a non-
faulty process which ¯ushes the messages from the
channel for a speci®ed process (known to have failed).
The third problem is the most complicated. The authors
specify that a child of a failed process, upon realizing its
parent is faulty, adopts the coordinator as its new par-
ent. A simple adoption technique is not enough to en-
sure fault tolerance, since message delays can cause the
coordinator to detect false termination before the child's
message arrives. Further details on solving this problem
are covered (Lai and Wu, 1995).

Byzantine failures are failures which cause processes
or channels to lie to the others in the network. This type
of failure model can stem from a process that transmits
corrupted information or a channel that is exposed to an
electromagnetic force which causes it to transmit in-
correct information. This model of failure makes more
complex problems than the fail-stop model of failure.
There have been no DTD algorithms that deal with
Byzantine failures in any capacity. An algorithm for
DTD with Byzantine failures would have to use dupli-
cate information in order to determine which (if any)
processes are lying. Lamport et al. prove that the
problem of getting processes to agree on a single value in
a distributed system with Byzantine failures is only
possible if more than two-thirds of the processes are
``loyal'' (Lamport et al., 1982). With unforgeable mes-
sages using unique signatures, it is possible to get all
loyal processes to agree. The problem in termination
detection is that not only must the processes agree, they
must agree that they agree. The algorithm needs a way
of detecting the lying processes and ignoring what these

Table 7

Algorithms and their message optimality

Algorithm Optimal Not optimal

(Francez, 1980) X

(Dijkstra and Scholten, 1980) X

(Francez et al., 1981) X

(Misra and Chandy, 1982) X

(Francez and Rodeh, 1982) X

(Cohen and Lehmann, 1983) X

(Dijkstra et al., 1983) X

(Rana, 1983) X

(Misra, 1983) X

(Arora and Sharma, 1983) X

(Topor, 1984) X

(Szymanski et al., 1985a) X

(Szymanski et al., 1985b) X

(Kumar, 1985) X

(Chandy and Misra, 1985) X

(Lai, 1986) x

(Shavit and Francez, 1986) X

(Skyum and Eriksen, 1986) X

(Mattern, 1987a) X (If a star or complete graph) X (Otherwise)

(Mattern, 1987b) X (If a star or complete graph) X (Otherwise)

(Muller, 1987) X

(Sanders, 1987) X

(Hazari and Zedan, 1987) X

(Rokusawa et al., 1988) X

(Huang, 1988) X

(Haldar and Subramanian, 1988) X

(Mattern, 1989) X

(Venkatesan, 1989) X (If a constant number of failures) X (Otherwise)

(Huang, 1989) X

(Chandrasekaran and Venkatesan, 1990) X

(Ye and Keane, 1991) X

(Lai et al., 1992) X

(Mayo and Kearns, 1994) X

(Tseng, 1995) X

(Lai and Wu, 1995) X (If no failures) X (If failures)

218 J. Matocha, T. Camp / The Journal of Systems and Software 43 (1998) 207±221

processes send regarding the consensus. In looking at
the complexity of DTD, the DTD problem is under-
stood to be more di�cult than consensus. Research on
Byzantine fault tolerant DTD algorithms is an open
problem, even in the case where serious constraints to
the system are placed on the Byzantine model of failure.
Table 8 lists the DTD algorithms and if they are fault
tolerant. Misra's fault tolerant algorithm (Misra, 1983)
does not handle fail-stop or Byzantine failures with the
processes, but this wave algorithm does handle the loss
of the token.

3. Conclusions and future research

We have de®ned eight categorization criteria for
distributed termination detection algorithms in this pa-
per. The type of algorithm is an overview of how the
algorithm works. Network topology, communication
protocol, and message arrival all concern themselves
with how the system works. Algorithm symmetry and
process knowledge are items that consider the generality

of the algorithm. The complexity of the algorithm is
measured by the message optimality criteria. Fault tol-
erance is a classi®cation that addresses the implemen-
tation of the algorithm. These categories, though chosen
in this paper for DTD algorithms, are general enough to
apply to any distributed algorithm.

We also give a categorization of the work to date on
DTD algorithms. This work should guide future research
on the problem of distributed termination detection.
This exposition characterizes the current distributed
termination detection algorithms and illustrates where
further work is needed. From the tables in this paper, we
can summarize the preferred characteristics of a DTD
algorithm in each category and then suggest future re-
search goals. Although there is no best algorithm type, a
wave algorithm usually carries along with it a repetitive
nature and, therefore, a non-optimal message complex-
ity. Of course, an algorithm that makes no assumptions
about the network topology is most general, as are to-
tally symmetric algorithms. An algorithm that requires
no process knowledge is preferred for run-time dynam-
ics. Asynchronous communication is by far the protocol

Table 8

Algorithms and their fault tolerance

Algorithm Fault tolerant Not fault tolerant

(Francez, 1980) X

(Dijkstra and Scholten, 1980) X

(Francez et al., 1981) X

(Misra and Chandy, 1982) X

(Francez and Rodeh, 1982) X

(Cohen and Lehmann, 1983) X

(Dijkstra et al., 1983) X

(Rana, 1983) X

(Misra, 1983) X (Token regeneration)

(Arora and Sharma, 1983) X

(Topor, 1984) X

(Szymanski et al., 1985a) X

(Szymanski et al., 1985b) X

(Kumar, 1985) X

(Chandy and Misra, 1985) X

(Lai, 1986) X

(Shavit and Francez, 1986) X

(Skyum and Eriksen, 1986) X

(Mattern, 1987a) X

(Mattern, 1987b) X

(Muller, 1987) X

(Sanders, 1987) X

(Hazari and Zedan, 1987) X

(Rokusawa et al., 1988) X

(Huang, 1988) X

(Haldar and Subramanian, 1988) X

(Mattern, 1989) X

(Venkatesan, 1989) X

(Huang, 1989) X

(Chandrasekaran and Venkatesan, 1990) X

(Ye and Keane, 1991) X

(Lai et al., 1992) X

(Mayo and Kearns, 1994) X

(Tseng, 1995) X

(Lai and Wu, 1995) X

J. Matocha, T. Camp / The Journal of Systems and Software 43 (1998) 207±221 219

of choice. An algorithm which places no restriction on
the arrival of messages is most realistic for the behavior
of channels. A message optimal algorithm is preferred, as
is the robustness of a fault tolerant algorithm. Therefore,
a non-wave, symmetric, asynchronous, non-FIFO,
message optimal, fault tolerant algorithm with no as-
sumption about the network topology and no necessary
process knowledge, if one exists, would be a huge de-
velopment in this ®eld. Furthermore, Byzantine failures
have not been considered in any proposed algorithms
and is an open topic of research. Any solution would be
welcomed regardless of restrictions.

In looking at the papers which have been presented in
this paper, we select a few that deserve special note. The
algorithm by Venkatesan (Venkatesan, 1989) is a credit/
recovery algorithm which uses a spanning tree (and
therefore knows its parent and children as well as p0 at
run-time), requires asynchronous communication, is
fault tolerant, and is message optimal if there is a con-
stant number of faults. Our only criticism of this DTD
algorithm is that it requires FIFO message channels.
Requiring FIFO channels, however, is a minor com-
plaint compared to the bene®ts of this algorithm. Lai
and Wu's algorithm (Lai and Wu, 1995) makes no re-
striction on message arrival, uses a computation tree for
its parental responsibility algorithm, needs no process
knowledge, uses asynchronous message passing, and is
fault tolerant. Our only criticism with this algorithm is
that it is message optimal only if there are no faults in
the system. Again, however, this is a minor complaint.
An algorithm that is message optimal and fault tolerant
probably does not exist. Of course, these two algorithms
are not as elegant as some of the initial algorithms (due
to their attempts to be fault tolerant). For an elegant
solution, we note Dijkstra and Scholten's seminal al-
gorithm. Dijkstra and Scholten's algorithm (Dijkstra
and Scholten, 1980) is a parental responsibility algo-
rithm (requiring a p0 before run-time for its computation
tree), uses asynchronous communication, has no mes-
sage arrival restrictions, and is optimal. Although this
algorithm is not fault tolerant, it is one of the ®rst al-
gorithms in the literature. Many of the algorithms pro-
posed after this one pale in comparison.

References

Arora, R.K., Sharma, N.K., 1983. A methodology to solve the

distributed termination problem. Inform. Systems 8 (1), 37±39.

Chandrasekaran, S., Venkatesan, S., 1990. A message-optimal algo-

rithm for distributed termination detection. Journal of Parallel and

Distributed Computing 8, 245±252.

Chandy, K.M., Lamport, L., 1985. Distributed snapshots: Determin-

ing global states of distributed systems. ACM Trans. Comput.

Systems 3 (1), 63±75.

Chandy, K.M., Misra, J., 1985. A paradigm for detecting quiescent

properties in distributed computations. In: Apt, K.R. (Ed.), Logics

and Models of Concurrent Systems. Springer, New York.

Chandy, K.M., Misra, J., 1986a. An example of stepwise re®nement of

distributed programs: Quiescence detection. ACM Trans. Pro-

gramming Languages and Systems 8 (3), 326±343.

Chandy, K.M., Misra, J., 1986b. How processes learn. Distributed

Computing 1 (1), 40±52.

Cohen, S., Lehmann, D., 1983. Dynamic systems and their distributed

termination. In: ACM SIGACT-SIGOPS Symposium on Princi-

ples of Distributed Computing, pp. 29±33.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., 1990. Introduction to

Algorithms. McGraw-Hill, New York.

Dijkstra, E.W., Feijen, W.H.J., van Gasteren, A.J.M., 1983. Deriva-

tion of a termination detection algorithm for distributed compu-

tations. Inform. Process. Lett. 16 (5), 217±219.

Dijkstra, E.W., Scholten, C.S., 1980. Termination detection for

di�using computations. Inform. Process. Lett. 11 (1), 1±4.

Fischer, M.J., Lynch, N.A., Paterson, M.S., 1985. Impossibility of

distributed consensus with one faulty process. J. ACM 32 (2), 374.

Francez, N., 1980. Distributed termination. ACM Trans. Program-

ming Languages and Systems 2 (1), 42±55.

Francez, N., Rodeh, M., 1982. Achieving distributed termination

without freezing. IEEE Trans. Software Eng. 8 (3), 287±292.

Francez, N., Rodeh, M., Sintzo�, M., 1981. Distributed termination

with interval assertions. In: Formalization of Programming Con-

cepts, Lecture Notes in Computer Science, vol. 107. Springer, New

York.

Haldar, S., Subramanian, D.K., 1988. Ring based termination

detection algorithm for distributed computations. Inform. Process.

Lett. 29 (3), 149±153.

Hazari, C., Zedan, H., 1987. A distributed algorithm for distributed

termination. Inform. Process. Lett. 25 (5), 293±297.

Hoare, C.A.R., 1978. Communicating sequential processes. Commun.

ACM 21 (8), 666±677.

Huang, S., 1988. A fully distributed termination detection scheme.

Inform. Process. Lett. 29 (1), 13±18.

Huang, S., 1989. Detecting termination of distributed computations by

external agents. In: IEEE Nineth International Conference on

Distributed Computer Systems, pp. 79±84.

Koo, R., Toueg, S., 1988. E�ects of message loss on the termination of

distributed protocols. Inform. Process. Lett. 27 (4), 181±188.

Kumar, D., 1985. A class of termination detection algorithms for

distributed computations. In: Fifth Conference on Foundations of

SoftwareTechnologyandTheoreticalComputerScience,pp. 73±100.

Lai, T., 1986. Termination detection for dynamically distributed

systems with non-®rst-in-®rst-out communication. Journal of

Parallel and Distributed Computing 3, 577±599.

Lai, T., Tseng, Y., and Dong, X., 1992. A more e�cient message-

optimal algorithm for distributed termination detection. In: Pro-

ceedings of the Fourth IEEE Symposium on Parallel and Distrib-

uted Processing, pp. 274±281.

Lai, T., Wu, L., 1995. An �nÿ 1�-resilient algorithm for distributed

termination detection. IEEE Trans. Parallel and Distributed

Systems 6 (1), 63±78.

Lamport, L., 1978. Time, clocks, and the ordering of events in a

distributed system. Commun. ACM 21 (7), 558±565.

Lamport, L., Shostak, R., Pease, M., 1982. The Byzantine generals

problem. ACM Trans. Programming Languages and Systems 4 (3),

382±401.

Mattern, F., 1987a. Algorithms for distributed temination detection.

Distributed Computing 2 (4), 161±175.

Mattern, F., 1987b. Experience with a new distributed termination

detection algorithm. In: Proceedings of the Second International

Workshop on Distributed Algorithms, pp. 127±143.

Mattern, F., 1989. Global quiescence detection based on cred-

it distribution and recovery. Inform. Process. Lett. 30 (4), 195±200.

Mayo, J., Kearns, P., 1994. Distributed termination detection with

roughly synchronized clocks. Inform. Process. Lett. 52 (2), 105±

108.

220 J. Matocha, T. Camp / The Journal of Systems and Software 43 (1998) 207±221

Misra, J., 1983. Detecting termination of distributed computations

using markers. In: Proceedings of The Second Annual ACM

Symposium on Principles of Distributed Computing, pp. 290±

294.

Misra, J., Chandy, K.M., 1982. Termination detection of di�using

computations in communicating sequential processes. ACM Trans.

Programming Languages and Systems 4 (1), 37±43.

Muller, H., 1987. High level petri nets and distributed termination. In:

Concurrency and Nets: Advances in Petri Nets. Springer, New

York.

Rana, S.P., 1983. A distributed solution to the distributed termination

problem. Inform. Process. Lett. 17 (1), 43±46.

Rokusawa, K., Iciyoshi, N., Chikayama, T., Nakashima, H., 1988. An

e�cient termination detection and abortion algorithm for distrib-

uted processing systems. In: Proceedings of the International

Conference on Parallel Processing, pp. 18±22.

Sanders, B.A., 1987. A method for the construction of probe-based

termination detection algorithms. In: Proceedings of IFIP Confer-

ence on Distributed Processing, 1987, pp. 249±257.

Shavit, N., Francez, N., 1986. A new approach to the detection of

locally indicative stability. In: Kott, L. (Ed.), International

Colloquium on Automata, Languages, and Programming, Lecture

Notes in Computer Science, vol. 226. Springer, New York, pp.

344±358.

Skyum, S., Eriksen, O., 1986. Symmetric distributed termination. In:

The Book of L. Springer, New York.

Szymanski, B., Shi, Y., Prywes, N.S., 1985a. Terminating iterative

solution of simultaneous equations in distributed message passing

systems. In: Proceedings of the Fourth Annual ACM Symposium

on the Principles of Distributed Computing, pp. 287±292.

Szymanski, B., Shi, Y., Prywes, N.S., 1985b. Synchronized dis-

tributed termination. IEEE Trans. Software Eng. 11 (10), 1136±1140.

Tel, G., 1994. Introduction to Distributed Algorithms. Cambridge

Univ. Press, Cambridge, pp. 264±302.

Topor, R.W., 1984. Termination detection for distributed computa-

tions. Inform. Process. Lett. 18 (1), 33±36.

Tseng, Y., 1995. Detecting termination by weight-throwing in a faulty

distributed system. Journal of Parallel and Distributed Computing

25, 7±15.

Venkatesan, S., 1989. Reliable protocols for distributed termination

detection. IEEE Trans. Reliability 38 (1), 103±110.

Ye, X., Keane, J.A., 1991. A distributed termination detection scheme,

Tech. Rep. UMCS-91-3-1, University of Manchester, Manchester,

England.

Je� Matocha received the M.S. degree in computer science from
Louisiana Tech University in 1995 and the B.S. degree in computer
science from The University of Central Arkansas in 1992. He is cur-
rently working towards the Ph.D. degree in the computer science de-
partment at The University of Alabama. His current research interests
include distributed systems, mobile computing, and group communi-
cation within the mobile environment.

Tracy Camp received a B.A. degree in Mathematics from Kalamazoo
College in 1987, an M.S. degree in Computer Science from Michigan
State University in 1989, and a Ph.D. degree in Computer Science from
The College of William and Mary in 1993. Currently, Dr. Camp is an
assistant professor in the Department of Computer Science at The
University of Alabama. Her research interests include distributed
systems, network architectures, group communication, and mobile
computing. Dr. Camp is a member of both the Association for
Computing Machinery and the Institute of Electrical and Electronics
Engineers.

J. Matocha, T. Camp / The Journal of Systems and Software 43 (1998) 207±221 221

