PAGE
5

CSE 5311 Notes 3: Amortized Analysis

(Last updated 5/27/13 8:52 AM)

Problem: Worst case for a single operation is too pessimistic for analyzing a sequence of operations.

Elementary Examples

1.
Stack operations with “multiple pop”

Usual push for a single entry - (1)

Multi-pop for k entries - (k)

Sequence of n operations takes (n) time.

2.
Queue implemented with two lists/stacks (in a functional language)

[image: image1.wmf]

Enqueue:
At head of list 2

Dequeue:
if list 1 is empty

while list 2 not empty

Remove head of list 2

Insert as head of list 1

Remove head of list 1

Application to maximum message length (see end of CSE 2320 Notes 10)

3.
Incrementing a counter repetitively by 1 (CLRS, p. 461)

0 0 0 1 1 1 1

 + 1

Analysis

1.
Aggregate Method

[image: image2.wmf]
2.
Accounting Method - For any sequence
[image: image3.wmf]

Charge more for early operations in sequence to pay for later operations.

Consider queue with 2 lists:

Each item is touched 3 times

Charge 2 for enqueue

Charge 1 for dequeue

Each item in list 2 has a credit of 1. Credit is consumed in dequeue with empty list 1.

3.
Potential Method - Preferred method

Concept:

Generalizes accounting method.

Tedious for initial designer, but hides details for others.

Map entire state of data structure to a potential. Captures “difficulty” of future operations.

Assuming a sequence of operations:

[image: image4.wmf]

Total amortized cost for a sequence is:

[image: image5.wmf]

Book:
Multipop stack ((= # of items on stack)

Binary counter ((= # of ones)

Defining (is the hard part.

Binary Tree Traversals - Slightly more involved than previous examples

Observation:
Tree traversal on tree with n nodes requires 2n - 2 edges “touches”

Operations:
Init: Finds first node in traversal

[image: image6.wmf]

Succ(x): Finds successor of x

[image: image7.wmf]
Need (for inorder, postorder, and preorder

Example:

[image: image8.wmf]

For Init for inorder, must stop at a.

[image: image9.wmf]
[image: image10.wmf]
Succ(a) = b

[image: image11.wmf]
[image: image12.wmf]

Succ(b) = c

[image: image13.wmf]
[image: image14.wmf]
Succ(c) = d

[image: image15.wmf]
[image: image16.wmf]
In general: rank, r(x), of node x is r(root) = 0, r(x(left) = r(x) - 1, r(x(right) = r(x) + 1

[image: image17.wmf]
For Init for postorder, must stop at a.

[image: image18.wmf]
[image: image19.wmf]

Succ(a) = b

[image: image20.wmf]
[image: image21.wmf]
Succ(b) = d

[image: image22.wmf]
[image: image23.wmf]

Succ(d) = f

[image: image24.wmf]
[image: image25.wmf]
In general: rank, r(x), of node x is r(root) = 0, r(x(left) = r(x) - 1, r(x(right) = r(x) - 1

[image: image26.wmf]
For preorder (not shown): rank, r(x), of node x is r(root) = 0, r(x(left) = r(x) + 1, r(x(right) = r(x) + 1

Aside:
If non-negative ranks/potential are desired (e.g. for inorder and postorder),

then make r(root) = D0 = height of tree (or number of nodes if height is unknown).

Dynamic Table Growth – CLRS 17.4

Applies to tables with embedded free space.

Periodic reorganization takes
[image: image27.wmf] time . . .

Fixed vs. fractional growth and amortizing reorganization cost over all inserts

Deletion issues
CLRS Problem 17-2 – Making binary search dynamic

Related to binomial heaps in Notes 7

Representation of dictionary with n items

Binary searches to find item

Inserting an item in
[image: image28.wmf] amortized time using ordered merges

Deletion?

Application of Potential Function Method This Semester . . .

Comparison of online MTF lists to an (unknown) optimal strategy (Notes 4)

Splay trees (Notes 5)

Fibonacci heaps - a priority queue to improve algorithms such as Prim’s and Dijkstra’s (Notes 7)

Union-find trees (Notes 8) - not detailed

Push-relabel methods for maxflows (Notes 12) - not detailed

KMP string search (Notes 15) - easy

_1009286732.unknown

_1009288201.unknown

_1009339631.unknown

_1009339658.unknown

_1210782211.unknown

_1210854282.unknown

_1084598397.unknown

_1009339641.unknown

_1009288018.unknown

_1009285379.unknown

_1009285957.unknown

_1008821219.unknown

_1009285317.unknown

_1008821201.unknown

_1008821147.unknown

