PAGE
10

CSE 5311 Notes 18: NP-Completeness

(Last updated 7/21/13 8:23 PM)

Elementary Concepts
Satisfiability:
[image: image1.wmf]

Is there an assignment? (Decision Problem)

Similar to debugging a logic circuit - Is there an input case that turns on the output LED?

Aside: Evaluating one input setting for a circuit is P-complete (hard to massively parallelize.

NP-complete means (informally):

1.
The problem may be computed (“decided”) in nondeterministic polynomial time.

a.
Guess a solution (polynomial time - easy to get)

b.
Check the solution in polynomial time (deterministic).

Checking (“verification”) is easier than computing.

2.
All problems in NP may be transformed (“reduced”) to this problem in polynomial time.

If an instance of one problem is transformed to an instance of another, the new problem has a solution iff the old problem has a solution.

[image: image2.wmf]
Showing that all NP problems reduce to new problem is unnecessary. Instead, find another NP-complete problem:

[image: image3.wmf]
Property 1 without property 2 - problem is just in NP. Example: Is a table sorted?

Property 2 without property 1 - problem is said to be “NP-hard” (at least as difficult as all other problems in NP). Note: property 1 is usually trivial to establish and is often omitted in proofs.

Significance of a problem being NP-complete

No polynomial-time algorithm is known for any NP-complete problem. (Only exponential time)

If a polynomial-time algorithm is known for one NP-complete problem, then there is a polynomial-time algorithm for every NP-complete problem.

Exponential lower bound has never been shown.

If difficult instances of an NP-complete problem arise in practice, then approximation schemes with bounds on the quality of the solution are needed.

What about playing chess?

Example Problems:

Satisfiability

Graph (Vertex) Coloring

Job Scheduling with Penalties - durations, deadlines, penalties (single processor)

Bin Packing - how many fixed-sized bins are needed to hold variable-sized objects?

Knapsack - how many objects with different profits and sizes should go into a knapsack?

Subset Sums - is there a subset whose sum is a particular value?

Hamiltonian Path - does a graph (or digraph) have a path including each vertex exactly once?

Hamiltonian Circuit - is there a cycle including each vertex exactly once?

Traveling Salesperson - minimize distance for Hamiltonian circuit

Steiner subgraph - is there a connected subgraph (tree) that includes designated terminal vertices and whose total weight does not exceed a given value? (Euclidean version is NP-hard)

Reductions
Important resource - M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, 1979.

Suppose you know directed Hamiltonian circuit is NP-complete. Show that undirected Hamiltonian circuit is NP-complete:

1.
Replace each vertex x by three vertices x1, x2, x3 connected as:

[image: image4.wmf]
2.
Include an edge {u3, v1} for each edge (u, v) in the directed graph.

[image: image5.wmf]
Leaving out x2 will not work - allows going in wrong direction:

[image: image6.wmf]
Show 3-satisfiability is NP-complete by reduction from conjunctive normal form satisfiability.

In CNF an expression is a conjunction of several clauses (disjunctions).

Each clause has several literals which may be asserted or negated.

The reduction is based on replacing each clause with k > 3 literals by k - 2 clauses for 3-satisfiability and introducing k - 3 new variables:

[image: image7.wmf]
Note, however, that 2-satisfiability is in P. Convert to a graph problem by replacing each
[image: image8.wmf] by [image: image9.wmf] and [image: image10.wmf] based on
[image: image11.wmf].

If there is a path from
[image: image12.wmf] to X, then X is true. If there is a path from X to
[image: image13.wmf], then X is false.

If X and
[image: image14.wmf] are in a cycle, then the expression is unsatisfiable.

Consider
[image: image15.wmf]:

[image: image16.wmf]
Show that graph 3-colorability is NP-complete by a reduction from 3-sat.

This reduction is fairly difficult. Others are much worse.

Conceptually, we will call the 3 colors True, False, and Red.

Since coloring is usually viewed as assigning the numbers 0, 1, 2 to the vertices, for any successful coloring there are five renamings based on permutations.

The reduction starts with a triangle to establish which number has which color:

[image: image17.wmf]
For each variable X, another triangle is needed to constrain the value:

[image: image18.wmf]
For each clause
[image: image19.wmf] the following pattern is used. At least one of X, Y, and Z is forced to be true.

[image: image20.wmf]
Observe:

1.
X, Y, and Z must have the same color as True or False.

2.
One of D and E has the same color as False, the other the same color as Red.

3.
If E has the same color as False, then Z has the same color as True.

4.
If E has the same color as Red, then D has the same color as False.

Summary:

A
B
C
D
E
X
Y
Z

True
Red
???
False
Red
False
False
False

True
Red
False
Red
False
False
False
True

True
False
Red
False
Red
False
True
False

True
False
Red
False
Red
False
True
True

False
True
Red
False
Red
True
False
False

False
True
Red
False
Red
True
False
True

False
Red
True
False
Red
True
True
False

False
Red
True
False
Red
True
True
True
Unsatisfiable instance - graph will require 4 colors

[image: image21.wmf]
[image: image22.wmf]

If
[image: image23.wmf] is removed, 3 coloring is possible.
k-clique - complete subgraph with k vertices

Show k-clique is NP-complete by a reduction from 3-sat.

Each literal becomes a vertex.

Connect each vertex to the vertices for all other clauses, except for [image: image24.wmf]
Is there a clique with one vertex per clause (i.e. k is the number of clauses)?

[image: image25.wmf]
[image: image26.wmf]
Vertex Cover = set of vertices such that every edge has at least one incident vertex in cover.

Is there a vertex cover with no more than p vertices?

Reduce from k-clique:

1.
Take complement of graph. (Edge is in complement iff edge is not in graph.)

2.
Is there a |V| - k cover? (Choose vertices not in the k-clique.)

From k-clique example - Is there a 3-cover?

[image: image27.wmf]
Consider clique when first clause is removed.

[image: image28.wmf]
[image: image29.wmf]
3-vertex cover

[image: image30.wmf]
Show Steiner subgraph is NP-complete by a reduction from 3-sat.

Steiner vertex for each possible literal on n propositions.

Terminal vertex for each of m clauses, u, and v.

Unit-weight edges in subgraph with u, v, and literal vertices (for choosing assignment).

Edges with weight 2n + 1 between each clause vertex and vertices for its literals

Is there a subgraph with total weight not exceeding 2n + m(2n + 1)?

[image: image31.wmf]
[image: image32.wmf]

[image: image33.wmf]
[image: image34.wmf]
Approximation
Goal: Performance guarantees for optimization (NP-hard) problems corresponding to NP-complete problems.

1.
How fast?

2.
Approach:

Greedy

Online

Preprocessing (e.g. MST, DFS)

Randomization

Restricted cases (e.g. spare or dense graphs)

(Parallelism)

3.
Quality of solution

[image: image35.wmf]
4.
Generality

Approximation Algorithm - achieve max/min ratio in
[image: image36.wmf] time (k fixed)

Approximation Scheme - flexible ratio 1 + (in
[image: image37.wmf]

Polynomial-time Approximation Scheme -
[image: image38.wmf]

Fully PTAS -
[image: image39.wmf] time

Examples are presented in ascending order of min/max ratio

Edge Coloring (http://ranger.uta.edu/~weems/NOTES5311/misraGriesNew.c)

An unusually optimistic situation . . .

[image: image40.wmf]

Vizing’s Theorem

[image: image41.wmf] (Required number of colors is either degree (“Class 1”) or degree + 1 (“Class 2”). For bipartite graphs,
[image: image42.wmf].)

NP-complete to test if
[image: image43.wmf], but takes only O(VE) to color with
[image: image44.wmf] colors (
[image: image45.wmf] for bipartite) in an incremental fashion. Thus:

[image: image46.wmf]

What if?

[image: image47.wmf]

[image: image48.wmf]

So, steal a color from another edge and give that edge a new color.

HOW?

Aside: The simpler problem of coloring a bipartite graph using D colors.

From p. 347 of H.N. Gabow, “Using Euler Partitions to Edge Color Bipartite Multigraphs”, Int’l J. of Computer and Information Sciences 5(4), 1976, 345-355:

Now we describe a method for coloring due to Vizing. Originally each edge of G is uncolored; it must be assigned one of D possible colors. An uncolored edge (v, w) is colored as follows. At most D - 1 edges incident to v are colored, so some color a is missing at v; similarly, some color b is missing at w. Construct an “alternating (a, b) path” starting at w, as follows. The path begins with the edge incident to w that is colored a (if it exists). Consecutive edges in the path are alternately colored a and b. The path ends at the vertex z where the next color is missing. It is easy to see that z (v, w if the graph is bipartite.

Interchange colors along the path, switching a to b and b to a. This makes color a missing at both v and w, since z (v, w. Edge (v, w) can now be colored a.

[image: image49.wmf]

Back to non-bipartite . . .

Most general case - maximal fan with free(X) ((free(f) = (.

If no edge incident to X is colored with last free color d, immediately “rotate” fan:

[image: image50.wmf]

[image: image51.wmf]
While maximizing the fan, suppose the next color (d) is already on an earlier fan edge:

[image: image52.wmf]
1.
Find (alternating) dc-path starting with X-C.

dc-path (above) reaches no more than one of B or Z. (Why?)

2.
Invert colors (c (d) along entire dc-path.

a.
Neither B or Z reached - fan stops at B.

[image: image53.wmf]
b.
Z reached - fan stops at B.

[image: image54.wmf]
c.
B reached - fan keeps all vertices.

[image: image55.wmf]
3.
Rotate fan.

Vertex Cover - Approximation Algorithm

VC := (

for each edge {u, v} // arbitrary order

if u (VC and v (VC

VC := VC ({u, v}

1.
At termination, VC is a vertex cover.

2.
Polynomial time - obvious.

3.
a.

[image: image56.wmf] must cover the set of edges processed based on the “if”.

b.

[image: image57.wmf] must include at least one of {u, v} for each of these edges, so:

[image: image58.wmf]

Aggressive strategy of choosing one vertex from an uncovered edge is vulnerable to “stars”.

Minimum Bipartite Vertex Cover - Exact Solution (not NP-complete . . . unless P = NP)

Instance of max-flow is isomorphic to bipartite matching max-flow, except capacities from V1 to V2 are (.

Set of edges from V1 to V2 with (unit) flow after max-flow is found is a maximum matching. The size of a maximum matching gives an (obvious) lower bound on the size of a minimum bipartite vertex cover. (Showing that the size of a maximum matching is also an upper bound is more involved and omitted).

Theorem: If a minimum S-T cut is known, then [image: image59.wmf] is a minimum bipartite vertex cover.

Proof: Suppose the bipartite graph has an edge
[image: image60.wmf] with
[image: image61.wmf] and
[image: image62.wmf] and
[image: image63.wmf]. Since the capacity of
[image: image64.wmf] is (,
[image: image65.wmf] is an edge in the residual network and
[image: image66.wmf] to prevent
[image: image67.wmf] from being uncovered. ***

[image: image68.wmf]

[image: image69.wmf]

S = {s} T = {t, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
[image: image70.wmf]
[image: image71.wmf]

[image: image72.wmf]

[image: image73.wmf]

S = {s, B, C, H} T = {t, A, D, E, F, G, I, J, K, L, M}
[image: image74.wmf]
[image: image75.wmf]
Bin Packing (one dimensional)

Minimize number of unit size bins to hold objects with sizes
[image: image76.wmf].

Next Fit

Online

Use one bin, then seal when next item doesn’t fit.

Worst case sequence

[image: image77.wmf]
Repeated to get 4N elements

OPT (offline)
[image: image78.wmf]
Next Fit
[image: image79.wmf]

[image: image80.wmf]

First-fit Decreasing

Sort n sizes descending

For each object, go through bins “left-to-right” to find first bin that object fits in.

Achieves
[image: image81.wmf] (not hard to improve ratio to 4/3, difficult to get 11/9)

Claim: Objects placed in extra bins have size (1/2

[image: image82.wmf]

Proof: Suppose otherwise.

Claim: Number of objects in extra bins (OPT(S) - 1

Proof: Suppose OPT(S) extra objects are used.

1.
Waste in every OPT bin < size of every object in extra bins.

2.

[image: image83.wmf]

Based on the two claims, the number of extra bins (OPT/2 and the ratio is 1.5.

Set Cover

Input: Set S and subsets such that
[image: image84.wmf]

Output: Small set of subsets covering S.

Greedy Technique:

Choose subset with largest number of uncovered elements.

(Implementation: Doubly-linked list for each element in S. Doubly-linked list for each subset. Ordered table for priority queue.)

Achieves:
[image: image85.wmf]
See CLRS, p. 1119-1121 for detailed proof.

Example to motivate logarithmic approximation ratio:

[image: image86.wmf]
Traveling Salesperson (complete graph)

No -approximation in P time (unless P = NP).

Suppose a graph is to be tested for a Hamiltonian cycle:

Weight each “real” edge with 1.

“Imaginary” edges are weighted with |V| + 1.

If -approximation gives TSP with length |V|, then performance is better than guaranteed and have a Hamiltonian cycle.

If -approximation gives TSP with length > |V|, then performance guarantee has not been met.

If edge weights obey triangle inequality, the scale-up problem is avoided.

[image: image87.wmf]
2-approximate

1.
Find minimum spanning tree.

2.
Depth-first search - order vertices by discovery time.

3.
Return to start vertex.

4.
Remove edge crossings - optional

[image: image88.wmf]
[image: image89.wmf]
2-approximate proof:

1.

[image: image90.wmf]

Best case - removing largest edge in OPT (a cycle) gives MST.

2.

[image: image91.wmf]

Since MST short cuts are no longer than subpath skipped.

[image: image92.wmf]
(Aside: see http://en.wikipedia.org/wiki/Christofides_algorithm for a 3/2-approximate technique.)

Subset Sums - exact solution by dynamic programming (ssNew.c)

Given n numbers S1, . . . Sn. find a subset (e.g. an index set chosen from 1 . . . n) such that sum

is an exact value C.

1.
Use table with C entries

A[i] = j, where j is the smallest index such that i = Sj + values w/index < j

2.
Initialize table and then go forward

1
2
3
4
5
6
C=36

2
3
6
11
15
25

A:

1
2
3
4
5
6
7
8
9
10

1
2

3

11
12
13
14
15
16
17
18
19
20

4

5

21
22
23
24
25
26
27
28
29
30

6

31
32
33
34
35
36

Now suppose each Si is multiplied by 1000. D.P. table grows by factor of 1000.

Ordinary Subset Sum (CLRS, p. 1128-1129)

Saves space by maintaining lists of reachable sums.

1
2
3
4
5
6_

2
3
6
11
15
25

Target=36

L0={0/0}

 2

L1={0/0, 2/1}

 3 5

L2={0/0, 2/1, 3/2, 5/2}

 6 8 9 11

L3={0/0, 2/1, 3/2, 5/2, 6/3, 8/3, 9/3, 11/3}

 11 13 14 16 17 19 20 22

L4={0/0, 2/1, 3/2, 5/2, 6/3, 8/3, 9/3, 11/3, 13/4,

 15 17 18 20 21 23 24 26 28

 14/4, 16/4, 17/4, 19/4, 20/4, 22/4}

 29 31 32 34 35 37?

L5={0/0, 2/1, 3/2, 5/2, 6/3, 8/3, 9/3, 11/3, 13/4,

 25 27 28 30 31 33 34 36 38?

 14/4, 15/5, 16/4, 17/4, 18/5, 19/4, 20/4, 21/5, 22/4,

 23/5, 24/5, 26/5, 28/5, 29/5, 31/5, 32/5, 34/5, 35/5}

L6={0/0, 2/1, 3/2, 5/2, 6/3, 8/3, 9/3, 11/3, 13/4,

 14/4, 15/5, 16/4, 17/4, 18/5, 19/4, 20/4, 21/5, 22/4,

 23/5, 24/5, 25/6, 26/5, 27/6, 28/5, 29/5, 30/6, 31/5,

 32/5, 33/6, 34/5, 35/5, 36/6}

Subset Sum with Range of Target Values

Uses intervals to achieve approximation to within (of desired value.

CLRS, p. 1130-1133, gives fully PTAS based on (.

1
2
3
4
5
6_

2
3
6
11
15
25

Target=33..36

L0={0..3/0}

 2..5

L1={0..3/0, 3..5/1}

 3..6 6..8

L2={0..3/0, 3..5/1, 5..8/2}

 6..9 9..11 11..14

L3={0..3/0, 3..5/1, 5..8/2, 8..14/3}

 11..14 14..16 16..19 19..25

L4={0..3/0, 3..5/1, 5..8/2, 8..14/3, 14..25/4}

 15..18 18..20 20..23 23..29 29..40?

L5={0..3/0, 3..5/1, 5..8/2, 8..14/3, 14..25/4, 25..36/5}

 25..28 28..30 30..33 33..39?

L6={0..3/0, 3..5/1, 5..8/2, 8..14/3, 14..25/4, 25..36/5}

Graph (Vertex) Coloring - no efficient heuristic (unless P = NP)

Suppose a P time algorithm exists to color every graph G with
[image: image93.wmf] using fewer than
[image: image94.wmf] colors, then 3-colorability would be in P.

Proof:

1.

[image: image95.wmf] is the complete graph with k vertices.

2.
G is an instance of 3-colorability.

3.
Graph
[image: image96.wmf] (composition of graphs).

[image: image97.wmf]

Each vertex in a copy of G is connected to all vertices in all other copies of G.

4.
If
[image: image98.wmf], each copy of G requires 3 colors, so
[image: image99.wmf].

Algorithm must use fewer than
[image: image100.wmf] colors for G to be 3-colorable.

Otherwise,
[image: image101.wmf] so each copy of G needs at least 4 colors.
[image: image102.wmf]

Algorithm must then use at least 4k colors to color H.

Thus, such an algorithm is “unlikely”.

_1018274769.unknown

_1118996863.unknown

_1119097342.unknown

_1150728565.unknown

_1182960168.unknown

_1182960300.unknown

_1214653468.unknown

_1150729820.unknown

_1119097345.unknown

_1119097347.unknown

_1119097348.unknown

_1119097346.unknown

_1119097343.unknown

_1119005018.unknown

_1119030020.unknown

_1119097341.unknown

_1119030004.unknown

_1118999000.unknown

_1054467146.unknown

_1088600373.unknown

_1089301714.unknown

_1118996781.unknown

_1089301697.unknown

_1088344773.unknown

_1088594416.unknown

_1088600359.unknown

_1088594364.unknown

_1055001418.unknown

_1018277361.unknown

_1018280217.unknown

_1018351880.unknown

_1018352045.unknown

_1018352080.unknown

_1018351935.unknown

_1018351684.unknown

_1018279260.unknown

_1018275361.unknown

_1018277130.unknown

_1018275206.unknown

_1018202177.unknown

_1018248916.unknown

_1018252154.unknown

_1018252221.unknown

_1018249020.unknown

_1018203298.unknown

_1018203358.unknown

_1018202219.unknown

_1018157720.unknown

_1018178253.unknown

_1018202143.unknown

_1018202069.unknown

_1018176686.unknown

_1018065547.unknown

_1018066057.unknown

_1018030841.unknown

