CSE 5314 - "On-line Computation"
 Homework Set 1

Exercise 1.2

Page 6
Online Computation And Competitive Analysis Borodin \& El-Yaniv

Statement of Exercise

Let ALG be any list accessing algorithm and let σ be any request sequence. Prove that there is an algorithm $\mathrm{ALG}_{\mathrm{P}}$ that uses only paid transpositions (before the access) such that $\operatorname{ALG}_{\mathrm{P}}(\sigma)=\operatorname{ALG}(\sigma)$. Consider a variant of the list accessing problem in which the algorithm is charged $f(i)$ for accessing the $i^{\text {th }}$ item (assume the static model). Prove that the above result holds whenever the cost of transposing the $i^{\text {th }}$ and $(i+1)^{\text {th }}$ items is $f(i+1)-f(i)$.

Re-Statement of Exercise

Let SLA be the set of all algorithms that service requests to access elements of a static list given the element's key. Let σ be any sequence of such requests $\sigma_{i}(x)$ for a list element with key " x ".

1) Develop a model of $\mathrm{ALG}_{h}(\sigma)$ applicable to any ALG_{h} in SLA.

Re-Statement of Exercise

2) Let $\mathrm{ALG}_{\mathbf{N P}}$ and $\mathrm{ALG}_{\mathbf{P}} \in \mathbf{S L A}$: If $A L G_{N P}$ uses no paid transpositions before serving x, and $A L G_{P}$ may use paid transpositions before serving x, prove $\mathrm{ALG}_{\mathrm{P}}(\sigma)=\mathrm{ALG}_{\mathrm{NP}}(\sigma)$, given that:

Re-Statement of Exercise

a) Cost of access of an item is a linear function (r.e) of its position r and a paid transposition of items at positions r and $r-1$ incurs a unit cost \boldsymbol{e}, as well as if
b) Cost of access of an item is an arbitrary function $f(r)$ of its position r and a paid transposition of items at positions r and $r-1$ incurs a cost of $[\boldsymbol{f}(\boldsymbol{r})-\boldsymbol{f}(\boldsymbol{r} \mathbf{- 1})]$.

Assumptions

- Let Overhead(L) be the cost of any algorithm's activity preparatory to the beginning of servicing σ.
- Let Access(j) be the cost to "access" the item at position \boldsymbol{j} in L.

Assumptions

Define PaidTransposition(r,r-1) as the cost of an activity in which:

- $\boldsymbol{r} \in \mathbb{N}$ and $2 \leq r \leq n$, and
- Activity performed is the transposition of item at position \boldsymbol{r} with its immediate predecessor in \mathbf{L}.
- In transposition of items, knowledge of their new positions is kept updated.

Assumptions

Define PaidMove ($\boldsymbol{j}, \boldsymbol{k}$) as the cost of an activity in which:

- $\boldsymbol{j}, \boldsymbol{k} \in \mathbb{N}, 1 \leq k \leq j \leq n$, and
- Activity performed is the "moving" of item at position \boldsymbol{j} in \mathbf{L} a total of \boldsymbol{k} positions closer to the first element's position) in \mathbf{L} such that after the activity, the element formerly at position \boldsymbol{j} is now at position ($\mathbf{j}-\mathbf{k}$) in \mathbf{L}, and

Assumptions

- The activity of PaidMove ($\boldsymbol{j}, \boldsymbol{k}$) is accomplished by performing paid transpositions, such that its "cost" is:
$\operatorname{PaidMove}(j, k)=\sum_{r=j}^{j-k+1}$ PaidTransposition $(r, r-1)$
(Note the summation "runs backward".)

Part (1):

Develop a model of $\mathrm{ALG}_{h}(\sigma)$ applicable to any ALG_{h} in SLA.
$\operatorname{ALG}_{h}\left(\sigma_{i}(x)\right)=\left[\begin{array}{cc}0 & (k=0) \\ \text { PaidMove }(j, k) & (k>0)\end{array}\right]+\operatorname{Access}(j-k)$
$=\left[\begin{array}{cc}0 & (k=0) \\ \sum_{r=j}^{j-k+1} \operatorname{PaidTransposition}(r, r-1) & (k>0)\end{array}\right]+\operatorname{Access}(j-k)$
So $-A L G_{h}(\sigma)=\sum_{i} A L G_{h}\left(\sigma_{i}(x)\right)+\operatorname{Overhead}(L)$

Part 2: Assumptions

- Both $\mathrm{ALG}_{\mathrm{NP}}$ and $\mathrm{ALG}_{\mathrm{P}}$ are in SLA, and both operate on same list \mathbf{L} of length n.
- Allow $\mathrm{ALG}_{\mathrm{NP}}$ and $\mathrm{ALG}_{\mathrm{P}}$ to both incur the same fixed start-up overhead expense Find (\mathbf{L}) that is $\mathrm{O}(n)$ and catalogs the relative location of every item in \mathbf{L}.

Part (2a): Assumptions

- Consider any single request $\sigma_{i}(x)$ (the $i^{t h}$ request occurring in σ) for item $x \in \mathrm{~L}$.
- NB: request is for an item with key " x ". Request cannot possibly have any information of x 's location in L.
- $\mathrm{ALG}_{\mathrm{NP}}$ and $\mathrm{ALG}_{\mathrm{P}}$ DO know \boldsymbol{x} 's location in \mathbf{L} (by virtue of startup overhead activity Find(L) and subsequent updating).

Part (2a): Assumptions

In defense of unit costs:

- Assume an abstraction named "RIS" - "requesteditem server".
- RIS resides when inactive at a "home position" of zero, i.e. the position before the position of the $1^{\text {st }}$ item in \mathbf{L}.
- To serve a requested item, RIS must "access" the item. Given \boldsymbol{j}, item's position in L. RIS travels from home position 0 to position j, completing "serving" by reporting item's "information", what ever that is.

Part (2a): Assumptions

- Assume RIS has a unit cost of \boldsymbol{e} to move from position m to position $m \pm 1$ before completing the service of a request.
- Further, assume RIS has the capability of moving any item one position forward or backward, and thus can effect a transposition. Since the work is in the movement, it is reasonably assumed the cost of a single transposition is likewise \boldsymbol{e}.
- For simplicity, assume the cost for RIS to deadhead (do no work while traveling) back to "home position" is a component of \boldsymbol{e}.

Part (2a): Proof

Prove $\mathrm{ALG}_{\mathrm{P}}(\sigma)=\mathrm{ALG}_{\mathrm{NP}}(\sigma)$ when: cost of access of an item is a linear function ($r \cdot e$) of its position r and a paid transposition of items at positions r and $r-1$ incurs a unit cost e. For $\mathrm{ALG}_{\mathrm{NP}}$:

$$
\begin{aligned}
\operatorname{ALG_{NP}}\left(\sigma_{i}(x)\right) & =\left[\begin{array}{cc}
0 & (k=0) \\
\sum_{r=j}^{i-k+1} \operatorname{PaidTransposition}(r, r-1) & (k>0)
\end{array}\right]+\operatorname{Access}(j-k) \\
& =\operatorname{Access}(j) \\
& =j e
\end{aligned}
$$

$$
\begin{aligned}
& \text { CSE } 5314 \text { - "On-line Computation" } \\
& \text { Homework Set } 01 \\
& A L G_{P}\left(\sigma_{i}(x)\right)=\left[\begin{array}{cc}
0 & (k=0) \\
\sum_{r=j}^{j-k+1} \text { PaidTransposition }(r, r-1) & (k>0)
\end{array}\right]+\operatorname{Access}(j-k) \\
& =\sum_{1}^{k} e+(j-k) e=e(k+j-k)=j e \\
& =A L G_{N P}\left(\sigma_{i}(x)\right)
\end{aligned}
$$

Since generality is preserved with respect to i, j, and k, we may conclude for any requested item x :
$(\forall i)\left[A L G_{N P}\left(\sigma_{i}(x)\right)=A L G_{P}\left(\sigma_{i}(x)\right)\right]$

Part (2a): Proof

- $A L G_{N P}(\sigma)$, total cost of serving all requests σ_{i} by $A L G_{N P}$:

$$
A L G_{N P}(\sigma)=\left(\sum_{i=1}^{n} A L G_{N P}\left(\sigma_{i}(x)\right)\right)+\text { Find }(L)
$$

- Similarly, $A L G_{P}(\sigma)$, total cost of serving all requests σ_{i} by $A L G_{P}$:

Part (2a): Proof

Since:

$(\forall i)\left[A L G_{N P}\left(\sigma_{i}(x)\right)=A L G_{P}\left(\sigma_{i}(x)\right)\right]$
It follows that for any x in \mathbf{L} :

$$
\begin{aligned}
\left(\sum_{i=1}^{n} A L G_{N P}\left(\sigma_{i}(x)\right)\right) & =\left(\sum_{i=1}^{n} A L G_{P}\left(\sigma_{i}(x)\right)\right) \\
\left(\sum_{i=1}^{n} A L G_{N P}\left(\sigma_{i}(x)\right)\right)+\operatorname{Find}(L) & =\left(\sum_{i=1}^{n} A L G_{P}\left(\sigma_{i}(x)\right)\right)+\operatorname{Find}(L)
\end{aligned}
$$

$$
A L G_{N P}(\sigma)=A L G_{P}(\sigma), \text { Q.E.D. }
$$

Part (2b): Proof

Prove $\mathrm{ALG}_{\mathrm{P}}(\sigma)=\mathrm{ALG}_{\mathrm{NP}}(\sigma)$ when: cost of access of an item is an arbitrary function $f(r)$ of its position r and a paid transposition of items at positions r and $r-1$ incurs a cost of $[\boldsymbol{f}(\boldsymbol{r})-\boldsymbol{f}(\boldsymbol{r}-\mathbf{1})]$. For $\mathrm{ALG}_{\mathrm{NP}}$:

$$
\begin{aligned}
\operatorname{ALG}_{N P}\left(\sigma_{i}(x)\right) & =\left[\begin{array}{cc}
0 & (k=0) \\
\sum_{r=j}^{j-k+1} \text { PaidTransposition }(r, r-1) & (k>0)
\end{array}\right]+\operatorname{Access}(j-k) \\
& =\operatorname{Access}(j) \\
& =f(j)
\end{aligned}
$$

End of
 Exercise 1.2
 Page 6

