
 1

Homework 1
CSE 5314
Rui Huang
2/18/2004

Exercise 1.8 Let L be a list of two elements x and y. Prove that there is an optimal
offline algorithm OPT for L that satisfies the following properties: 1) OPT does not use
paid exchanges; and 2) whenever there is a run of two or more consecutive requests for x
(y), OPT moves x (y) to the front (if it is not already there) after the first request (of this
run) using free exchanges.

Without losing generality, let the initial list be xyL = . The following observations can
be made:

1) If the input sequence contains at least one y, then any algorithm will have a cost at
least 1.

2) If the input sequence contains kyx)(, the any algorithm will have a cost at least k.

3) If the input sequence contains yyx k)(, the any algorithm will have a cost at least
1+k .

From Table 1.1, for all three input sequence type, yyxi , yyyxx ki)(and xyxx ki)(, OPT
has a cost of 1, 1+k and k, respectively. Comparing the above observations with the
results from Table 1.1, one can see that OPT performs as well as any algorithms for the
three input sequence types. Since the three input sequence types cover all possible input
sequences, we can say that OPT is indeed optimal.

 2

Exercise 2.5 Prove Lemmas 2.1 and 2.2.

Lemma 2.1 Suppose that x is initially in front of BIT’s list. Then after serving the
sequence yx, with probability ¾, item x is at the front.

Proof of Lemma 2.1: Case by case analysis:

xyL =
00 yx 10 yx 01yx 11yx

yx=σ
11yx 01yx 01xy 00 yx

Lemma 2.2 Immediately after BIT serves the sequence yxy, with probability ¾, item y is
at the front (independent of the initial order of x and y).

Proof of Lemma 2.2: Case by case analysis:

xyL =
00 yx 10 yx 01yx 11yx

yxy=σ
01yx 11xy 00xy 01xy

yxL =

00xy 10xy 01xy 11xy
yxy=σ

01yx 10xy 11xy 01xy

 3

Exercise 3.1 Prove that any page replacement algorithm (online or offline) can be
modified to be demand paging without increasing the overall cost of any request
sequence.

Any paging policy can be described using the following model. Given a fast memory
area of certain size, its initial content and a sequence of page requests ,....)(2,1 rr as the

input, a paging policy produces an output as a sequence of events ,....)(2,1 ee , where ie

can be either of the following two types:

Replace(a, b): replacing page a in the fast memory with page b in the slow memory.
Access(a): accessing (i.e., reading or writing) page a in the fast memory.

Based on the model, a policy is on-demand if and only if every Replace(?, x) is
immediately followed by an Access(x). The cost of a policy is the total number of
Replace events in the output sequence. For every input sequence ,....)(2,1 rr , its Access

event should be in the same order in the output sequence, i.e., Access(1r) should proceed

Access(2r).

Let anyALG be any paging policy, and ondemandALG be its corresponding on-demand

policy. Given the same initial memory configuration and the same input sequence to
both anyALG and ondemandALG , our proof completes when following objectives are met:

1) every Replace(?, x) is immediately followed by an Access(x) in the output

sequence of ondemandALG ;

2) the number of Replace events is no more in ondemandALG than in anyALG ;

3) ondemandALG produces the same order of Access events as anyALG .

To accomplishes the above, we provide the following mapping algorithm that takes the
output sequence of anyALG and generates the output sequence of ondemandALG . The

mapping algorithm maintains the fast memory content, anyM (ondemandM) of anyALG

(ondemandALG). For any page in ondemandM , if the same page is also in anyM , then no link

is provided. Otherwise, the page in ondemandM is linked to another page in anyM .

 4

Initially, ondemandM : = anyM

For each event ie the output sequence of anyALG

 When the event ie = Replace(a, b), do the following:

 If a ondemandM∈ then

 If a is linked to another page, remove the link
 If b ondemandM∈ , then

 Move the link from b to c so that a is linked to c (1)
 Else
 Add a link from a to b (2)
 Else
 If b ondemandM∈ , then

 Remove the link from b to d
Move the link from c to a so that c is linked to d (3)

 Else
 Move the link from c to a so that c is linked to b (4)
 When the event ie = Access(a), do the following:

 If there is a link from another page, say b, to a, then
 Remove the link
 Replace b with a in ondemandM

 Output Replace’ (b, a)
 Output Access’(a)

We now examine the above algorithm case by case:

Case 1: Both a and b are in ondemandM . Since a and b are cannot be in anyM at the same

time (because of the Replace(a, b) event anyALG), there must be a link from b to another

page, say c, in anyM . In this case, a is now linked to c.

Case 2: Only a is in ondemandM , but b is not. In this case, we just link a to b.

Case 3: a is not in ondemandM , but b is. Since a is not in ondemandM but in anyM , there must

be a page in ondemandM , say c, that is linked to a. Similarly, since b is in ondemandM but not

in anyM , then b must be linked to a page, say d, in anyM . In this case, c is now linked to

d.

Case 4: Neither a or b is in ondemandM . In this case, the original link from c is now linked

to b.

 5

Example: Let anyM = {1, 2, 3} initially, and let events in anyALG be the following:

1 2 3

1 2
4

3

Replace(3,4), case (2)

anyALG ondemandALG

2 3
5

1

1 2
5

3

Replace(4,5), case (4)

Replace(1,3), case (1)

 3
5

1

Replace(2,4), case (2)

2

4

 1 3
5

2

Replace(4,1), case (3)

Access(5)

 1 3 5

Replace’(2,5)
Access’(5)

ondemandM

anyM

 6

The mapping algorithm accomplishes the three objectives we listed earlier:

1) Since the mapping algorithm outputs a Replace’(b, a) immediately followed by
Access’(a), the output sequence generated is valid for an on-demand policy.

2) For every Replace event the mapping algorithm encounters, it generates at most
one new link. A Replace’ event is generated only there is a link. Therefore, the
total number of Replace’ is not more than the total number of Replace. Thus, the
cost of ondemandALG is no more than that of anyALG .

3) For every Access(a), the algorithm generate an Access’(a). Therefore, the order
of the Access events are preserved.

Furthermore, since the mapping algorithm reads one event at a time, it is suitable to
convert online policies.

