Homework 1
CSE 5314
Rui Huang
2/18/2004

Exercise 1.8 LetL be a list of two elementsandy. Prove that there is an optimal

offline algorithm OPT folL that satisfies the following properties: 1) OPT does not use
paid exchanges; and 2) whenever there is a run of two or more consecutive requests for
(y), OPT movex (y) to the front (if it isnot already there) after the first request (of this

run) using free exchanges.

Without losing generality, let the initial list de= xy. The following observati@can
be made:

1) If the input segencecontainsat least ong, then any algorithm will havacost at
least 1.

2) If the input sequence contaigx)®, the any algorithm will have a cost at lelast

3) If the input sequence contaifgx)“y, the any algorithm will have a cost at least
k+1.

From Table 1.1, for all three input sequence typgy, x (yx)*yy and x' (yX)*x, OPT

has a cost of 1k +1 andk, respectively.Comparing the above observations with the
results from Table 1.1, one can see that OPT performs as well as any algorithms for the
three input sequence types. Since the three sgmutence types cover all possimput
sequences, we can dapat OPT is indeed optimal.

Exercise 2.5 Prove Lemmas 2.1 and 2.2.

Lemma 2.1Suppose thatis initially in front of BIT’s list. Then after serving the
sequencgx, with probability %, itenx is at the front.

Proof of Lemma 2.1: Case by case analysis:

L =xy %Yo XY X, Yo XY,

g =YX XY, X Yo Y1 %o %Yo

Lemma 2 Immediately after BIT serves the sequeycg with probability ¥jtemy is
at the front (independent of the initial ordexaindy).

Proof of Lemma 2.2: Case by case analysis:

L =xy %Yo X Y; X Yo XY
g =yXy X Yo V1% YoXo YiXo
L =yx YoXo YoX Y: %o V1%
g =YXy X Yo YoX, V1% Y1Xo

Exercise 3.1 Prove that any page replacement algorithm (online or offline) can be
modified to be demand paging without increasing the ovewatl of any request
sequence.

Any pagingpolicy can be described using the following model. Given a fast memory
area of certain size, its initial content and a sequence of page re@uests.)as the
input, a pagingolicy produces an output as a sequence of evgnés,....), wheree

can be either of the following two types:

Replace(a, b)replacing paga in the fast memory with padein the slow memory.
Access(a)acessing (i.e., reading or writing) pageén the fast memory.

Based on the model,molicy is onrdemandf and only if everyReplace?, X is
immediately followed by aAccessf). Thecostof a policyis the total number of
Replaceevents in the output ggence. For every input sequer{cg,,....), its Access
event should be in the same order in the output sequencaccess(;) should proceed
Accessf,).

' ndemand D€ 1tS corresponding estemand

policy. Given the same initial memory configuration and the same input sequence to
both ALG,,, and ALG our proof completes wheallowing objectives are met:

ondemand?

Let ALG,,, be any pagingolicy, and ALG

1) everyReplace(?, xjs immediately followed by aAccess(x)n the output
sequence oALG

ondemand?

2) the number oReplacesvents is no more iALG

ondemand than in ALG
3) ALG,

produces the same orderAdfcessevents asALG,,, .

any

ndemand

To accomplishes the aboveeprovide the following mapping algthhm that takes the

output sequence 0ALG,,, and generatethe output sequence #LG, ... The
mapping algorithm maintains the fast memory contdht, (M, 4emand) Of ALG,,,
(ALG, 4emand)- FOr any page iM ..o if the same page is also M, , then no link

is provided. Otherwisdghe page invi 41s linked to another page M ., .

ondeman

Initially, M

ondemand: = Many
For each eveng the output sequerof ALG,,,

When the eveneé = Replacéa, b), do the following:

If a OM,,gemand thEN
If ais linked to another page, remove the link
If b OM,gemanae thEN
Move the link fromb tocso that ais linkedto (1)
Else
Add a ink fromatob (2)
Else
IfbOM then

ondemand?
Remove the link fronb tod
Move the link fromc to a so thatcis linked tod (3)
Else
Move the link fromc to a so thatcis linked tob (4)
When the evene = Access(a)do the following:
If there is a link from another page, $ayo a, then
Remove the link
Replaceb with a in M
OutputReplacé(b, a)
OutputAccess’(a)

ondemand

We now examine the above algorithm case by case:

Case 1: Botta andb are inM _ yemand-
time (because dheReplace(a, bevent ALG

Sincea andb are cannot ben M, at the same
), there musbea link fromb to another

any

page, sag, in M. Inthis casea is now linked tcc.

Case 2:Onlyaisin M butb is not. In this case, we just liakto b.

ondemand?

Case 3:ais not inM ;.mane DUtD IS, Sinceais not inM butin M., , there must
be a page iM jmang » SAYC, that is linked ta. Similarly, sincebis in M but not
in M,,,, thenb must be linked to a page, sdyin M, . In this caseg is now linked to

any?
d.

ondemand any’

ondemand

Case 4: Neitheaorbisin M In this case, the original link fromis now linked

tob.

ondemand®

Example: LetM, ={1, 2, 3} initially, and let eents in ALG,,, be the following:

ALG ALG

™ ondemand w e
123
M any
Replace(3,4), case (2)
3 -~
12 |V
4
Replace(4,5), case (4)
3 -~
12 |V
5
Replace(1,3), case (1)
1 -~
23 | ¥
5
Replace(2,4), case (2)
1 -~
2 3 |*
\ 5
> 4
Replace(4,1), case (3)
2 -~
13 | ¥
5
Access) Replace’®,5)
Access’b)

135

Themapping algorithm accomplishes the three objectives we listed earlier:

1) Since the mapping algorithm outputReplace(b, a)immediately followed by
Access’(a)the output sequence generated is valid for adesnand policy.

2) For everyReplaceevent the mapping algorithm encounters, it generates at most
onenewlink. A Replacé event is generated only there is a linkhereforethe
total number oReplace’is not more than the t number oReplace Thus, the
cost of ALG, icmang IS NO More than that &LG, .

3) For everyAccess(a)the algorithm generate #&tcess'q). Therefore, therder
of theAccessvents are preserved.

Furthermoresince the mapping algorithm reads one event at a timepitable to
convert online policies.

