On-line Algorithm - Homework2

Presenter: W. Choi

Problem: Exercise 10.4

- Problem Description:

Prove the following 2-server algorithm ALG is $\mathrm{O}(1)$-competitive in any Euclidean Space.
ALG: After serving each request, label the server at the request s_{1} and the other server s_{2} (if both servers are at the request, break tie arbitrarily).
Consider the next request r and set $b=d\left(s_{1}, r\right)$. If $d\left(s_{2}, r\right)<3 b$, serve r with s_{2}. Otherwise, serve r with s_{1} and also move s_{2} a distance $3 b$ toward r.

- We'll consider the following three cases using potential function method:

Case 1 : only one server is moving $\left(\boldsymbol{d}\left(\boldsymbol{s}_{2}, r\right)<3 b\right)$
Case 2 : two servers are moving $\left(d\left(s_{2}, r\right) \geq 3 b\right)$
Case 3 : from two server movement to one server movement $\left(\boldsymbol{d}\left(s_{2}, r\right) \geq 3 b\right.$
$\left.\rightarrow d\left(s_{2}, r\right)<3 b\right)$

Potential Function Method

- Important tool for analyzing the competitiveness of an on-line algorithm (ALG) in terms of an optimal algorithm (OPT)
- Maps the current configuration of ALG and OPT to a nonnegative value $\Phi \geq 0$
- To prove ALG is c-competitive, find a potential function satisfying the following condition (Interleaving Moves)

$$
\begin{aligned}
& \text { if only ALG moves during event } r_{i} \text { and pays the actual cost } x \text { for this move, then } \\
& \qquad \Delta \Phi=\Phi_{i}-\Phi_{i-1} \leq-x
\end{aligned}
$$

- Defining Potential Function :

$$
\Phi=\alpha \cdot M_{\min }+\beta \cdot d\left(s_{1}, s_{2}\right), \alpha=1 \text { and } \beta=3
$$

where $M_{\text {min }}$ is a minimum weight matching between ALG and OPT and $d\left(s_{1}, s_{2}\right)$ is a distance between two servers after processing i request.

- \quad Case 1: one server is moving $\left(d\left(s_{2}, r\right)<3 b\right)$

$$
\begin{array}{ll}
A L G\left(r_{i}\right)=d_{2} & : \text { actual cost } \\
\Delta M_{\min }=-d_{2} \rightarrow s_{2} & \text { change in minimum weight matching } \\
=0 \rightarrow s_{1} & \\
\Delta d\left(s_{1}, s_{2}\right)=d_{1}-d_{3}=0 & : \begin{array}{l}
\text { change in } d\left(S_{1}, S_{2}\right) \\
\text { (refer to the bottom figure on the left) }
\end{array} \\
\text { Thus, } \Delta \Phi \leq \alpha \cdot\left(0-d_{2}\right)+\beta \cdot\left(d_{1}-d_{3}\right) \\
\text { Since } \Delta \Phi \leq-A L G\left(r_{i}\right), \\
& \alpha \cdot\left(0-d_{2}\right)+\beta \cdot\left(d_{1}-d_{3}\right) \leq-A L G\left(r_{i}\right)
\end{array}
$$

- For case $3(\boldsymbol{d}(\boldsymbol{s} 2, r) \geq 3 \boldsymbol{b} \rightarrow \boldsymbol{d}(\mathbf{s} \mathbf{2}, r)<3 \boldsymbol{b})$: when S_{2} processes the request r_{i}, the change in the $d\left(S_{1}, S_{2}\right)$-component of Φ is affected by only the distance between S_{1} and S_{2} due to the fixed distance ($=b$) between S_{l} and r_{i} (refer to the top figure on the left). Using the triangle inequality: $d_{3} \leq b+d_{2}$ and the condition: $d_{2}<3 b$, we can conclude that:

$$
0 \leq d_{3}<4 b
$$

Based on this (i.e., if we take the maximum of d_{3}), the maximum change in the $d\left(S_{1}, S_{2}\right)$-component is - d_{2}, That is:

$$
\Delta d\left(s_{1}, s_{2}\right)=b-d_{3} \leq-d_{2}
$$

Thus, $\alpha \cdot\left(0-d_{2}\right)+\beta \cdot-d_{2} \leq-A L G\left(r_{i}\right)$

- Case 2:- two servers are moving $\left(d\left(s_{2}, r\right) \geq 3 b\right)$

$$
\begin{aligned}
& A L G\left(r_{i}\right)=d_{1}+3 b \quad: \text { actual cost } \\
& \begin{aligned}
\Delta M_{\min } & =-d_{1} \rightarrow s_{1} \quad: \text { change in minimum weight matching } \\
& =3 b \rightarrow s_{2}
\end{aligned} \\
& \begin{aligned}
d\left(s_{2}^{\prime}, r_{i}\right) & =d_{2}-3 b \leq d_{1}+d_{3}-3 b \\
& \leq d_{3}-2 b
\end{aligned} \quad \begin{array}{c}
\text { based on Triangle inequality } \\
d_{2} \leq d_{1}+d_{3}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\Delta d\left(s_{1}, s_{2}\right)=d\left(s_{2}^{\prime}, r_{i}\right)-d_{3} & \leq d_{3}-2 b-d_{3} \\
& \leq-2 b \quad: \text { change in } d\left(S_{1}, s_{2}\right)
\end{aligned}
$$

Thus, $\Delta \Phi \leq \alpha \cdot(3 b-b)+\beta \cdot-2 b$
Since $\Delta \Phi \leq-A L G\left(r_{i}\right)$,

$$
\alpha \cdot(3 b-b)+\beta \cdot-2 b \leq-A L G\left(r_{i}\right)
$$

ALG is $\mathbf{O}(1)$-competitive in any Euclidean Space

- All of the three case are satisfied with $\alpha=1$ and $\beta=3$.

For case 1	$\alpha \cdot\left(-d_{2}+0\right)+\beta \cdot(0) \leq-A L G\left(r_{i}\right)$ $-d_{2}+d_{2}+3 \cdot(0) \leq 0$	$\Delta d\left(s_{1}, s_{2}\right)=0$ $A L G\left(r_{i}\right)=d_{2}$
For case 2	$\alpha \cdot(3 b-b)+\beta \cdot-2 b \leq-A L G\left(r_{i}\right)$ $\alpha \cdot 2 b-\beta \cdot 2 b \leq-4 b$ $2 b(\alpha-\beta)+4 b \leq 0$	$A L G\left(r_{i}\right)=d_{1}+3 b$
For case 3	$\alpha \cdot\left(-d_{2}+0\right)+\beta \cdot-d_{2} \leq-A L G\left(r_{i}\right)$ $-d_{2}+d_{2}-d_{2} \leq 0$	$\Delta d\left(s_{1}, s_{2}\right) \leq-d_{2}$ $A L G\left(r_{i}\right)=d_{2}$

- Therefore,
"ALG is O(1)-competitive in any Euclidean Space".

