On-line Algorithm – Homework2

Presenter: W. Choi

• • Problem: Exercise 10.4

• Problem Description:

Prove the following 2-server algorithm **ALG** is O(1)-competitive in any Euclidean Space.

ALG: After serving each request, label the server at the request s_1 and the other server s_2 (if both servers are at the request, break tie arbitrarily). Consider the next request *r* and set $b = d(s_1, r)$. If $d(s_2, r) < 3b$, serve *r* with s_2 . Otherwise, serve *r* with s_1 and also move s_2 a distance 3b toward *r*.

 We'll consider the following three cases using potential function method:

Case 1 : only one server is moving $(d(s_2, r) < 3b)$ Case 2 : two servers are moving $(d(s_2, r) \ge 3b)$ Case 3 : from two server movement to one server movement $(d(s_2, r) \ge 3b \ge d(s_2, r) < 3b)$

Otential Function Method

- Important tool for analyzing the competitiveness of an on-line algorithm (ALG) in terms of an optimal algorithm (OPT)
- Maps the current configuration of ALG and OPT to a nonnegative value $\Phi \ge 0$
- To prove ALG is c-competitive, find a potential function satisfying the following condition (Interleaving Moves)

if only ALG moves during event r_i and pays the actual cost x for this move, then $\Delta\Phi=\Phi_i-\Phi_{i-1}\leq -x$

Defining Potential Function :

$$\Phi = \alpha \cdot M_{\min} + \beta \cdot d(s_1, s_2), \ \alpha = 1 \text{ and } \beta = 3$$

where M_{\min} is a minimum weight matching between ALG and OPT and $d(s_1, s_2)$ is a distance between two servers after processing *i* request.

Case 1: one server is moving $(d(s_2, r) < 3b)$

 $ALG(r_i) = d_2$: actual cost : change in minimum weight matching $\Delta M_{\rm min} = -d_2 \rightarrow s_2$ $= 0^{\overline{}} \rightarrow s_1^2$ $d_{1} = b \qquad (r_{i}) \qquad \qquad = 0 \quad \rightarrow s_{1}$ $\Delta d(s_{1}, s_{2}) = d_{1} - d_{3} = 0 \quad : \text{change in } d(S_{1}, S_{2}) \qquad (\text{refer to the bottom figure on the left})$ $d_{3} \qquad d_{2} < 3b \qquad \qquad \text{Thus, } \Delta \Phi \leq \alpha \cdot (0 - d_{2}) + \beta \cdot (d_{1} - d_{3})$ Since $\Delta \Phi \leq -ALG(r_i)$, $\alpha \cdot (0 - d_2) + \beta \cdot (d_1 - d_3) \leq -ALG(r_i)$

For case 3 ($d(s_2, r) \ge 3b \rightarrow d(s_2, r) < 3b$): when S_2 processes the request r_i , the change in the $d(S_1, S_2)$ -component of Φ is affected by only the distance between S_1 and S_2 due to the fixed distance (=b) between S_1 and r_i (refer to the top figure on the left). Using the triangle inequality: $d_3 \le b + d_2$ and the condition: $d_2 < 3b$, we can conclude that:

$$0 \le d_3 < 4b$$

Based on this (i.e., if we take the maximum of d_3), the maximum change in the $d(S_1, S_2)$ -component is - d_2 , That is:

$$\Delta d(s_1,s_2) = b - d_3 \leq -d_2$$

Thus, $\alpha \cdot (0 - d_2) + \beta \cdot -d_2 \leq -ALG(r_i)$

• • • Case 2:- two servers are moving $(d(s_2, r) \ge 3b)$

• • ALG is O(1)-competitive in any Euclidean Space

• All of the three case are satisfied with $\alpha = 1$ and $\beta = 3$.

For case 1	$\alpha \cdot (-d_2 + 0) + \beta \cdot (0) \le -ALG(r_i) -d_2 + d_2 + 3 \cdot (0) \le 0$	$\Delta d(s_1, s_2) = 0$ $ALG(r_i) = d_2$
For case 2	$\alpha \cdot (3b-b) + \beta \cdot -2b \le -ALG(r_i)$ $\alpha \cdot 2b - \beta \cdot 2b \le -4b$ $2b(\alpha - \beta) + 4b \le 0$	$ALG(r_i) = d_1 + 3b$
For case 3	$\alpha \cdot (-d_2 + 0) + \beta \cdot -d_2 \leq -ALG(r_i)$ $-d_2 + d_2 - d_2 \leq 0$	$\Delta d(s_1, s_2) \le -d_2$ $ALG(r_i) = d_2$

• Therefore,

"ALG is O(1)-competitive in any Euclidean Space".