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Problem: Exercise 10.4

� Problem Description:

Prove the following 2-server algorithm ALG is O(1)-competitive in 
any Euclidean Space.
ALGALG: After serving each request, label the server at the request s1 and the 
other server s2 (if both servers are at the request, break tie arbitrarily). 
Consider the next request r and set b = d(s1,r). If d(s2,r) < 3b, serve r with 
s2. Otherwise, serve r with s1 and also move s2 a distance 3b toward r.

� We’ll consider the following three cases using potential function 
method:

Case 1 : only one server is moving (d(s2 , r) < 3b )
Case 2 : two servers are moving (d(s2 , r) ���� 3b)
Case 3 : from two server movement to one server movement (d(s2 , r) ���� 3b 
� d(s2 , r) < 3b)



Potential Function Method

� Important tool for analyzing the competitiveness of an on-line 
algorithm (ALG) in terms of an optimal algorithm (OPT)

� Maps the current configuration of ALG and OPT to a nonnegative 
value 

� To prove ALG is c-competitive, find a potential function satisfying  the 
following condition (Interleaving Moves)

if only ALG moves during event ri and pays the actual cost x for this move, then

� Defining Potential Function :

where         is a minimum weight matching between ALG and OPT 
and              is a distance between two servers after processing i
request. 
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Case 1: one server is moving (d(s2 , r) < 3b )
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� For case 3 (d(s2 , r) ���� 3b � d(s2 , r) < 3b) : when S2 processes the request ri, the 
change in the d(S1 ,S2)-component of     is affected by only the distance between S1

and S2 due to the fixed distance (=b) between S1 and ri (refer to the top figure on 
the left). Using the triangle inequality:                    and           , we 
can conclude that:

Based on this (i.e., if we take the maximum of d3), the maximum change in the 

d(S1 ,S2)-component is - d2, That is:
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Case 2:– two servers are moving (d(s2 , r) ���� 3b)
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ALG is O(1)-competitive in any Euclidean Space

� All of the three case are satisfied with �=1 and � =3.

� Therefore,
“ ALG is O(1)-competitive in any Euclidean Space” .
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