
Exercise 2.4 Consider the following generalization of RMTF. For any real 
, let RMTFp be the algorithm that, upon a request for an item x, 

moves x to the front with probability p. Generalize the lower bound to 
RMTFp for each . 
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Algorithm RMTF: Upon a request for an item x, move x to the front with 

probability 1/2. 
 
RMTF has a lower bound ε−2 . 
 
Algorithm RMTFp: Upon a request for an item x, move x to the front with 

probability p. 
 
We claim that RMTFp has a lower bound ε−
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Proof: 
We describe a nemesis request sequence showing that for any given ε , there exists 

a sufficiently large list length l  such that ε−>
p
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1)(

~
. Let α  and ε  be given, 

Assume a list of )(εll =  elements initially organized as >< lxxx ,, 21 ,L  with  at the 
front. Let k be some integer whose value will be determined, and consider the 
following request sequence 
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For large k, with high probability, algorithm RMTFp will move  to the front while 

RMTF services the segment ( . On average,  is moved to the front at the 
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)1( request. This is proved as following: 

If one element can be moved to the front with probability p, then 
Number of times to move the element to the front,  probability 
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expectation of number of accesses to move the element to the front is  
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The expected cost for MRTF p to server the segment  is at least k
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because the cost to server each of the first 
p
1 elements is l, after that  is moved to 

the front. The cost to serve the rest of 
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Therefore, the total expected cost for MRTF to serve request sequence σ  is at least  
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On the other hand,  
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Therefore,  
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As long as we choose k such that  
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We have 
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