- **Exercise 2.4** Consider the following generalization of RMTF. For any real $p \in [0,1]$, let RMTFp be the algorithm that, upon a request for an item x, moves x to the front with probability p. Generalize the lower bound to RMTFp for each $p \in (0,1]$.
- Algorithm RMTF: Upon a request for an item x, move x to the front with probability 1/2.

RMTF has a lower bound $2-\varepsilon$.

Algorithm RMTFp: Upon a request for an item x, move x to the front with probability p.

We claim that RMTFp has a lower bound $\frac{1}{p} - \varepsilon$ for $p \in (0,1)$.

Proof:

We describe a nemesis request sequence showing that for any given ε , there exists a sufficiently large list length l such that $\tilde{R}(RMTF_p) > \frac{1}{p} - \varepsilon$. Let α and ε be given, Assume a list of $l = l(\varepsilon)$ elements initially organized as $\langle x_1, x_2, \dots, x_l \rangle$ with x_1 at the front. Let k be some integer whose value will be determined, and consider the

following request sequence σ :

 $\sigma = (x_l)^k, (x_{l-1})^k, \dots, (x_1)^k.$

For large k, with high probability, algorithm RMTFp will move x_i to the front while RMTF services the segment $(x_i)^k$. On average, x_i is moved to the front at the

 $(\frac{1}{n})^{th}$ request. This is proved as following:

If one element can be moved to the front with probability p, then Number of times to move the element to the front, probability

1	р
2	(1-p)p
3	(1-p)^2p

expectation of number of accesses to move the element to the front is

$$1.p + 2.(1-p)p + 3(1-p)^2 p + \dots k.(1-p)^{k-1} p + \dots = \frac{1}{p}$$

The expected cost for MRTF p to server the segment $(x_i)^k$ is at least $\frac{1}{p}l + (k - \frac{1}{p})$ because the cost to server each of the first $\frac{1}{p}$ elements is I, after that x_i is moved to the front. The cost to serve the rest of $(k - \frac{1}{p})$. Therefore, the total expected cost for MRTF to serve request sequence σ is at least

$$RMTF_{p}(\sigma) > l(\frac{1}{p}l + k - \frac{1}{p}) = l(\frac{1}{p}l + \frac{1}{p}k + \frac{1}{p} - (1 - \frac{1}{p})k)$$
$$= l\frac{1}{p}(l + k - 1) - (1 - \frac{1}{p})kl$$

On the other hand,

 $MTF(\sigma) = l(l+k-1)$

Therefore,

$$\tilde{R}(RMTF_p) = \frac{RMTF_p(\sigma)}{OPT(\sigma)} \ge \frac{RMTF_p(\sigma)}{MTF(\sigma)} > \frac{l\frac{1}{p}(l+k-1) - (1-\frac{1}{p})kl}{l(l+k-1)} = \frac{1}{p} - \frac{(1-\frac{1}{p})k}{l+k-1}$$

As long as we choose k such that

$$\frac{(1-\frac{1}{p})k}{l+k-1} \ge \varepsilon \text{ , which implies } k \ge \frac{\varepsilon p(l-1)}{(1-\varepsilon)p-1}.$$

We have

$$\tilde{R}(RMTF_p) > \frac{1}{p} - \varepsilon$$
.