Exercise 2.4 Consider the following generalization of RMTF. For any real $p \in[0,1]$, let RMTFp be the algorithm that, upon a request for an item x , moves x to the front with probability p. Generalize the lower bound to RMTFp for each $p \in(0)$,$] .$

Algorithm RMTF: Upon a request for an item x , move x to the front with probability $1 / 2$.

RMTF has a lower bound $2-\varepsilon$.
Algorithm RMTFp: Upon a request for an item x , move x to the front with probability p .

We claim that RMTFp has a lower bound $\frac{1}{p}-\varepsilon$ for $p \in(0,1)$.

Proof:

We describe a nemesis request sequence showing that for any given ε, there exists a sufficiently large list length I such that $\tilde{R}\left(R M T F_{p}\right)>\frac{1}{p}-\varepsilon$. Let α and ε be given, Assume a list of $l=l(\varepsilon)$ elements initially organized as $\left\langle x_{1}, x_{2}, \cdots, x_{l}\right\rangle$ with x_{1} at the front. Let k be some integer whose value will be determined, and consider the following request sequence σ :

$$
\sigma=\left(x_{l}\right)^{k},\left(x_{l-1}\right)^{k}, \cdots,\left(x_{1}\right)^{k} .
$$

For large k , with high probability, algorithm RMTFp will move x_{i} to the front while RMTF services the segment $\left(x_{i}\right)^{k}$. On average, x_{i} is moved to the front at the $\left(\frac{1}{p}\right)^{)^{h}}$ request. This is proved as following:
If one element can be moved to the front with probability p, then Number of times to move the element to the front, probability
p
(1-p)p
$(1-p)^{\wedge} 2 p$
expectation of number of accesses to move the element to the front is

$$
\text { 1. } p+2 .(1-p) p+3(1-p)^{2} p+\cdots k .(1-p)^{k-1} p+\cdots=\frac{1}{p}
$$

The expected cost for MRTF p to server the segment $\left(x_{l}\right)^{k}$ is at least $\frac{1}{p} l+\left(k-\frac{1}{p}\right)$ because the cost to server each of the first $\frac{1}{p}$ elements is I , after that x_{l} is moved to the front. The cost to serve the rest of $\left(k-\frac{1}{p}\right)$.
Therefore, the total expected cost for MRTF to serve request sequence σ is at least

$$
\begin{aligned}
\text { RMTF }_{p}(\sigma) & >l\left(\frac{1}{p} l+k-\frac{1}{p}\right)=l\left(\frac{1}{p} l+\frac{1}{p} k+\frac{1}{p}-\left(1-\frac{1}{p}\right) k\right) \\
& =l \frac{1}{p}(l+k-1)-\left(1-\frac{1}{p}\right) k l
\end{aligned}
$$

On the other hand,

$$
\operatorname{MTF}(\sigma)=l(l+k-1)
$$

Therefore,

$$
\tilde{R}\left(R M T F_{p}\right)=\frac{R M T F_{p}(\sigma)}{O P T(\sigma)} \geq \frac{R M T F_{p}(\sigma)}{M T F(\sigma)}>\frac{l \frac{1}{p}(l+k-1)-\left(1-\frac{1}{p}\right) k l}{l(l+k-1)}=\frac{1}{p}-\frac{\left(1-\frac{1}{p}\right) k}{l+k-1}
$$

As long as we choose k such that

$$
\frac{\left(1-\frac{1}{p}\right) k}{l+k-1} \geq \varepsilon, \text { which implies } k \geq \frac{\varepsilon p(l-1)}{(1-\varepsilon) p-1} .
$$

We have

$$
\tilde{R}\left(R M T F_{p}\right)>\frac{1}{p}-\varepsilon .
$$

