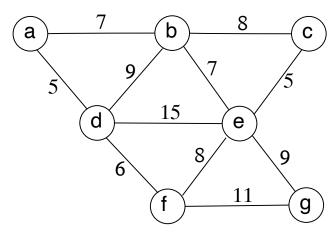
CSE 5319/6319 Homework 4

Due April 30, 5:00 p.m. on Canvas

- 1. KP p. 266, problem 14.18. (10 points)
- 2. Similar to p. 4-5 of notes03.2.mech.pdf, analyze the Allocation Algorithm for Downward Sloping Valuations for following $v_i(k)$ values for buyer i. Note that $v_i(k) = v_{i1} + v_{i2} + \ldots + v_{ik}$. The result is a table of clearing prices and allocations like the one at the top of p. 5. (10 points)

					k					
	$v_i(k)$	0	1	2	3	4	5	6	7	8
	1	0	50 50						240 10	
i	2	0			181	216	249	279	304	314
	3	0			150	190	225	251	276 25	301

3. Compute the VCG payments for the minimum spanning tree for this graph. (10 points)



4. Determine the optimal fixed price for the following bids for copies of a digital good: (10 points)

10 9 8 6 6 5 5 5 5 5 5 4 4 2 2 2 2 1 1 1

- 5. For https://ranger.uta.edu/~weems/NOTES6319/AUCTION/auction2.dat: (20 points)
 - a. Find a maximum-weight bipartite matching via ascending auction.

- b. Compute the lowest envy-free price vector (KP Theorem 17.2.6).
- c. Compute the highest envy-free price vector (Corollary 17.2.9).
- d. Solve fair division (KP section 17.3) using the above envy-free price vectors for a 5-room apartment with monthly rent of \$500.
- 6. Determine a minimum-weight bipartite matching for

https://ranger.uta.edu/~weems/NOTES6319/AUCTION/auction2.dat. (10 points)

7. How many maximum-weight bipartite matchings are there for

https://ranger.uta.edu/~weems/NOTES6319/AUCTION/auction4.dat? (10 points)

8. How many maximum-weight bipartite matchings are there for

https://ranger.uta.edu/~weems/NOTES6319/AUCTION/auction5.dat? (10 points)

9. Use Gambit to compute Nash equilibria for: (10 points)

$$A = \begin{bmatrix} 3 & 3 \\ 2 & 5 \\ 0 & 6 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 2 \\ 2 & 6 \\ 3 & 1 \end{bmatrix}$$