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Abstract
We consider the well-studied cake cutting problem in 
which the goal is to find an envy-free allocation of a divisible 
resource based on queries from agents. The problem has 
received attention in mathematics, economics, and com-
puter science. It has been a major open problem whether 
there exists a discrete and bounded envy-free protocol. We 
report on our algorithm that resolved the open problem.

1. INTRODUCTION
The cake cutting problem is a fundamental mathematical 
problem in which the ‘cake’ is a metaphor for a heteroge-
neous divisible resource represented by the unit interval  
[0, 1].4 The resource could represent time, land, or some 
computational resources. The goal is to allocate the cake 
among n entities that are referred to as ‘agents.’ Each agent’s 
allocation consists of a collection of subintervals. Each of 
the agents is assumed to have additive and nonnegative 
valuations over segments of the interval. A cake-cutting 
algorithm/protocol interacts with the agents in order to 
identify a fair allocation.

One of the most important criteria for fairness is 
envy-freeness. An agent envies another if she would have 
preferred to receive the other’s piece rather than hers. A 
cake cutting protocol/algorithm is called envy-free if each 
agent is guaranteed to be nonenvious if she reports her 
real valuations. If a protocol is envy-free, then an honest 
agent will not be envious even if other agents misreport 
their valuations.

The interaction of the protocol with the agent uses two 
types of queries Evaluate and Cut. Evaluate asks an agent 
i to report her value for the subinterval between two points 
x and y. Cut asks an agent i to choose a point y such that 
the interval between a given x and y is worth a given value t. 
This natural query model was popularized by Robertson  
and Webb.8

How does an envy-free protocol look like? This is perhaps 
best illustrated with the most famous envy-free cake cutting 
protocol. It is the Cut and Choose Protocol for two agents. 
One agent is asked to divide the cake into two equally pre-
ferred pieces. The other agent is then asked to pick her most 
preferred piece whereas the cutter gets the remaining piece. 
The protocol is explained pictorially in Figure 1. It is for-
mally specified as Algorithm 1. For a piece of cake D (which 
is just a subset of the cake), we write Vi(D) to denote the agent 
i’s value for the piece D. The proof that the Cut and Choose 
Protocol is envy-free is as follows. Agent 1 gets one of the 
equally preferred pieces so she is not envious. Agent 2 gets 
the piece that she prefers at least as much as the other piece 
so she is also not envious.

The original version of this paper, entitled “A Discrete and 
Bounded Envy-Free Cake Cutting Protocol for Any Number 
of Agents,” was published in the Proceedings of the 57th  
Symposium on Foundations of Computer Science, (2016), 416–427.

Algorithm 1. Cut and choose protocol.

Input Cake R = [0, 1] and two agents 1 and 2.
Output An envy-free allocation of R.
 1: � Ask agent 1 for her value V1(R). Then ask agent 1 to place 

a mark x on the cake so that V1(0, x) = V1(x, 1). Divide the 
cake into two pieces [0, x] and [x, 1].

 2: � Ask agent 2 for her value V2(0, x) and V2(x, 1). If V2(0, x) 
≥ V2(x, 1), give agent 2 piece [0, x]. Otherwise, give piece  
[x, 1] to agent 2.

 3:  Give agent 1 the remaining piece.

1. Agent 1 cuts the
cake into 2 equally

preferred pieces

2. Agent 2 chooses
her more preferred

piece

1 2

2

3. Agent 1 gets the
remaining piece

Figure 1. Cut and choose protocol.

Is there a cake cutting algorithm that is envy-free for three, 
four, or more number of agents? The question has been the topic 
of intense study in the past decades. It dates back to the work of 
mathematician Hugo Steinhaus who presented the cake cutting 
problem in the 1940s.8,9 For an enjoyable overview of the history 
of the cake cutting problem, we refer to the Communications 
of the ACM paper by Procaccia7 the popular book by Brams 
and Taylor.4 For the case of three agents, an elegant protocol 
was independently discovered by John L. Selfridge and John 
H. Conway around 1960. Before our work, a general envy-free 
cake cutting algorithm using a finite number of steps and cuts 
was proposed by Brams and Taylor.3 However, it can require 
an arbitrarily large number of steps, even for four agents. This 
led to the question of whether there exists a bounded envy-free 
algorithm. In other words, does there exist an envy-free algo-
rithm that has a provable bound on the number of steps which 
is only dependent on a function of n (the number of agents)?

In this paper, we report on the first bounded and envy-
free cake cutting algorithms.1,2 Next, we present the ideas 
behind the general algorithm.

http://dx.doi.org/10.1145/3382129


research highlights 

 

120    COMMUNICATIONS OF THE ACM   |   APRIL 2020  |   VOL.  63  |   NO.  4

2. THE PROTOCOL: AN OVERVIEW
At a high level, our protocol (which is referred to as the Main 
Protocol) allocates a large enough portion of the cake in 
an envy-free manner. After that, it tries to add some small 
portions of the unallocated cake to the allocated part in a 
structured and envy-free manner with the goal to reduce 
the problem to envy-free allocation for a smaller number of 
agents. Throughout the protocol, there is a partial allocation 
of the cake that is maintained to be envy-free. By partial we 
mean that the whole cake may not be allocated.

The Main Protocol makes calls to other protocols (in partic-
ular the Core Protocol, Discrepancy Protocol, and the GoLeft 
Protocol) in order to find an envy-free allocation. The Core 
Protocol is used to obtain an envy-free partial allocation. 
The Main Protocol applies it many times on the unallocated 
cake to make the unallocated cake smaller and smaller.

After finding a large enough envy-free partial allocation, 
the Main Protocol uses two possible ways to decompose our 
problem into one involving a smaller number of agents. The 
first case is when we find a situation where some agents are 
mainly interested in one part of the unallocated cake and 
other agents are mainly interested in the remaining part. 
This discrepancy in valuations of the agents is exploited by 
the Discrepancy Protocol. If the first case does not arise, we 
use the GoLeft Protocol to exchange suballocations of agents 
to enable one set of agents to “dominate” the other agents. 
The dominating agents think they will not be envious of the 
dominated agents even if one of the dominated agents gets 
all the unallocated cake. In that case, we reduce our prob-
lem to that involving the remaining cake and the dominated 
agents. Domination is a key idea on which our protocol is 
based and which helps us reduce our problem to a smaller 
problem. See Figure 2 for an overview of the Main Protocol.

Figure 3 presents a realizable sequence of steps that cap-
ture some of the key ideas of our protocol.

3. THE PROTOCOL: MORE DETAILS
In this section, we give more details of each of the compo-
nents of the Main Protocol.

3.1. Core protocol
A crucial building block of our protocol is the Core Protocol 
which finds a partial allocation that is envy-free.

The Core Protocol asks one of the n agents—the 
“cutter”—to divide the cake into n equally preferred pieces. 
Recall that this step is similar to the first step of the Cut and 
Choose Protocol. It then finds a possibly partial allocation 
in which each agent’s allocation is a contiguous piece of the 
cake. Each agent receives one of the pieces defined by the 
“cutter”. The agents may get the pieces in trimmed form. We 
guarantee the cutter as well as at least one other agent to get 
a full piece, and that no agent envies another agent. Another 
feature of the allocation is that for each piece that is partially 
allocated, the exact point at which it has been cut off corre-
sponds to the mark by another agent to ensure she is not envi-
ous of that piece. When we first designed the Core Protocol, it 
was designed to establish the existence of an allocation that 
satisfies the properties discussed above. Once the existence 
of such an allocation is established, there is a simpler way 
to define a protocol which achieves such an allocation. The 
general idea for the simplified version was made explicit in 
an interesting and detailed follow-up paper, which solved the 
sister problem for the case of chores or burnt cake (agents 
have nonpositive valuations).5 Here we present a simplified 
version of the Core Protocol (Algorithm 2) for cake cutting. 
The protocol requires at most (n!)2n queries.

Algorithm 2. (Simplified) core protocol.

Input Agent set N, a cutter i ∈ N and cake R.
Output An envy-free allocation of cake R′ ⊆ R for agents  
in N and an updated unallocated cake R \ R′.
   1: � Ask agent i to cut the cake R into n equally preferred 

pieces (p1,…, pn).
   2:  for each permutation  of N \{i} do
   3: �      for each permutation  of the n pieces  

(p1,…, pn) do
   4:       Give p′1 to i
   5:       for j = 2 to n do
   6: �        Give p′j to a′j. Ask a′j to trim any of the pieces  

 if needed so the value of the pieces does not 
exceed the value a′j has for her allocation p′j.

   7: �             if the allocation p corresponding to the permutation 
of agents and pieces is envy-free then

   8: �       return the allocation p (which is called a Core 
allocation)

   9:      else
10: �       Reattach the trimmed parts to regain the original 

pieces.

In the Core Protocol, the cutter agent gets a full piece. 
Another agent also gets a full piece. So from the cutter’s per-
spective, at least 2/n of the cake is allocated by one call of 
the Core Protocol. Equivalently, the cutter thinks that her 
value of the remaining cake is at most (n − 2)/n of her value of 
the full cake.

If we call the Core Protocol with a different cutter each 
time to further allocate the unallocated cake, we just need 
n calls of the Core Protocol to obtain an envy-free partial 
allocation which also satisfies proportionality (gives each 
agent value at least 1/n of the whole cake). Algorithm 3 does 
exactly that and in n!2n2 queries finds a partial allocation that 

Main  Protocol
Goal: Find an envy-free allocation of the whole cake.

1. Call the Core Protocol (that finds an envy-free partial allocation)
several times to get a larger and larger envy-free allocation.

2. Decompose the problem into one with a smaller number of agents 
via two possible ways: 

a) Call the Discrepancy Protocol (that exploits how agents value
different parts of the unallocated cake): we get two smaller
subproblems. 

b) If there is no discrepancy, call the GoLeft Protocol (implements
exchanges of some pieces to enable one set of agents to dominate
the other agents). We get one smaller subproblem (with less
number of agents). 

Figure 2. A bird’s-eye view of our protocol.
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Figure 3. Illustration of some of the ideas of the protocol. The terminal states are 6’ and 10.

1. We are dividing the cake among four agents.
Agent 2 cuts the cake into 4 equally preferred

pieces.

1 2 3 4

2. An envy-free partial allocation is achieved via
the Core Protocol. Two of the agents (agents 3
and 4) get full pieces in the allocation. We find

out that agent 2 and 4 dominate agent 1.

1 2 3 4

4. Agent 4 has zero value for the unallocated
cake so it does not need to be allocated any

further cake. Agent 2 cuts the unallocated cake
into 3 equally preferred pieces.

1 2 3 4

3. The unallocated cake is reassembled for
further allocation.

1 2 3 4

1 3 2

5. An envy-free partial allocation is achieved in
the second row. We find out that even for the

second envy-free allocation, agent 2 dominates
agent 1 (even if all the unallocated cake is given

to agent 1, agent 2 will not be envious).

1 2 3 4

1 3 2

1,3 2

6’. If agents 1 and 3 only like one part of the
unallocated cake and agent 2 only likes the other
part of the unallocated cake, we can fairly divide
the respective parts to the agents who like them.

These types of situations are handled by the
Discrepancy Protocol.

1 2 3 4

3

1 3 2

6. We suppose here that there is no discrepancy
(see 6’. for the other case). For the first envy-free
allocation in the top row, we ask agent 3 to cut
out a piece from the unallocated cake to reflect

her advantage over agent 1.

1 2 3 43

1
2

1 3 2

7. The cutout ‘extracted’ piece is placed along
with the corresponding allocation. For the first

envy-free allocation in the top row, we ask agents
1 and 2 to cut out a piece from the unallocated

cake to reflect their advantage over agent 3.

1 2 3 43
1
2

1 3 2

8. The cutout ‘extracted’ pieces are placed along
with the corresponding allocation.

3 2 1 4

1 3 2

9. Agents 1 and 3 are made to swap their
allocations in the top row. When they swap, they
get the additional extracted piece placed next to

the new piece they get. These types of exchanges
happen in the GoLeft Protocol. After the

exchange, agent 2 dominates both agents 1 and 3.

3 2 1 4

1 3 2

1 3

10. The unallocated cake is divided among
agents 1 and 3 in an envy-free way.
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by calling the Core Protocol a bounded number of times 
with i as the cutter. We explain this idea below.

Suppose we partially allocate the cake and agent i gets 
allocation Xi whereas agent j gets allocation Xj. Suppose that 
agent i thinks she has a significant advantage over agent j:

Consider the situation where we run the Core Protocol over 
the unallocated cake R with agent i as the specified cutter and 
we do it B times so that the eventual unallocated cake is R*. Then

Thus, after B calls of the Core Protocol, agent i who previously 
had a significant advantage over agent j now dominates her:

When we get a Core Protocol outcome, the cutter already 
has a significant advantage over the agent who got the least 
cake in the cutter’s estimation. This significant advantage 
can easily be converted into domination by calling the Core 
Protocol. The main challenge is to obtain domination rela-
tions between more pairs of agents. Throughout the main 
protocol, the tentative partial allocation remains envy-free. 
Secondly, if an agent dominates another agent, the domina-
tion is maintained despite updates to the allocation.

3.3. Extraction
After we have called the Core Protocol on the updated unal-
located cake, a sufficient but bounded number of times, we 
are in a position to extract from the residue. In each of the 
calls of the Core Protocol, there was a corresponding envy-free 
allocation. By envy-freeness, in each such allocation, each 
agent j has a nonnegative advantage over another agent i. 
For each of the Core allocations and for each i, j ∈ N, agent  
i is asked to extract a piece from the unallocated cake of 
value of the advantage over j in that Core allocation.

The extracted piece e will be in consideration to be 
attached to i’s corresponding allocated piece so that j is 
indifferent between her allocation and i’s allocation. If 
j’s intended extraction has a significant value, we do not 
extract because we only want to extract pieces from the 
remainder which are not significant for all the agents. If the 
intended extraction is not significant, we put it on a side for 

satisfies envy-freeness and proportionality—two of the  most 
important fairness concepts.a The remainder of the paper 
describes what to do when we do want to allocate the 
whole cake.

Algorithm 3. An envy-free and proportional protocol.

Input Agent set N and cake R.
Output An envy-free and proportional allocation of the cake 
that may not allocate the whole cake.
 1:  for i = 1 to n do
 2: �     if there is unallocated cake, then run the Core Protocol 

on the unallocated cake with i as the specified cutter.
 3:  return the allocation.

3.2. Domination and significant advantage
As the Core Protocol by itself is not powerful enough to 
allocate all the cake in bounded time, we rely on the idea of 
domination with the goal to decompose our problem into 
one involving a fewer number of agents. In this section, we 
denote an agent i’s allocation by Xi.

Recall that in an envy-free allocation, each agent i thinks 
she has an advantage (even if it is zero advantage) over each 
other agent j:

Domination is an extreme form of advantage. An agent i 
dominates another agent j if she is not envious of j even if the 
unallocated cake R is given to j:

The other protocols are used with the following objective 
in mind: find a set of agents A ⊂ N such that each agent in  
N \ A dominates each agent in A. In order to ensure that each 
agent in some set N \ A dominates each agent in A, it requires 
changing the current allocations of the agents as well as the 
unallocated cake. While doing these changes, we ensure that 
the current partial allocation remains envy-free. By identify-
ing such a set N \ A, we reduce the problem to envy-free allo-
cation for a smaller number of agents. The agents in N \ A 
are not envious whatever the unallocated cake is allocated 
among agents in A. This crucial idea is illustrated in Figure 4.

Dominance of an agent i over another agent j has a close 
relation with agent i considering herself as having a ‘sig-
nificant advantage’ over j. In order to define significance, 
we consider a suitable large constant bounded by some 
function over n. For a partially allocated cake, and piece a, 
an agent i finds value Vi(a) significant if the value is at least 

 where R is the unallocated cake
Significance of a piece is with respect to the residue, so 

if the residue becomes smaller, a significant value remains 
significant. The rationale for defining a significant value is 
that if an agent i thinks she has a significantly higher value 
for her allocation than she has for agent j’s allocation, then 
this significant advantage can be changed into domination 

a  Note that finding an envy-free allocation that may be partial is a trivial 
problem: allocate nothing!

1 3

2 4

Figure 4. In the figure, an agent points to another agent if the former 
dominates the latter. Suppose we find an envy-free partial allocation 
among four agents such that each agent in {2, 4} dominates each 
agent in {1, 3}. Then we can simply allocate the remaining cake 
among agents in {1, 3} in an envy-free way.
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of calls of the Core Protocol the situation where for each 
agent i, either Vi(e) ≥ Vi(R)n or Vi(e) ≤ Vi(R)/n. This situation is 
explained in Figure 7.

Algorithm 4. Main protocol—high-level sketch.

Input: Cake R and a set of agents N.
Output: An envy-free allocation.
 1: � Core Allocations: generate core allocations by repeat-

edly dividing the unallocated cake via the Core Protocol 
a bounded number of times.

 2: � Extraction: extract pieces from the residue correspond-
ing to the core allocation pieces as long as the pieces are not 
significant for any agent as explained in Section 3.3. While 
extracting pieces, if some piece a is significant for at least 
one agent, call the Discrepancy Protocol as explained in 
Section 3.4. It ensures that now either all agents consider 
the piece significant (in which case it is not attached) or we 
decompose the main problem into two subproblems for 
the Main Protocol where some agents are to be given a and 
the others are to be given the remaining unallocated cake.

 3: � GoLeft: Call the GoLeft Protocol to attach extracted pieces 
to the corresponding Core allocations. The GoLeft protocol 
returns a subset of agents A ⊂ N such that each agent in  
N \ A dominates each agent in A. The central idea of GoLeft 
is to facilitate exchanges of suballocations of agents.

 4: � Call the Main Protocol to allocate the remaining cake  
to agents in A.

 5:  return allocation of the cake to the agents.

If Vi(e) ≥ Vi(R)n, then i is predominantly interested in e 
rather than the residue. If Vi(e) ≤ Vi(R)/n, then i is predomi-
nantly interested in R. Because the piece that agents are 
predominantly interested in has n times more value than 
the other piece, any agent who gets an envy-free (and hence 
proportional) allocation of the preferred piece also gets at 
last 1/n value of the preferred piece. The value is at least as 
much as the value of the piece that is less preferred.

3.5. Main protocol
Continuing to call the Core Protocol on the updated remain-
ing cake gives no guarantee that the cake will be allocated 
fully even in finite time. Hence, we need to use other proto-
cols which are called by the Main Protocol. We gave an intu-
itive idea of the Main Protocol in Figure 2. We give a more 
detailed high-level sketch of the protocol in the form of 
Algorithm 4.

The first two stages of the Main Protocol are making calls 
to the Core Protocol to further allocate the cake and then to 

consideration for attachment. If it cannot be made unani-
mously insignificant, then we say that the piece is discrepant 
and we call the Discrepancy protocol which either exploits 
or ‘eliminates’ this discrepancy.

Figure 5 shows how agents extract pieces from the unallo-
cated cake R. In the figure, we consider extractions by agents 
2, 3, and 4 based on their advantage over agent 1. Agent 2 
thinks that her advantage over agent 1 is of the same value 
as her value for the leftmost extracted piece. Agent 4 thinks 
that her advantage over agent 1 is of the same value as the 
sum of her values for two leftmost extracted pieces.

The extracted pieces will be attempted to be attached to 
agent 1’s piece as indicated in Figure 6.

Suppose we have a set of Core Protocol allocations and 
the corresponding extracted pieces placed in the appropri-
ate order. We call a set of Core Protocol allocations isomor-
phic to each other if for each piece ci in agent i’s allocation, 
the agents who extracted cake from the residue and associ-
ated to ci are the same and did so in the same order. Later, 
we will identify a subset of Core Protocol allocations that 
are isomorphic to each other. Isomorphic allocations will be 
considered later by the GoLeft Protocol.

3.4. Discrepancy protocol
When pieces are being extracted from the residue, it may be 
the case that one of the pieces e in consideration for extrac-
tion is significant for some agent. In that case, the piece is 
not extracted and the Discrepancy Protocol is called that 
either eliminates or exploits this discrepancy. The discrepant 
piece e is kept aside from the residue. If the piece is “almost 
significant,” we can make it significant by reducing the resi-
due by calling the Core Protocol a bounded number of times.

By doing this, either the discrepant piece becomes unani-
mously significant or we still have the case that some agents 
consider e significant and others do not. The first case is 
helpful because there is no discrepancy in terms of signifi-
cance and our protocol makes use of this consistency. In the 
second case, if there exists some i ∈ N such that Vi(R)/n < Vi(e) < 
Vi(R)n, we continue running the Core Protocol with agent i 
as the cutter. By doing so, we achieve in a bounded number 

1 2 3 4

Figure 6. Extracted pieces placed next to agent 1’s allocation for the 
purpose of attachment.

A N \ A

Figure 7. Discrepancy. Agents in A think that the left part has n times 
more value than the right part. Agents in N \ A think that the right part 
has n times more value than the left part. In that case, if we allocate 
the left part to A in an envy-free way and the right part to N \ A in an 
envy-free way, we obtain an overall envy-free allocation for N.

1 2 3 4

2 4 3

Figure 5. Agents extracting pieces from the remaining cake up to 
their advantage over agent 1.
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pieces held by them in S have not had n − 1 attachments). T′ is 
the set of nodes/agents such that the isomorphic pieces held 
by them in S have had n − 1 attachments.

The protocol identifies a cycle in the permutation graph 
that includes at least one node i from T. Such a cycle always 
exists. In each of the working set S of isomorphic alloca-
tions, we implement an exchange of pieces held by agents 
in the cycle: each agent in the cycle is given the piece cor-
responding to the node that the agent points to in the cycle. 
After implementing the exchange, the permutation graph 
is updated to reflect the exchange. In the exchange, if an 
agent gets an inferior piece, she always gets the additional 
extracted pieces associated with it up till the agent’s extrac-
tions. Hence, each agent’s value from her allocation is pre-
served in each allocation in S even if she gets a different 
piece than in the original Core allocation. For any agent i, 
as long as no agent gets extracted pieces beyond i’s extrac-
tion, i will not be envious. In the GoLeft protocol, it can be 
the case that some agent j gets extracted pieces beyond i’s 
extracted pieces but before any such attachments in the last 
part of the GoLeft protocol, we ensure that no envy arises.

After implementing the cycle, we focus on a node i ∈ T that 
was in the cycle. For agent/node i, we know that for all alloca-
tions in the working set S, agent i has been allocated the origi-
nal isomorphic pieces ck as well as all associated pieces up till 
i’s extracted piece. If the piece of cake agent i is currently allo-
cated in the allocations S has no more extracted pieces left to 
attach to it, but it has not had n − 1 attachments, this means 
that all agents who have not had their corresponding piece 
extracted/attached have a significant advantage over agents 
who have had an extracted piece attached. In this case, the 
GoLeft Protocol returns the set of dominated agents to the 
Main Protocol and we are left with a smaller envy-free alloca-
tion problem because it involves a fewer number of agents.

In case node i does not lead to an exit from the GoLeft 
Protocol, we know that there are associated pieces that can 
still be attached to the isomorphic pieces held by i in the 
working set of Core allocations S. We focus on the next set 
of associated pieces ek(l+1) that we are interested to attach 
to the pieces ck that have already had associated pieces 

 attached in their corresponding main pieces ck  
(see Figure 9). Additionally attaching pieces ek(l+1) to pieces  
ck is useful in making the agent who extracted them inter-
ested in the pieces ck because of the additional ek(l+1) as well 
as the previous attachments.

Avoiding envy when attaching extracted pieces. Naively 
attaching the pieces can be problematic and spoil the envy-
freeness of the allocation that we maintain. We deal with the 
issue as follows.

–	 The agents who did not extract pieces associated with 
the ck pieces as well as agents who extracted pieces that 
have not been attached are asked to ‘reserve’ a big 
enough subset S′ ⊂ S of allocations in which they value 
the difference between their bonus value for ck and the 
extracted pieces currently attached to ck the most. These 
allocations S′ are removed from S and their remaining 
unattached associated pieces are sent back to the resi-
due. By maintaining the advantages in the Core alloca-

implement the extraction as explained in the previous sec-
tions. While pieces are being extracted, we may have to call 
the Discrepancy Protocol. Throughout the steps of the Main 
Protocol, we maintain an envy-free allocation as well as keep 
track of the updated unallocated cake. After that, the Main 
Protocol calls the GoLeft Protocol. In the subsequent sec-
tion, we give further details of the GoLeft Protocol.

3.6. GoLeft protocol
In this section, we give an overview of the GoLeft Protocol 
(Algorithm 5). When the GoLeft Protocol is called, we already 
have a bounded number of envy-free allocations due to the 
calls to the Core Protocol. We also have extracted pieces 
from the residue that will be considered for attachments to 
the corresponding Core allocations of the agents.

The purpose of extracting pieces from the residue is that we 
can attach them to the corresponding Core allocation piece 
of i so that j is indifferent between her allocated piece and i’s 
piece. This makes it easier for j to switch one of her pieces if 
she gets the additional insignificant extraction. Making agents 
exchange their allocations while additionally giving them 
additional extracted pieces is useful to diversify the relations 
of agents having a significant advantage over others.

We elaborate on why attachment is helpful to obtain addi-
tional significant advantages. Let us say that in a number of 
Core allocations, agent k has a significant advantage over 
agent i’s allocation and agent j has an insignificant advan-
tage over i’s allocation. In order for k to have a significant 
advantage over j rather than i, we want to make some local 
envy-free preserving operations so that j gets i’s allocated 
piece along with j’s insignificant extraction corresponding 
to j’s advantage over that piece of i’s.

Permutation graph. When the GoLeft Protocol starts, it 
first identifies a working set S of C Core allocations from out 
of the C′ Core allocations that we focus on. As C′ is chosen to 
be large enough, we can find C Core allocations that are iso-
morphic. The protocol then constructs a permutation graph 
corresponding to the working set of isomorphic allocations.

In the permutation graph, each node i corresponds to an 
agent i who holds a set of isomorphic pieces along with her 
attached extracted pieces in the working set of isomorphic 
allocations S. Agent i points to agent j if j holds isomorphic 
pieces in S that have had all attachments up till i’s extracted 
pieces. Each node has an indegree of one. Initially, the per-
mutation graph consists of all nodes having self-loops (see 
Figure 8).

We divide the nodes of the permutation graph into sets T 
and T′. Set T is the set of nodes/agents such that the isomorphic 

1 2 3 4

1 2 3 4234 314 1 231

Figure 8. Initial state of the permutation graph along with the 
corresponding state of an allocation representative of the working 
set of isomorphic allocations.
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they value the ek(l+1) pieces. We call these allocations S″. 
The ek(l+1) pieces from S″ are bunched together and the 
Main Protocol is called to divide this cake in an envy-
free way among the agents indexed from 1 to l where l is 
strictly less than n. As envy-freeness implies propor-
tionality, they derive enough value that they will not be 
envious if the agent indexed l + 1 gets all other pieces in 
set ek(l+1). The corresponding set of allocations S″ is then 
removed from consideration for updates.

Hence, each time we attach isomorphic extracted pieces 
ek(l+1) to isomorphic pieces ck, we ‘freeze’ allocations S′ ∪ S″ 
from the working set S and still maintain an envy-free alloca-
tion. Note that in the allocations that remain in S, agents may 
currently hold a different isomorphic piece than they previ-
ously did, but as they also hold the corresponding attach-
ments associated with the isomorphic piece, each agent’s 
total value in each isomorphic allocation in S stays the same. 
In Figure 10, we show the states of the permutation graph 
and the corresponding representative Core allocation as well 
as the corresponding extracted pieces.

When the protocol attaches extracted pieces ek(l+1) to allo-
cated pieces ck currently held by agent l, it deletes the incom-
ing edge of node/agent l and replaces it by an edge coming 
from agent l + 1 who extracted pieces in ek(l+1). Intuitively, l + 1 
is now willing to be allocated to c and its attached pieces 
instead of her current pieces in S. We delete previous edges 
to ensure that until termination, nodes in T have an inde-
gree of exactly 1, which guarantees that no matter the cycle 
involving a node in T found by the protocol, we will make 
progress towards termination. The following example shows 
how progress is made in attaching extracted pieces to the 
working set of isomorphic Core allocations.

Example 1. In Figure 10, we demonstrate how the permuta-
tion graph along with the working set of isomorphic allocations 
changes in the GoLeft Protocol. Note that even when the represen-
tative allocation changes, there still exist allocations isomorphic 
to the previous representative allocations but these allocations 
have been removed from consideration from the working set of 
allocations. The colored/shaded pieces represent the pieces given 
by the Core Protocol to each agent. The small pieces on the left 
of the colored pieces are extracted pieces, each labeled by the 
agent who extracted it. At first, the extracted pieces are associ-
ated with a specific allocated piece. Then they are attached to it 

tions S′, such agents will not be envious even if some agent 
in {1, …, l} additionally gets all other extracted pieces 
ek(l+1) in the remaining Core allocations in S.

Algorithm 5. GoLeft protocol—high-level sketch.

Input: Set of C′ allocations, extracted pieces corresponding 
to the C′ Core allocations, and residue R.
Output: A set of agents A ⊂ N such that agents in N \ A domi-
nate agents in A.
 1: � Select C isomorphic allocations (set S); Build the per-

mutation graph.
– � T, the set of nodes with pieces for which n − 1 

extracted pieces have not been attached.
– � T′, the set of nodes with pieces for which n − 1 

extracted pieces have been attached.
 2:  while there is a node in T do
 3: �    Find a cycle that includes a node that is from T (such a 

cycle always exists).
 4: �    In the cycle identified, let each agent in the cycle get 

the allocation she points to up till her extractions.
 5: �    if there is a piece p corresponding that is not from T′ 

but has no more associated pieces to be attached then
 6: �      Consider the set of agents A who either owned the 

original piece p or whose extracted pieces have already 
been attached to p. Return the dominated set of agents A.

 7: �   Attachment: consider the set of isomorphic Core allo-
cation pieces {ck} that have already had associated pieces 

 attached to them but some extracted 
pieces have not been attached. Attach in a subset of the 
allocations in C′ the set of extracted pieces {ek(l+1)} to the 
set of pieces {ck}, thus making {ck} desirable to the agent 
who extracted {ek(l+1)}. In order to attach the pieces with-
out creating envy, a subset S′, S″ ⊂ S of Core allocations 
is removed from the working S of Core allocations. The 
Core allocations in S′ ∪ S″ do not undergo attachments or 
further changes. Update the permutation graph to reflect 
the attachment. If the piece has had all n − 1 extracted 
pieces attached, add the corresponding node to T ′ and 
make every node point to it.

–	 The agents indexed from 1 to l who have all already had 
their extracted pieces attached to ck are asked to choose a 
high enough fraction of the Core allocations in S in which 

Piece allocated to Agent 1.
...

...
...

123l

ek(l+1)

l + 1l + 2k + 1k + 2n − 1n

N \ A A

Figure 9. Illustration of the GoLeft protocol on a particular piece of cake that is originally allocated to agent 1. Agents k + 2 to n will not go left 
and are the prospective dominators because they find the shaded space between the trims of k + 2 and k + 1 significant. Agents 2 to k + 1 are 
the agents that go left.
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agents in N \ A could not extract such pieces is because they had a 
unanimous significant advantage over the agent indexed 1 who 
got the pieces ck. By gradually attaching (unanimously insignifi-
cant) associated piece to pieces ck and ensuring that all agents 
who did extract the corresponding pieces do get some isomor-
phic piece in ck (along with the associated insignificant attach-
ments), we make sure that agents in N \ A now dominate agents 
in A. At this point, we can return from the GoLeft Protocol. We 
have successfully reduced our envy-free allocation problem to 
that involving less number of agents. By recursively calling the 
Main Protocol to allocate the remaining cake to agents in the 
smaller set A, we eventually allocate the whole cake.

4. CONCLUSION
We presented a high-level overview of our bounded envy-free 
protocol. The protocol has an upper bound that is a power 
tower of six n’s. In the other direction, any envy-free protocol 
requires at least Ω(n2) queries.6

We additionally show that even if we do not run our pro-
tocol to completion, it can find in at most n calls of the Core 
Protocol a partial allocation of the cake that achieves pro-
portionality (each agent gets at least 1/n of the value of the 
whole cake) and envy-freeness. If we allow for partial alloca-
tions, an interesting open problem is the following one: can 
envy-freeness and proportionality be achieved in a polyno-
mial number of steps?
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(represented by the dotted lines). Finally, when a colored/shaded 
piece is real-located to a new agent, the extracted pieces attached 
to it are also allocated to the new agent (in the diagram we now 
aggregate the extracted piece to the main piece). In the second state 
of the isomorphic allocation, agent 2 points to agent 1 because the 
piece extracted by agent 2 has been attached to 1’s held piece. In 
the third state of the isomorphic allocation, agent 3 points to agent 
2 because the piece extracted by agent 3 has been attached to 2’s 
held piece. In the fourth state of the isomorphic allocation, agent 
1 points to agent 3 because the piece extracted by agent 1 has 
been attached to 3’s held piece. In the fifth state, the agents 1, 2, 
and 3 exchange their currently held piece and are allocated cake 
up to their extracted piece. In the fifth (last) state of the isomorphic 
allocation, agent 1 holds a piece up till her extraction but neither 
agent 2 or 4 extracted pieces for the piece that agent 1 holds. This 
means that agents 2 and 4 have a significant advantage over agent 
1. Initially, the piece was held by 3 and still is in discarded isomor-
phic allocations. This implies a significant advantage of 2 and 4 
over 3. Therefore, agent 2 and 4 can be made to dominate 1 and 3.

By attaching enough extracted pieces in the appropriate 
order, the GoLeft Protocol finally arrives at a point where there 
is some isomorphic set of pieces ck in the set S for which all pos-
sible associated pieces have been attached but there is some set 
of agents N \ A who do not have associated pieces. The reason 
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Figure 10. Permutation graph along with the corresponding state of an 
allocation representative of the working set of isomorphic allocations.
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