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T
raditional auctions such as the Eng-
lish and first-price sealed-bid auc-
tions have been adopted as another
tool for procurement negotiations.
The competitive process of auctions
serves to aggregate the scattered

information about a bidder’s valuation and to
dynamically set the prices of a trade. As a result, sup-
port for auctions and competitive bidding has
recently become an integral part of most software
packages for electronic sourcing and procurement.
Throughout the past decade many new auction for-
mats have been developed, which support more gen-
eral negotiation and resource allocation tasks.
Information systems supporting these types of auc-
tions promise high economic efficiency even in the
case of complex preferences, but require special
design considerations. 

The typical bidding process implemented by the
sourcing auction software consists of these steps: bid
submission, bid evaluation (also known as winner
determination, market clearing, matching, or
resource allocation), and the calculation of settle-
ment prices, followed by some feedback to the bid-

ders in an iterative, or open-cry auction (see Figure
1). The auctions close either at a fixed point in time
or after a certain closing criterion is met (such as a
certain time lapse). 

A fundamental shortcoming of auction tools
today is their inability to allow for the creation of
complex bidding events and request for quotes
(RFQ), which allow for a variety of bid structures
that exploit complementarities and economies of
scale in cost structures of suppliers. As many orga-
nizations have begun to realize the efficacy of auc-
tions, interest has emerged to extend basic auction
types to support negotiations beyond price, and
communicate bids with a more complex set of pref-
erences. For example, procurement of direct inputs
is usually very large (in total quantity and dollar
value) and requires the use of special price negotia-
tion schemes that incorporate appropriate business
practices. Typically, bids in these settings have the
following properties:

• Transaction volume tends to be large and 
suppliers often provide volume discounts;

• Suppliers often provide all-or-nothing bids on a
set of items with a special discounted price; and

• Items may have multiple, non-price attributes to
be traded off against price attributes. 

Volume discount auctions facilitate negotiations on
large quantities of a good [6]; combinatorial auc-
tions allow bids on bundles of goods [4]; and multi-
attribute auctions facilitate negotiation on multiple
attributes of an auction [1]. These multidimensional

auction formats have performed well in the lab, and
also in a number of real-world implementations in
the field [2, 4]. Similar concepts have been described
as expressive commerce [11].

After receiving such complex bids in a procure-
ment auction, the buyer needs to identify the set of
bids that minimizes total procurement cost subject to
allocation constraints such as:

• The number of winning suppliers should be
greater than a certain number (to avoid depend-
ing too heavily on just a few suppliers), but
smaller than a certain number
(to avoid too much adminis-
trative overhead); 

• The maximum amount pur-
chased from each supplier is
bounded to a certain limit;

• At least one supplier from a
target group (such as a minority group) needs to
be chosen; and

• If there are multiple winning bid sets, then one
needs to pick the set that arrived first.

Identifying the cost-minimizing bid set subject to
these allocation constraints is a difficult optimization
problem and difficult to do by hand. Therefore, auto-
mated winner determination is central to such com-
plex auction applications. 

The many economic and computational aspects
that must be considered make the design of auction
software a challenging task and have attracted consid-
erable academic attention from the areas of artificial

intelligence, economics, operations research, and the-
oretical computer science [6]. A number of compa-
nies have started to address this market, providing
commercial, off-the-shelf advanced auction format
software for sourcing applications. Examples include
CombineNet, DigitalUnion, Emptoris, NetEx-
change, and TradeExtensions. 

The design of software platforms to support
respective auctions must address many economic and
computational issues in addition to the ones found in
traditional information systems design or auction
software. We will discuss the main economic aspects

important to designing
respective auction soft-
ware. This framework has

guided the design of MAP, a software solution devel-
oped at IBM’s T.J. Watson Research Center, which is
used with a number of electronic procurement plat-
forms, as well as marketdesigner.org, an experimental
software suite for combinatorial auctions developed at
Munich Technical  University. 

AUCTION DESIGN CONSIDERATIONS

Auctions can be described as decentralized resource
allocation mechanisms, for environments where
there are multiple bidders with private utility func-
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defines rules about the sequence and the contents of
messages exchanged throughout an auction. One
aspect of an auction protocol is whether it is direct or
indirect. The Vickrey auction is a simple form of a
direct protocol, where bidders are asked to submit
their true valuation directly without receiving feed-
back from the auction. In an indirect mechanism,
such as an open-cry English auction, bidders can
adjust bids in response to information feedback from
the auction. Information feedback rules determine
how much information is released to the bidders dur-
ing the auction. This information can specify all the
bid information (including the identity of competing
bidders), only their ranking, only the information
about winning bids, or no information at all, as it is
the case with sealed bid auctions. A specific form of
information feedback in procurement auctions are ask
prices. In iterative combi-
natorial auctions, not only
the allocation itself, but
also the calculation of ask
prices can lead to computa-
tional problems [4]. 

The bid control can be
manual by the bidders, or
automated by the auction-
eer, such as it is the case in a
Dutch or Japanese auction. The protocol also specifies
whether the auction is ascending or descending, and a
minimum bid increment. In addition, activity rules
encourage bidders to stay active in multi-round auc-
tions. Finally, closing rules determine the conditions
under which an auction is terminated, for example
whether at a prespecified date and time, or after a cer-
tain time elapsed without new bids. 

T
raditionally, the types of bids
exchanged throughout an auction
were simple price quotes. In multi-
dimensional auctions the bidding lan-
guage has become a fundamental
topic [4]. The bidding language spec-

ifies the semantics used to express bidders’ preferences,
their resource requirements, as well as their capabili-
ties. For a single unit, single item commodity, the
required bids are simple statements of willingness to
pay/accept. For a multi-unit identical item setting,
bids need to specify price and quantity. Already this
introduces the possibility for allowing volume dis-
counts, where a bid defines the price as a function of
the quantity. With multiple items, bids may specify
all-or-nothing bids with a price on a bundle of items.
In addition, bidders might wish to provide several
alternative bids but restrict the choice of bids. The

preferences define a bidder’s utility for different out-
comes. For example, when negotiating over multiple
units bidders might indicate a decreasing marginal
utility for additional units. A buyer’s preference struc-
ture is also important when negotiating over attributes
for an item. 

The allocation rules specify how the auction is
matching supply to demand. They include allocation
goals, as well as additional allocation constraints. Allo-
cation goals, such as allocative efficiency can impact
the objective function of the winner determination
problem. Allocation constraints are of high practical
relevance and arise out of domain requirements. They
are typically defined on: 

• The number of winning bidders;
• The quality of the negotiated goods and services;

• The budget spent per
supplier or supplier
group.

Payments for the win-
ning bidders are typi-
cally determined in a
separate step. In multi-unit
auctions one distinguishes
between discriminative

auctions, where every winner
pays the bid price, and non-

discriminative auctions, where the bidders pay the price
of the first losing bid. Overall, the set of possible auction
rules that must be considered for advanced procurement
markets is extensive and influences the software frame-
work design and the required hot spots.

COMPUTATIONAL TASKS

While this framework would largely fit traditional
auction software, computational aspects have typi-
cally not been an issue in this domain. The Internet
now enables the exchange of complex preference pro-
files—such as bidding languages that allowed for
completely new auction designs—but also leads to
computationally complex allocations problems.
Problems range the entire spectrum from simple sort-
ing problems to NP-hard optimization problems. 

Combinatorial auctions are used here to illustrate
some of the aspects mentioned here, since they have
already found application in industrial procurement,
transportation, the allocation of spectrum licenses,
and airspace system resources [4]. They provide a pos-
sibility of achieving efficient allocations in situations
where bidders are allowed to place bids on combina-
tions of possibly heterogeneous goods or services. For
example, in procurement situations, it can be advan-
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tions for various resources. The task for the auction-
eer is to use an economic mechanism that allocates
these resources in an optimal way. The auctioneer
has no direct control over the bidding strategy of
bidders except through the mechanism. A measure
for optimality used in economic theory is allocative
efficiency, in which the auction mechanism imple-
ments a solution that maximizes the total payoff
across all agents. Another goal is payoff maximiza-
tion, in which the auction achieves a solution that
maximizes the payoff to a particular participant (in
the sourcing context this agent is the buyer). Auc-
tion design can be described as a set of rules, which
implements a desired optimal outcome. Different
designs have different implications on the strategic
behaviors of the bidders. Software implementations
of these rules must allow the choice of different rule
sets that implement specific desired outcomes.
Overall, three types of auction rules exist (see [12]
for an overview of auction design parameters):

• The auction protocol, which involves the
sequence, syntax, and semantics of messages
exchanged by the participants throughout the auc-
tion. 

• The allocation rules, which include the overall
objective of the allocation (efficiency vs. payoff
maximization), as well as allocation constraints.

• The payment rules, which determine the payment
from or to the winners.

A
ll these auction rules impact the
economic as well as computational
properties of the respective auction
mechanism (see Figure 2). In addi-
tion, in iterative auction mecha-
nisms, the auctioneer provides

some kind of information feedback to the bidders
(such as ask prices) to help them decide how they
can improve their bids. We will begin with a discus-
sion of some desirable auction properties, followed
by a discussion of the auction rules that lead to these
auction properties.

Auction properties. Most of the desirable economic
properties of auctions have been analyzed in the con-
text of mechanism design theory [9]. Payoff maxi-
mization and allocative efficiency, as defined in the
previous section, are two natural design goals in the
application of mechanism design to auctions and mar-
kets. For example, in a reverse auction a payoff maxi-
mizing auction would minimize the buyer’s cost in an
expected sense. Individual rationality provides that
there is a non-negative expected utility for an auction
participant and budget-balance assures that there is no

net payment made from the auctioneer to the bidders.
Speed of convergence refers to the speed with which
the auction arrives at a solution.

The auction protocol (including the information
feedback to the bidders) and the payment rules impact
the bidders’ strategies and the strategic complexity of
an auction. Strategy-proof mechanisms are designs in
which truthful bidding is a dominant strategy for bid-
ders. The second-price sealed-bid (Vickrey) auction is
such a strategy-proof mechanism. In a Vickrey auc-
tion, the payment of the winning bidder is the bid of
the second-best bidder. Note, however, that design
without a single dominant strategy for bidders requires
bidders to solve a strategy selection problem based on
their available information on the other agents. The
strategy selection problem is a hard computational
problem in most circumstances. Computational com-
plexity has not been a major concern in traditional
price-only auctions. The set of allocation problems
that occur in multidimensional auctions, however,
typically belong to the class of NP-hard problems and
require efficient software solutions. 

Auction rules. Auction design determines the rules
of an auction, which are tailored to the type of
resources traded, as well as a set of potential partici-
pants. 

• Resources: A resource could be a single item
(such as a good or service) or multiple heteroge-
neous items, with single or multiple units of each
item. An additional consideration common in
real settings is the type of the item; for example,
whether it is a standard commodity or a multi-
attribute commodity. In the case of multi-
attribute items, the bidders might need to specify
the non-price attributes and some function
describing their utility for different attribute
combinations.

• Participants (Market Structure): An auction sup-
ports trade negotiations between different num-
bers of buyers and sellers. In forward auctions a
single seller is selling resources to multiple buyers.
Alternately, in reverse auctions, a single buyer is
sourcing resources from multiple suppliers, as it is
common in procurement. Auctions with multiple
buyers and sellers are called double auctions or
exchanges, and these are commonly used for trad-
ing securities and financial instruments, but
sometimes also within the supply chain.

The auction rules specify the auction protocol, the
allocation rules, as well as the payment to the bidders
(see Figure 2). In other words, they specify how the
negotiation is conducted. The auction protocol

Figure 2. Auction rules and 
properties.
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tageous to aggregate
demand over several loca-
tions and plants since this
leads to a larger transaction.
An additional advantage is
that suppliers can provide a
discounted bid on a bun-
dle. However, the dis-
counted bid price is valid
only if the entire bid is
accepted. 

The example in the table here shows there is a
reverse auction for packaging in three different pack-
aging formats and bids from four suppliers. Each sup-
plier has provided a bundled “all-or-nothing” bid and
a price for the bundle represented by the seller col-
umn. Notice that each supplier is usually allowed
more than one bid and as the number of items
increases the number of bids can get quite large. The
winner determination problem in such combinatorial
reverse auctions can be modeled as an instance of the
Weighted Set Covering Problem, which is known to
be NP-hard [7]. Similar computational problems can
be found in volume discount auctions [6] or multi-
attribute auctions [3]. In iterative combinatorial auc-
tions, auctioneers must provide ask prices or other
types of information feedback to the bidders, in order
to help them improve their bid. Determining linear
or non-linear ask prices has been shown to be a cen-
tral problem in the design of these types of auctions
and can be a hard problem in itself [4, 8, 10]. 

An additional aspect of these types of auctions is
the allocation constraints, which can impact the run-
time further. For example, in a reverse auction, buy-
ers want to make sure that the entire supply is not
sourced from too few suppliers, since this creates a
high exposure if some of them are not able to deliver
on their promise. Another common constraint is vol-
ume-based budget limits, which are often placed as an
upper limit on the total volume of the transaction
with a particular supplier. In a reverse auction, these
limits could either be on the total spend or on the
total quantity that is sourced to a supplier. Algorith-
mic approaches to solve computational problems of
this sort with realistic problem sizes are fundamental
for applications in the field.

SOFTWARE SOLUTIONS

Throughout the past few years, many new and ver-
satile auction formats have been developed, which
allow more flexibility in specifying demand and sup-
ply, and ultimately lead to more efficient outcomes
in complex negotiation situations. Multidimen-
sional, in particular combinatorial auction designs

have been subject of an
intense theoretical dis-
cussion among econo-
mists and computer
scientists, and they pro-
vide much potential for
procurement and sourc-
ing. Although a consid-

erable amount of academic literature has been
published on related topics, the experience with
these advanced multidimensional auction types in
the field is limited. Much progress in this field can
be expected from the availability of respective soft-
ware platforms, allowing for further experimenta-
tion, but also for lower barriers to application of
these new concepts in the field.
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Table 1: Example of a Combinatorial Procurement Auction.

Items

1000 Large boxes type A

800 Small boxes type B

800 Small boxes type C

Seller bid price

S1

Suppliers

1

0

1

$150

S2

0

1

1

$125

S3

1

1

1

$300

S4

1

1

0

$125

Example of a combinatorial 
procurement auction.




