
Nash Equilibrium in Mastermind

François Bonnet(B) and Simon Viennot(B)

Graduate School of Advanced Science and Technology, JAIST, Nomi, Japan
{f-bonnet,sviennot}@jaist.ac.jp

Abstract. Mastermind is a famous two-player deduction game. A Code-
maker chooses a secret code and a Codebreaker tries to guess this
secret code in as few guesses as possible, with feedback information after
each guess. Many existing works have computed optimal worst-case and
average-case strategies of the Codebreaker, assuming that the Codemaker
chooses the secret code uniformly at random. However, the Codemaker can
freely choose any distribution probability on the secret codes. An optimal
strategy in this more general setting is known as a Nash Equilibrium. In
this research, we compute such a Nash Equilibrium for all instances of Mas-
termind up to the most classical instance of 4 pegs and 6 colors, showing
that the uniform distribution is not always the best choice for the Code-
maker. We also show the direct relation between Nash Equilibrium com-
putations and computations of worst-case and average-case strategies.

1 Introduction

1.1 A Simple Deduction Game

Before studying the famous game of Mastermind, let us start by describing a
much simpler deduction game to illustrate some notions. We consider the two-
player game Guess-A-Number, played by Alice and Bob. Initially, Alice chooses
a secret number between 1 and N , where N is a parameter of the game (known
by both players). Bob has to discover Alice’s secret number. To find this num-
ber, Bob makes successive guesses; each guess being a number. The game ends
when Bob correctly guesses her number. After each guess, Alice gives a feedback
informing Bob whether (a) his guess is the secret number, or (b) his guess is
lower than the secret number, or (c) his guess is higher. Based on that feedback,
Bob eventually finds Alice’s secret number. In this game, Bob’s goal is to win
using as few guesses as possible. Note that Alice does not have any choice except
at the beginning, when she chooses her number.

Example. Let consider the smallest non-trivial instance of this game, with N = 3,
and let us analyze what are the possible strategies of the players:

– Alice chooses a number from the set {1, 2, 3}.
– Bob is clever; he knows that his first guess should be the number 2. It is the

only first guess that guarantees him to discover Alice’s number in at most
two steps in the worst case. Indeed, (a) if Alice chose the number 2, Bob wins

c© Springer International Publishing AG 2016
A. Plaat et al. (Eds.): CG 2016, LNCS 10068, pp. 115–128, 2016.
DOI: 10.1007/978-3-319-50935-8 11

116 F. Bonnet and S. Viennot

in a single guess; while (b) if Alice chose 1 or 3, he wins using two guesses.
Assuming that Alice chooses her number uniformly at random, Bob’s strategy
requires 2+1+2

3 � 1.67 steps in average.
– Alice is also clever; she is expecting Bob to first guess the number 2. To

counter him, she decides to avoid choosing number 2 as her secret number;
she selects now her secret number only between 1 and 3 with equal probability.
This change in her strategy increases the average number of guesses of Bob;
it becomes 2+0+2

2 = 2.
– Bob is even more clever. He knows that Alice never chooses the number 2

as her secret number. Then he updates his strategy too. Instead of guessing
first the number 2, he only needs to guess 1 and 3 successively. His average
number of guesses reduces to 1+0+2

2 = 1.5.
– Alice is . . .

Such reasoning could continue forever and Alice’s and Bob’s strategies will never
converge. Fortunately, many years ago, Nash introduced the notion of Nash
Equilibrium (NE) [11]. There exist some pairs of players’ strategies for which
none of the players benefit in changing their strategy. In the previously-described
game, when both players are playing optimal strategies (in the NE sense), Bob
discovers the number in an average of 9

5 = 1.8 guesses. Alice has to choose
number 1 with probability 2

5 , number 2 with probability 1
5 , and number 3 with

probability 2
5 .1

Mastermind is a more complex game, but a similar analysis can be done, as
we will see in this paper.

1.2 The Game of Mastermind

Mastermind is a two-player game in which Alice (aka. the Codemaker) chooses
a secret code and Bob (aka. the Codebreaker) has to discover this secret code.
The code is a sequence of n pegs, each of them taken from a set of k colors.
The original game, invented and sold in the 1970s, proposed a code of length
n = 4 and k = 6 colors, leading to 64 = 1296 possible secret codes. Later, to
increase the level of difficulty, a Super Mastermind version was commercialized
with n = 5 pegs and k = 8 colors.

After Alice has chosen her secret code, Bob makes successive guesses; each
guess being a sequence of n pegs chosen among k colors (i.e. a guess corresponds
to one of the possible codes). After each guess, Alice gives a feedback (aka. grade)
informing Bob about the quality of his guess. The grade is a pair of two integers2

(b, w), where b indicates the number of correct pegs in the guess with respect
to the secret code, and w indicates the number of pegs with correct colors but
incorrect positions (see Sect. 2 for a more formal definition).

1 The straightforward proof is left to the reader.
2 We use (b, w) since the original game use black and white pins to display the grade.

Nash Equilibrium in Mastermind 117

Example. Consider the game instance with n = 5 and k = 8, where colors are
represented by numbers 1 to 8. Alice chooses the secret code 72321 and Bob
proposes the guess 23523. In Bob’s guess, only one single peg is correct (good
position, good color); the one at position 4 with color 2. There are also two pegs
with a correct color but an incorrect position: the peg with color 2 at position 1
and the peg with color 3 at position 2. Consequently, the grade is (b, w) = (1, 2).
Note that since the secret code contains a single peg with color 3; only one peg
with color 3 from Bob’s guess is counted in the number w.

1.3 Related Work

Due to its mathematical nature, the game has been widely studied. In 1976,
Knuth analyzed the original game (n, k) = (4, 6) and proved that any code can be
found using at most 5 guesses [9], and one cannot do better; there is no strategy
solving all codes in 4 guesses. After this optimal worst case result, researchers
started naturally to look for an optimal average case result. In 1993, Koyama
and Lai finally proved that the best strategy finds the code in 5625

1296 � 4.34 guesses
in average (assuming that the secret code is chosen uniformly at random among
the 1296 possible codes) [10]. Similar worst and average cases have later been
computed for larger instances; latest results up to (4, 7) are given by Ville [13].

A general average case solution for two pegs and arbitrary number of colors
is given by Goddard [5] and Chen and Lin [1]. General worst case solutions for
three pegs (and arbitrary number of colors) or two colors (and arbitrary number
of pegs) have been proposed by Jager [7]. Asymptotic bounds for large number
of pegs were first proposed in 1983 by Chvátal [2] and recently improved by
Doerr et al. [3]. Related works also include variants of the game with only black
pegs [6,8] or in a static version [2,4] where the goal is to determine the code by
asking simultaneously many guesses (without waiting for the feedback).

1.4 Motivation and Contributions

All related work mentioned in the previous paragraph deals with Codebreaker
strategies. This is quite natural, since this is what makes the game interesting for
human players. However Mastermind, similarly to the Guess-A-Number game,
is in fact a two-player game. One should also investigate the strategies of the
Codemaker. She plays only a single move in the game (choosing the secret code)
but this choice may have an impact on the strategies of the Codebreaker.

To the best of our knowledge, only one paper has been published on this
specific problem. In 1982, Pearson proposed an analysis of two person, zero sum
games and illustrated his theory using a small instance of Mastermind [12].
When playing with n = 2 pegs and k = 3 colors, the codebreaker should choose
any unicolor3 code with probability 1

6 and any bicolor code with probability 1
12 .

This distribution of secret codes guarantees the highest possible average case for

3 A unicolor (resp. bicolor) code is a code with both pegs with same (resp. different)
color. There are 3 unicolor codes and 6 bicolor codes. Note that 3 × 1

6
+ 6 × 1

12
= 1.

118 F. Bonnet and S. Viennot

the Codebreaker, namely 29
12 � 2.42 guesses (compared to 21

9 � 2.33 guesses if
the Codemaker plays uniformly at random).

In 1995, Wiener posted a message on sci.math newsgroup [14] stating that
he has “done a full game-theoretic analysis of the 4-peg, 6-colour version of
mastermind [. . .]”. He concluded that an optimal Codemaker must not play any
unicolor code, but should play any other code uniformly at random, i.e. with
probability 1

1290 . Such distribution of code leads to an average case of 5600
1290 � 4.34

guesses for an optimal Codebreaker.
However, as far as we know, Wiener did not release any publication of this

result, except this short newsgroup message. The result has never been com-
puted independently and there is also no existing description of the compu-
tation algorithms. In this research, our goal is then to compute such optimal
Codemaker strategy (more precisely, to compute the Nash Equilibrium) for dif-
ferent instances of Mastermind. We confirm the announced result of Wiener
and we also show that smaller instances of Mastermind exhibit interesting Nash
Equilibria.

1.5 Outline

The remaining of the paper is organized as follows. Section 2 formalizes the game
and summarizes some of the known results. Section 3 explains how we computed
Nash Equilibria. Section 4 presents our results emphasizing some unexpected
cases. Section 5 finally concludes the paper.

2 Definitions and Notations

2.1 Rules of the Game

As described in the Introduction, Mastermind is a two-player game where Alice
(the Codemaker) chooses a secret code that Bob (the Codebreaker) has to dis-
cover. The game is parametrized by a pair of integers (n, k) where n denotes the
number of pegs (i.e. the length of a code) and k denotes the number of colors
(i.e. the cardinality of the alphabet). In this paper, we use integers to represent
colors; an alphabet of k colors is represented by the set {0, 1, 2, . . . , k − 1}. A
code C is therefore a sequence of n integers; C = (C1, C2, C3, . . . , Cn). Since all
proposed examples contain at most ten colors, we simplify notations as follows:
code (1, 0, 3, 2, 0) becomes 10320.

To discover the secret code, the Codebreaker makes successive guesses, each
guess being a code. The game ends when he successfully guesses the correct
code. The Codemaker grades each submitted guess with respect to her secret
code. The grading function gn,k is a symmetric function taking two codes as
inputs and returning a pair of integers (b, w) as output. For an instance (n, k)
of the game of Mastermind, a secret code S and a guess G, gn,k(S,G) = (b, w)
with:

b =
n∑

i=1

δ(Si, Gi) and w = max
G̃∈Perm(G)

(
n∑

i=1

δ(Si, G̃i)

)
− b,

Nash Equilibrium in Mastermind 119

where δ denotes the Kronecker symbol and Perm(G) denotes the set of all
permutations of G (formalization inspired from [2]).

Combinatorial observations. Given an instance (n, k) of the game, there are kn

possible codes. Both integers b and w output by the grading function belong to
the set {0, . . . , n} and they satisfy the inequality b + w ≤ n. There is clearly no
pair of codes with relative grade equal to (n − 1, 1). Thus, for a given instance
(n, k) of Mastermind with k > 2, there are n(n+3)

2 possible grades.4

2.2 Strategies in the Game

In the following, we assume a fixed instance (n, k) of the game. Formally, all
functions defined below (such as wc) are parametrized with n and k (and should
be denoted wcn,k). For clarity, we do not subscript these functions.

Codemaker’s Strategies. The only move of the Codemaker is to choose a
secret code. A pure strategy is to choose a given code. Usually we consider
only mixed strategies where the Codemaker plays according to a distribution
of probability over the set of all possible codes. One particular strategy is the
Uniform strategy where she chooses a secret code uniformly at random among
the kn codes.

Codebreaker’s Strategies. The Codebreaker has to find the secret code. In
the game of Mastermind, pure strategies of the Codebreaker can easily be rep-
resented by trees where nodes are guesses and edges are grades. To play a given
strategy/tree, the Codebreaker starts with the root node as initial guess, and
then follows the edge corresponding to the grade received from the Codemaker,
until it reaches a leaf meaning that the secret code has been found.

The Codebreaker wants to win as quickly as possible. Formally, this notion
can be interpreted in (at least) three ways. Given a (pure or mixed) strategy S
of the Codebreaker, we define the three following values:

1. Worst case: wc(S) denotes the smallest integer such that S is guaranteed
to discover any secret code in at most wc(S) guesses. A strategy S is said to
be wc-optimal if there is no strategy S′ with wc(S′) < wc(S).
For a pure strategy S, wc(S) equals the height of the corresponding tree.

2. Average case: avg(S) denotes the average number of guesses required to
discover any code, assuming that the Codemaker plays her Uniform strategy.
A strategy is said to be avg-optimal if there is no strategy S′ with avg(S′) <
avg(S).
For a pure strategy S, avg(S) equals the average depth of all leaves.

4 This formula is incorrect when k = 1 since there exists a single code, hence a single
possible grade (n, 0). For k = 2 colors, there are also some unreachable grades such
as (b, w) = (0, n) when n is odd.

120 F. Bonnet and S. Viennot

3. Weakest case: weak(S) denotes the largest average number of guesses
required when playing against all possible Codemaker strategies. Said dif-
ferently, it corresponds to the average number of guesses required when the
adversary is playing the strongest possible strategy that counters the Code-
breaker’s strategy.
For a pure strategy S, weak(S) = wc(S) since the Codemaker can choose
to play (one of) the pure strategy corresponding to (one of) the worst case.
Thus this notion of weak(S) is really interesting only for mixed strategies.

When considering an instance (n, k) of Mastermind, we define WC(n, k) to
denote the value of some wc-optimal strategy. Similarly, we use the notation
AVG(n, k) for avg-optimal strategy:

WC(n, k) = min
S∈SB

(wc(S)) and AVG(n, k) = min
S∈SB

(avg(S)) ,

where SB denotes the set of all strategies of the Codebreaker, including mixed
strategies.5 As already mentioned in Sect. 1.3, existing related work deals with
computing these values WC(n, k) and AVG(n, k).

Nash Equilibrium. The definitions of WC and AVG are based on the notions
of wc-optimality and avg-optimality respectively. Similarly one can use the third
notion of weakest case to define a last optimality criteria, corresponding to the
Nash Equilibrium NE(n, k):

NE(n, k) = min
S∈SB

(weak(S)) .

2.3 Example with (n, k) = (3, 2)

To illustrate the previous definitions, let us consider a simple instance of Mas-
termind with 3 pegs and 2 colors. There are 23 = 8 codes; 000, 001, 010, 011,
100, 101, 110, 111. Figure 1 depicts a possible strategy S for the Codebreaker.
Note that there is no edge labeled (0, 0), (0, 1), (0, 3), or (1, 1) starting from the
root since no secret code can lead to such grade when compared with guess 001.

Using this strategy, in the worst case, the Codebreaker wins in four guesses
(to find the secret code 101), hence wc(S) = 4. Globally, one code is found in 1
guess, four codes in 2 guesses, two codes in 3 guesses, and one code in 4 guesses,
hence avg(S) = 1×1+4×2+2×3+1×4

8 = 19
8 � 2.38. This strategy S is neither wc-

optimal nor avg-optimal. Indeed there exists better strategies for both metrics;
WC(3, 2) = 3 and AVG(3, 2) = 18

8 = 2.25 (finding them is left to the reader).

5 To compute WC and AV G, it is sufficient to consider only pure strategies. However
for NE, it is required to consider also mixed strategies.

Nash Equilibrium in Mastermind 121

001

110

WIN

111

WIN

010

100

WIN

WIN

000

011

101

WIN

WIN

WIN

WIN

(0, 2)

(3, 0)

(1, 0
)

(3, 0)

(1
, 2
)

(1
,
2)

(3, 0)

(3
, 0)

(2, 0)

(1
, 0

)

(1
,
2)

(3, 0)

(3
, 0)

(3, 0)

(3, 0)

Fig. 1. A Codebreaker’s strategy S for the instance (3, 2) of Mastermind

Since S is a pure strategy, as already mentioned earlier, weak(S) =
wc(S) = 4. Indeed, knowing that the Codebreaker is playing S, the Codemaker
may decide to always choose the secret code 101.

2.4 Known Results

Table 1 summarizes known values of AVG for Mastermind. As far as we know,
blank entries (e.g. AVG(5, 5)) are still unknown; indeed even relatively small
instances are hard to compute due to combinatorial explosion. This table is not
exhaustive; Ville lists additional values, such as AVG(4, 7) [13].

Table 1. Some known values of AVG(n, k)

Number of colors k

2 3 4 5 6

N
b
.
o
f
p
eg

s
n 2 8/4 = 2 21/9 ≈ 2.33 45/16 ≈ 2.81 81/25 = 3.24 132/36 ≈ 3.67

3 18/8 = 2.25 73/27 ≈ 2.70 206/64 ≈ 3.22 451/125 ≈ 3.61 854/216 ≈ 3.95

4 44/16 = 2.75 246/81 ≈ 3.04 905/256 ≈ 3.54 2463/625 ≈ 3.94 5625/1296 ≈ 4.34

5 97/32 ≈ 3.03 816/243 ≈ 3.36 3954/1024 ≈ 3.86

3 How to Compute Optimal Values

This section explains how to compute WC, AVG, and NE values.

3.1 Basic Approach

The naive approach involves generating all pure strategies for the Codebreaker6

and analyzing them to obtain the desired values. Once the list of all strategies
6 Pure strategies of the Codemaker are trivially computed. There are exactly kn pure

strategies, one for each possible code.

122 F. Bonnet and S. Viennot

has been computed, one can evaluate each of them by playing them against all
pure strategies of the Codemaker. We denote with res(S) the result of a strategy
S; res(S) is an kn-tuple where the ith element indicates the number of guesses
required to find the secret code when the Codemaker has chosen the ith code
(assuming, wlog. a natural lexicographic ordering of codes).

Observing that wc(S) = max(res(S)) and avg(S) =
∑

res(S)
kn , one can com-

pute WC and AVG from the set of strategies. This approach becomes quickly
impractical due to combinatorial explosion; the number of strategies becomes
intractable. Out of curiosity, we computed the total number of strategies for the
Codebreaker. They appear as the first number of the fourth column of Table 2.
The second number of the same fourth column indicates the number of unique
strategy results. Indeed, many strategies lead to the same result. Considering
only unique results already reduces greatly the order of magnitude.

Example (continued). Considering the strategy S of Fig. 1, one can check that
res(S) = (2, 1, 2, 3, 3, 4, 2, 2).

Table 2. Some interesting numbers about the combinatorial explosion. #strategies rep-
resents the total number of strategies and the total number of unique results. #results
represents, with respect to equivalence classes, (i) the total number of unique results,
(ii) the total number after eliminating results dominated by other results, (iii) an
approximate number of non-dominated results (domination by linear combination).

(n, k) #codes #grades #strategies #classes #results (wrt classes)

(2, 2) 4 5 8 – 8 2 2 – 2 – 2

(2, 3) 9 5 26 760 – 1 278 2 33 – 3 – 3

(2, 4) 16 5 2.08 × 1011 – 6 043 176 2 188 – 6 – 3

(2, 5) 25 5 9.91 × 1021 – 2 557 – 8 – 5

(2, 6) 36 5 9.29 × 1036 – 2 1 377 – 11 – 5

(3, 2) 8 9 1 776 – 648 2 16 – 3 – 3

(3, 3) 27 9 2.47 × 1023 – 3 2 489 – 17 – ∼12

(3, 4) 64 9 1.47 × 1079 – 3 124 852 – 112 – ∼24

(3, 5) 125 9 6.72 × 10190 – 3 1 201 354 – 286 – ∼69

(3, 6) 216 9 – 3 6 793 325 – 619 – ∼123

(4, 2) 16 14 2.29 × 1011 – 14 578 420 3 230 – 4 – 4

(4, 3) 81 14 4.13 × 10107 – 4 2 669 925 – 509 – ∼143

(4, 4) 256 14 – 5 – 107 274 – ∼12 430

(4, 5) 625 14 – 5 – 4 650 433 – ∼200 604

(4, 6) 1296 14 – 5 – – ∼899 057

Nash Equilibrium in Mastermind 123

Table 3. Number of codes (= kn) and number of equivalence classes

Number of colors k

2 3 4 5 6

N
b
.
o
f
p
eg

s
n 2 4 ⇒ 2 9 ⇒ 2 16 ⇒ 2 25 ⇒ 2 36 ⇒ 2

3 8 ⇒ 2 27 ⇒ 3 64 ⇒ 3 125 ⇒ 3 216 ⇒ 3

4 16 ⇒ 3 81 ⇒ 4 256 ⇒ 5 625 ⇒ 5 1 296 ⇒ 5

5 32 ⇒ 3 243 ⇒ 5 1 024 ⇒ 6 3 125 ⇒ 7 7 776 ⇒ 7

3.2 Equivalence Classes

The combinatorial explosion can be greatly limited by noting that from a theo-
retical point of view, playing a blue, red, or green peg does not make any differ-
ence. Hence any permutation of colors in a strategy S of the Codebreaker has no
effect on the values of wc(S), avg(S), and weak(S). Similarly any permutation
of the pegs has also no effect. The same reasoning applies to the strategies of the
Codemaker. Instead of evaluating Codebreaker’s strategies against all possible
codes (i.e. all pure Codemaker’s strategies), one can “simply” evaluate strategies
with respect to equivalence classes. Given a strategy S, instead of computing a
kn-tuple result, one can study a much smaller tuple whose cardinality equals the
number of equivalence classes (see Table 3). reseq(S) is computed from res(S)
by summing elements corresponding to codes belonging to the same class.

Example (continued). Based on the example of Sect. 2.3 with (n, k) = (3, 2),
the 8 codes can be grouped in 2 equivalence classes: the class of unicolor codes
{000, 111} and the class of bicolor codes {001, 010, 011, 100, 101, 110}. Based on
these classes, the new evaluation of the strategy S of Fig. 1 becomes reseq(S) =
(2 + 2, 1 + 2 + 3 + 3 + 4 + 2) = (4, 15).

3.3 Recursive Computation with Pruning

There is in fact no need to list all possible strategies of the Codebreaker for
computing the values that we are interested in. The strategies can be explored
recursively by exploring alternately all possible guesses of the Codebreaker after
some grade answer of the Codemaker (a grade node), and then exploring all
possible grades after some guess (a guess node). Figure 2 gives an example of
exploration tree for the instance (3, 3).7

The main point of this recursive exploration is that instead of listing the
strategies, we only compute the cost of grade nodes and guess nodes, which is
equivalent to prune the under-optimal strategies progressively. This recursive
exploration is classical for computations of worst-case and average-case, and
7 Figures 2, 3, 4 and 5 appear only in Appendix A.

124 F. Bonnet and S. Viennot

it can also be used for Nash Equilibrium. The only difference is the kind of
information (cost) that will be propagated upward.

3.4 Computing WC and AVG Values

In the case of the worst-case computation, the cost of a strategy corresponds
to the maximal number of guesses needed by the strategy. The cost of a grade
node is the cost of the best guess choice for the Codebreaker, hence the minimal
cost over the guesses. The cost of a guess node is the cost of the worst possible
grade, hence the maximal cost over the grades. WC computations are similar to
a mini-max algorithm.

In the case of the average-case computation, the cost of a strategy is the
total number of guesses. The cost of a grade node is still the minimal cost over
the guesses, but the cost of a guess node is now the sum of cost over the grades.
AVG computations are similar to a mini-max algorithm but with a sum operation
instead of a max operation.

3.5 Computing NE Values

The algorithm that we used to compute the Nash-Equilibrium is quite similar.
The first difference is that the cost of a strategy is now represented not by a
single number but by a list of numbers, i.e. the number of guesses needed for
each equivalence class. In the case of Sect. 2.3 example, it is a couple of numbers.
In the case of the usual (4,6) game, it is a 5-tuple. Also, for each grade and guess
node, we cannot retain the cost of a unique optimal strategy. We need to retain
the cost of all strategies that are not dominated by others.

At a grade node, the CodeBreaker can choose its next guess, so that a strategy
at a grade node is any strategy for any of the guesses. The complete list of costs
at a grade node is obtained by a union of the list of costs for each guess. At a
guess node, a strategy of the CodeBreaker is the choice of a strategy for each of
the grades. The complete list of costs is obtained by an operation that is called
a Minkowski sum over the list of costs of the possible grades.8

The final complete list of costs that is obtained can be turned into a system of
inequalities that represent the constraints on the Nash-Equilibrium. This system
can be solved with classical Linear Programming methods (we used Mathematica
in this research).

4 Our Results

NE Values. Table 4 summarizes the Nash Equilibrium values that we have
computed. We highlighted in red the differences with AVG values of Table 1.

Strategies Achieving NE Values. Table 5 gives Alice’s strategies at the equi-
librium. Strategies are given with respect to classes of equivalence ordered lex-
icographically. For example, considering the instance (4, 4), Alice should never
8 A full description will be given in a longer version of this article.

Nash Equilibrium in Mastermind 125

Table 4. Computed values of NE(n, k)

Number of colors k

2 3 4 5 6

N
b
.
o
f
p
eg

s
n 2 2 29/12 ≈ 2.42 45/16 ≈ 2.81 49/15 ≈ 3.27 11/3 ≈ 3.67

3 23/10 = 2.3 73/27 ≈ 2.70 219/68 ≈ 3.22 1591/440 ≈ 3.62 619/156 ≈ 3.97

4 39/14 ≈ 2.79 67/22 ≈ 3.05 1629/460 ≈ 3.54 2463/625 ≈ 3.94 5600/1290 ≈ 4.34

5 46/15 ≈ 3.07 118/35 ≈ 3.37

Table 5. Computed Codemaker’s strategy achieving NE(n, k)

Number of colors k

2 3 4 5 6

N
b
.
o
f
p
e
g
s

n

2
1

4
,
1

4

1

6
,

1

12

1

16
,

1

16

1

15
,

1

30
∀α ∈

[1

36
,

1

21

]
α,

1 − 6α

30

3
1

5
,

1

10

1

27
,

1

27
,

1

27

1

34
,

1

68
,

1

68

1

110
,

1

110
,

3

440

1

156
,

1

156
,

1

312

4 0,
1

14
,

1

14
0,

1

66
,

1

66
,

1

99
0,

2

345
,

1

276
,

1

276
,

1

345

1

625
,

1

625
,

1

625
,

1

625
,

1

625
0,

1

1290
,

1

1290
,

1

1290
,

1

1290

5 0,
1

30
,

1

30
0,

3

770
,

3

770
,

1

330
,

2

385

play any of the 4 codes of the first class (class of 0000), should play each of the
48 codes of the second class (class of 0001) with probability 2

345 , each of the 36
codes of the third class (class of 0011) with probability 1

276 , each of the 144 codes
of the fourth class (class of 0012) with probability 1

276 , each of the 24 codes of
the fifth class (class of 0123) with probability 1

345 .9

Observations. These results lead to many interesting comments.

– NE values are often different from AVG value. In most cases, Alice can increase
the number of guesses required by Bob. Surprisingly, for some non-trivial
instances of the game, such as (4, 5), she cannot improve her play; playing
uniformly at random is her best option in such case.

– NE values are generally very close to AVG values. While from a theoretical
point of view, both values are different, in practice it is not so bad for Alice
to play uniformly at random.

– Results on optimal strategies are not trivial. No generic pattern can be
deduced from the current known optimal strategies.

– Intuitively, unicolor codes are easier to solve for Bob so they should be
played less frequently by Alice. This intuition is generally verified for “large”
instances (n ≥ 4), but this is not always verified, especially for small instances

9 Fortunately, 4 × 0 + 48 × 2
345

+ 36 × 1
276

+ 144 × 1
276

+ 24 × 1
345

= 1.

126 F. Bonnet and S. Viennot

of the game. Sometimes, Alice has to play these unicolor codes even more fre-
quently (e.g. for the game instance (3, 4)).

– For most of solved instances, the given optimal solution is unique.10 Only for
the game instance (2, 6), Alice has an infinite number of optimal strategies.

5 Conclusion

In this research, we have computed the Nash Equilibrium of all small instances of
Mastermind. We could confirm an announced but never published result about
the most classical size of 4 pegs and 6 colors, which states that a uniform distrib-
ution of secret codes is not the best one for the Codemaker. She should not play
unicolor secret codes. However, we found that for different numbers of pegs and
colors, there is no simple rule. In the future, we plan to extend our computations
to bigger sizes, and we are also working on a general result for the case of 2 pegs
and an arbitrary number of colors.

Acknowledgments. This research was supported in part by JSPS KAKENHI Grant
Number 26870228.

A Example for Game Instance (n, k) = (3, 3)

All Codes:

000,001,002,010. . . ,222

000 001 002

111

111

�

110,121,

211,221

120,

210,

220

120

210 220 �

210 220

∅ 011,101,

112,122,

212,222

010,021,

100,201

020,

200

000,001,

022,012,

102,202

�

. . . 012 . . . 221 222

(0, 0)

(3, 0)

(0, 1) (0, 2)

(1, 2) (2, 0) (3, 0)

(0, 3) (1, 0) (1, 1) (1, 2) (2, 0) (3, 0)

Fig. 2. Exploration tree. Squared nodes correspond to grade nodes and rounded nodes
to guess nodes. Grade nodes include the list of codes still possible as the secret code.
Edges from a guess node to a grade node are labeled with the corresponding grade.

10 We could not prove yet the uniqueness for instances (5, 3), (4, 5), and (4, 6), but it
should be obtained very soon.

Nash Equilibrium in Mastermind 127

All Codes:

000,001,002,010. . . ,222

000 001 002

111

111

�

110,121,

211,221

120,

210,

220

120

210 220 �

210 220

∅ 011,101,

112,122,

212,222

010,021,

100,201

020,

200

000,001,

022,012,

102,202

�

. . . 012 . . . 221 222

(0, 0)

(3, 0)

(0, 1) (0, 2)

(1, 2) (2, 0) (3, 0)

(0, 3) (1, 0) (1, 1) (1, 2) (2, 0) (3, 0)

210
1, 22
1

220
2,, 0
1 �

33,, 0
0

120
2

210
2

220
2

min{2, 2, 2}

0, 22
2

0, 0
1

0, 11
2

0, 33
0

1, 00
2

11,, 1
2

11,, 2
2

22, 0
3

3, 0
0

max{1, 2, 2, 0, 2, 2, 2, 3, 0} + 1

002
4

000
4

001
4

012
4

221
4

222
4

All Codes:

000 001 002 010 222
min{4, 4, 4, . . . , 4, . . . , 4, 4}

4

Fig. 3. Computing WC value using Min and Max operations

All Codes:

000,001,002,010. . . ,222

000 001 002

111

111

�

110,121,

211,221

120,

210,

220

120

210 220 �

210 220

∅ 011,101,

112,122,

212,222

010,021,

100,201

020,

200

000,001,

022,012,

102,202

�

. . . 012 . . . 221 222

(0, 0)

(3, 0)

(0, 1) (0, 2)

(1, 2) (2, 0) (3, 0)

(0, 3) (1, 0) (1, 1) (1, 2) (2, 0) (3, 0)

210
1, 22
1

220
2,, 0
1 �

33,, 0
0

120
5

210
5

220
5

min{5, 5, 5}

0, 22
5

0, 0
1

0, 11
7

0, 33
0

(1, 0)0
11

11,, 1
7

11,, 2
3

(2(2, 0)
12

3, 0
0

(1 + 7 + 5 + 0 + 11 + 7 + 3 + 12 + 0) + 27

002
73

000
86

001
73

012
80

221
73

222
86

All Codes:

000 001 002 010 222
min{83, 73, 73, . . . , 80, . . . , 73, 86}

73 ⇒ 73
27 ≈ 2.70

Fig. 4. Computing AVG value using Min and Sum operations

128 F. Bonnet and S. Viennot

All Codes:

000,001,002,010. . . ,222

000 001 002

111

111

�

110,121,

211,221

120,

210,

220

120

210 220 �

210 220

∅ 011,101,

112,122,

212,222

010,021,

100,201

020,

200

000,001,

022,012,

102,202

�

. . . 012 . . . 221 222

(0, 0)

(3, 0)

(0, 1) (0, 2)

(1, 2) (2, 0) (3, 0)

(0, 3) (1, 0) (1, 1) (1, 2) (2, 0) (3, 0)

210
(1, 2)2)1 2))
S0

220
(2,, 0)(2 0)
S1 �

(3(3,, 0)(3(0
S2

120

)) () (()1 2)) (2 0) (3(0(3(0
S0 ⊕ S1 ⊕ S2

120120120
S3

210
S4

220
S5

S3 ∪ S4 ∪ S5

(0, 2)2)
S6

(0, 0)0)
S7

(0, 1)1)
S8

(0, 3)3)
S9

(1, 0)0
S10

(11,, 1)
S11

(1(1,, 2)
S12

(2(2, 0)
S13

(3(3, 0)
S14

S6 ⊕ S7 ⊕ S8 ⊕ S9 ⊕ S10 ⊕ S11 ⊕ S12 ⊕ S13 ⊕ S14⊕
002
S15

000
S16

001
S17

012
S18

221
S19

222
S20

All Codes:

000 001 002 010 222
S15 ∪ S16 ∪ S17 ∪ . . . S18 ∪ S19 ∪ S20

(Large) Linear Programming problem

where ⊕ denotes the Minkowski sum of (convex) polytopes.

Fig. 5. Computing NE value using Union and MinkowskiSum operations

References
1. Chen, S.T., Lin, S.S.: Optimal algorithms for 2 × n mastermind games-a graph-

partition approach. Comput. J. 47, 602–611 (2004)
2. Chvátal, V.: Mastermind. Combinatorica 3, 325–329 (1983)
3. Doerr, B., Sphel, R., Thomas, H., Winzen, C.: Playing mastermind with many

colors. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 695–704 (2013)

4. Goddard, W.: Static mastermind. J. Comb. Math. Comb. Comput. 47, 225–236
(2003)

5. Goddard, W.: Mastermind revisited. J. Comb. Math. Comb. Comput. 51, 215–220
(2004)

6. Goodrich, M.T.: On the algorithmic complexity of the mastermind game with
black-peg results. Inform. Process. Lett. 109, 675–678 (2009)

7. Jäger, G., Peczarski, M.: The number of pessimistic guesses in generalized master-
mind. Inform. Process. Lett. 109, 635–641 (2009)

8. Jäger, G., Peczarski, M.: The number of pessimistic guesses in generalized black-
peg mastermind. Inform. Process. Lett. 111, 933–940 (2011)

9. Knuth, D.E.: The computer as master mind. J. Recreational Math. 9, 1–6 (1976)
10. Koyama, K., Lai, T.: An optimal mastermind strategy. J. Recreational Math. 25,

251–256 (1993)
11. Nash, J.F.: Non-Cooperative Games. Ph.D. thesis, Princeton University (1950)
12. Pearson, K.R.: Reducing two person, zero sum games with underlying symmetry.

J. Aust. Math. Soc. (Ser. A) 33, 152–161 (1982)
13. Ville, G.: An optimal mastermind (4, 7) strategy and more results in the expected

case, May 2013, eprint arXiv:1305.1010
14. Wiener, M.: Re: sci.math faq: Master mind, post in sci.math newsgroups on 29

Nov 1995 at 20: 44: 49

http://arxiv.org/abs/1305.1010

	Nash Equilibrium in Mastermind
	1 Introduction
	1.1 A Simple Deduction Game
	1.2 The Game of Mastermind
	1.3 Related Work
	1.4 Motivation and Contributions
	1.5 Outline

	2 Definitions and Notations
	2.1 Rules of the Game
	2.2 Strategies in the Game
	2.3 Example with (n,k)=(3,2)
	2.4 Known Results

	3 How to Compute Optimal Values
	3.1 Basic Approach
	3.2 Equivalence Classes
	3.3 Recursive Computation with Pruning
	3.4 Computing WC and AVG Values
	3.5 Computing NE Values

	4 Our Results
	5 Conclusion
	A Example for Game Instance (n,k)=(3,3)
	References

