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 Rental Harmony:

 Sperner's Lemma in Fair Division

 Francis Edward Su

 My friend's dilemma was a practical question that mathematics could answer, both

 elegantly and constructively. He and his housemates were moving to a house with
 rooms of various sizes and features, and were having trouble deciding who should

 get which room and for what part of the total rent. He asked, "Do you think
 there's always a way to partition the rent so that each person prefers a different
 room?"

 As we shall see, with mild assumptions, the answer is yes. This rent-partitioning
 problem is really a kind of fair-division question. It can be viewed as a generaliza-
 tion of the age-old cake-cutting problem, in which one seeks to divide a cake fairly
 among several people, and the chore-division problem, posed by Martin Gardner in

 [6, p. 124], in which one seeks to fairly divide an undesirable entity, such as a list
 of chores. Lately, there has been much interest in fair division (see the recent
 books [3] and [11]), and each of the related problems has been treated before (see
 [1], [4], [10]).

 We wish to explain a powerful approach to fair-division questions that unifies
 these problems and provides new methods for achieving approximate envy-free
 divisions, in which each person feels she received the "best" share. This approach

 was carried out by Forest Simmons [12] for cake-cutting and depends on a simple
 combinatorial result known as Sperner's lemma. We show that the Sperner's

 lemma approach can be adapted to treat chore division and rent-partitioning as

 well, and it generalizes easily to any number of players.
 From a pedagogical perspective, this approach provides a nice, elementary

 demonstration of how ideas from many pure disciplines-combinatorics, topology,
 and analysis-can combine to address a real-world problem. Better yet, the proofs
 can be converted into constructive fair-division procedures.

 1. SPERNER'S LEMMA FOR TRIANGLES. Our fair division approach is based
 on a simple combinatorial lemma, due to Sperner [13] in 1928. However, do not be
 fooled-this little lemma is as powerful as it is simple. It can, for instance, be used
 to give a short, elementary proof of the Brouwer fixed point theorem [7].

 As motivation, we examine a special case of Sperner's lemma. Consider a
 triangle T triangulated into many smaller triangles, called elementary triangles,
 whose vertices are labelled by l's, 2's, and 3's, as in Figure 1.

 The labelling we have chosen obeys two conditions: (1) all of the main vertices
 of T have different labels, and (2) the label of a vertex along any edge of T
 matches the label of one of the main vertices spanning that edge; labels in the
 interior of T are arbitrary. Any labelled triangulation of T satisfying these
 conditions is called a Spemer labelling. The claim:

 Sperner's Lemma for Triangles. Any Spemer-labelled triangulation of T must con-
 tain an odd number of elementary triangles possessing all labels. In particular, there is
 at least one.
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 Figure 1. A Sperner labelling, with (1,2,3)-triangles marked.

 In Figure 1, we have marked all elementary 123-triangles; their parity is indeed
 odd. An analogous statement holds in any dimension, which we develop presently.

 2. THE n-DIMENSIONAL SPERNER'S LEMMA. We need the concept of an

 n-simplex: a 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a
 triangle, a 3-simplex is a tetrahedron, etc. In general, an n-simplex may be
 regarded as an n-dimensional "tetrahedron" the convex hull of n + 1 affinely
 independent points in Rm, for m ? n. These points form the vertices of the
 simplex. A k-face of an n-simplex is the k-simplex formed by the span of any
 subset of k + 1 vertices.

 A triangulation of an n-simplex S is a collection of (distinct) smaller n-simplices
 whose union is S, with the property that any two of them intersect in a face
 common to both, or not at all. The smaller n-simplices are called elementary
 simplices, and their vertices are called vertices of the triangulation.

 Given an n-simplex S, any face spanned by n of the n + 1 vertices of S is
 called a facet. As examples, the facets of a line segment are its endpoints, the
 facets of a triangle are its sides, and the facets of a tetrahedron are its triangular
 faces.

 Now number the facets of S by 1, 2,. . ., n + 1. Given a triangulation of S,
 consider a labelling that obeys the following rule: each vertex is labelled by one of
 the facet numbers in such a way that on the boundary of S, none of the vertices on

 facet j is labelled j. The interior vertices can be labeled by any of the facet
 numbers. Such a labelling is called a Spemer labelling of an n-simplex; it generalizes
 the definition we encountered earlier for n = 2. For other low dimensions, Figures
 2 and 3 show examples of a Sperner-labelled 1-simplex and 3-simplex.

 1 2 2 1 1 2

 Figure 2. A triangulated line, with Sperner labelling.
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 1, 2, or 3

 for vertices on facet #4

 3

 3 or 4 for vertices on facet #1

 on interior vertices

 on this edge
 facet #3 underneath

 facet #2 in back

 Figure 3. A triangulated tetrahedron, with Sperner labelling.

 A Sperner labelling may be described equivalently as one in which main vertices

 of S are assigned distinct labels, and any other vertex in the interior of some k-face
 must be assigned one of the labels of the main vertices that span that face. In
 either description it is apparent that the Sperner labelling on S induces Sperner
 labellings on each facet as (n - 1)-simplices.

 We call an elementary simplex in the triangulation fiully labelled if all its vertices
 have distinct labels. Then we have:

 Sperner's Lemma. Any Sperner-labelled triangulation of a n-simplex must contain an
 odd number of fully labelled elementary n-simplices. In particular, there is at least one.

 There are many ways to prove this lemma. The simplest proofs involve parity
 arguments and are non-constructive. A constructive method for finding a fully

 labelled simplex is based on the following induction argument; it is useful later in
 our discussion of fair-division procedures in Sections 5 and 7.

 Proof: We proceed by induction on the dimension n.
 When n = 1, a triangulated 1-simplex is a segmented line, as in Figure 2. The

 endpoints of the line are labelled distinctly, by 1 and 2. Hence in moving from
 endpoint 1 to endpoint 2 the labelling must switch an odd number of times, i.e., an
 odd number of (1, 2)-edges may be located in this way.

 Now assume that the theorem holds for dimensions up through (n - 1). We
 show the theorem is true for a triangulated, Sperner-labelled n-simplex S using
 the labels 1 through (n + 1). For concreteness refer to the case n = 2 as a running
 example while following the argument. In this case, S is a triangulated triangle, as
 in Figure 4.

 Think of the n-simplex S as a "house" triangulated into many "rooms," which
 are the elementary simplices. A facet of a room is called a "door" if that facet
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 1 2

 2~~~~~~~~~

 1

 Figure 4. House, rooms, and doors indicated by dotted lines.

 carries the first n of the n ? 1 labels. In our running example, doors are
 (1, 2)-edges that may be in the interior or on the boundary; see Figure 4. For the
 case n = 3, doors are any room facets labelled (1, 2, 3).

 We claim that the number of doors on the boundary of S is odd. Why?- The only
 facet that can contain doors is the (n ? 1)-st because of the Sperner labelling. But
 that facet of S is Sperner-labelled using the labels 1, . . . , n, hence by the inductive
 hypothesis there must be odd number of fully labelled (n - l)-simplices on that
 facet. These are boundary doors when considered in S.

 The boundary doors can be used to locate fully labelled rooms by what we
 fondly call a " trap-door" argument. The key observation is that every room can
 have at most 2 doors, and it has exactly 1 door if and only if the room is fully
 labelled in S. This is true because any room with at least one door has either no
 repeated labels (it is fully labelled), or it has one repeated label that appears twice.
 These give rise to 2 distinct doors, one for each repeated label. As examples, verify
 that elementary triangles in Figure 4 have either two, one, or no (1, 2)-edges. For
 n = 3, verify that a tetrahedron with labels {1, 2,3,3) has two doors.

 So, start at any door on the boundary (located by the inductive step), and "walk"
 through the door into the adjoining room. Either this roon' is fully labelled or it
 has one other door-a "trap-door" that we can walk through. Repeat this
 procedure, walking through doors whenever possible. Notice that this path cannot
 double back on itself (because each room has at most two doors), so no room is
 ever visited twice. Moreover the number of rooms is finite and so the procedure
 must end, either by walking into a fully labelled room or by walking back through
 to a boundary door of S; see Figure 5.

 Since the number of boundary doors of S is odd, and trap-door paths pair up
 only an even number of them, the number of.boundary doors left over that lead to
 fully labelled rooms must be odd. Moreover, any fully labelled rooms not reach-
 able by paths from the boundary must come in pairs, matched up by their own
 trap-door paths, as in Figure 5. Hence the total number of fully labelled rooms in
 S is odd. \
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 /t\3

 2 2 2~~~~~~~~

 2 2 1 1

 Figure 5. Walking through doors.

 This proof yields a constructive method for finding such rooms in the following
 way. Trap-door paths in successive dimensions can be linked up at their endpoints,
 because a fully labelled room in an i-dimensional face is just a boundary door in an
 (i + 1)-face. This creates "super-paths" with endpoints in the bottom and top
 dimensions, i.e., either (1, 2)-edges on a 1-face of S, or n-dimensional fully labelled
 rooms in the interior. The constructive procedure begins by moving along the
 1-face of S spanned by labels 1 and 2, following any super-path that is encoun-
 tered. Because the number of (1, 2)-edges is odd, and super-paths can pair up only
 an even number of them, we see that at least one super-path can be followed to
 yield a fully labelled room.

 The trap-door argument to prove Sperner's lemma constructively dates back to
 Cohen [5] and Kuhn [8]. A quick non-constructive proof would note the equality
 between the number of doors in each room, summed over all rooms, and the
 number of times each door is counted, summed over all doors. Modulo two, the
 first sum captures the parity of the number of fully labelled rooms, and the second
 sum captures the parity of the number of boundary doors, which by the inductive
 hypothesis is odd.

 3. SIMMONS' APPROACH TO CAKE-CUTTING. Now imagine a rectangular
 cake to be divided among n people, who may have differing notions of what is
 valuable on a cake. We use n - 1 knives to cut along planes parallel to the left
 edge of the cake, as in Figure 6.

 X g

 Figure 6. A cut-set of a cake.
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 The set of cuts is fully defined by the relative sizes of the pieces. Assume
 that the total size of the cake is 1 and denote the physical size of the i-th

 piece by xi; this is an absolute measure, unrelated to player preferences. Thus
 xl + x2 + ..+xn = 1 and each xi 2 O. The space S of possible partitions natu-
 rally forms a standard (n - 1)-simplex in Rn. Each point in S corresponds to a
 partition of the cake by a set of cuts, which we shall call a cut-set.

 Given a cut-set, we say that a player prefers a given piece if the player does not
 think any other piece is better. We assume that this preference depends on the
 player and the entire cut-set, but not on choices made by the other players. Note

 that, given a cut-set, a player always prefers at least one piece, and may (in case of
 ties) prefer more than one piece by our definition.

 We make the following two assumptions:

 (1) The players are hungry. That is, players prefer any piece with mass to an
 empty piece.

 (2) Preference sets are closed. This means that any piece that is preferred for a
 convergent sequence of cut-sets is preferred at the limiting cut-set. Note
 that this condition rules out the existence of single points of cake with
 positive desirability.

 Theorem. For hungry players with closed preference sets, there exists an envy-free
 cake division, i.e., a cut-set for which each person prefers a different piece.

 We first investigate what happens for n = 3 people. Suppose the players are
 named Alice, Betty, and Charlie. They are to divide a cake of total size 1, using 2

 knives. Denote the physical size of the pieces by X1, X2, X3. Since x1 + X2 + X3 = 1

 and all xi > 0, the solution space S is a plane intersected with the first octant. This
 is just a triangle.

 Now triangulate S and assign "ownership" to each of the vertices as in Figure 7,
 where A stands for Alice, B for Betty, and C for Charlie. We have purposely

 (0,0,1)
 A

 BC

 A~~~~

 C / / \C B

 C B
 (1,0,0) A B C A (0,1,0)

 Figure 7. Labelling by ownership.
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 assigned ownership so that each elementary triangle is an ABC triangle. Observe

 that a similar triangulation of finer mesh can also be labelled in this way.

 We obtain a new auxiliary labelling of the triangulation by l's, 2's, and 3's by

 doing the following: since each point in the triangle corresponds to a set of cuts of

 cake, go to each vertex, and ask the owner of that vertex, "Which piece would you
 choose if the cake were cut with this cut-set?" Label that vertex by the number of
 the piece that is desired.

 We claim that this new labelling is a Sperner labelling! Why?

 At the vertex (1,0,0) of S we see that one of the pieces contains the entire cake,
 and the other pieces are empty. By the hungry assumption, the owner of (1,0,0)
 always chooses piece 1 no matter who the owner is. Similarly (0,1,0) is labelled 2

 and (0,0,1) is labelled 3. Next, observe that the sides of the triangle correspond to
 cuts in which one piece is devoid of any cake. Because no one would ever choose
 this empty piece, each side of S is missing one label corresponding to the piece
 that is empty. Hence the Sperner labelling condition is satisfied.

 By Sperner's lemma, there must be a (1, 2, 3)-elementary simplex in the triangu-
 lation. Since every such simplex arose from an ABC triangle, this means that we
 have found 3 very similar cut-sets in which different people choose different pieces

 of cake.

 To show the existence of a single cut-set that would satisfy everyone with

 different pieces, carry out this procedure for a sequence of finer and finer

 triangulations, each time yielding smaller and smaller (1, 2, 3)-triangles. By com-
 pactness of the triangle and decreasing size of the triangles, there must be a
 convergent subsequence of triangles converging to a single point. Such a point
 corresponds to a cut-set in which the players are satisfied with different pieces.

 Why?
 Since each (1, 2, 3)-triangle in the convergent subsequence arises from an ABC

 triangle, consider the choices that the players made in each. With only finitely
 many ways for players to choose pieces, there must be an infinite subsequence in
 which the choices of A, B, and C are all constant. Closed preference sets

 guarantee that at the limit point of this subsequence of triangles, the players are
 satisfied with distinct choices.

 4. THE n-PLAYER CASE. The preceding proof generalizes easily for n players.
 The only issue that must be addressed is the choice of triangulation for S when
 n > 3. We need a triangulation in which each elementary simplex can be fully
 labelled by the names of the players. The triangulation we proposed for n = 3

 does not generalize easily. However, one that works for arbitrary dimensions is a
 triangulation by barycentric subdivision. Loosely speaking, this procedure takes
 each elementary simplex in a triangulation and subdivides it by marking the
 barycenters of the faces in each dimension and connecting them to form a new
 triangulation. A rigorous description of this procedure may be found in [15].
 Observe that the mesh of this triangulation can be made arbitrarily small by
 iterating this procedure; see Figure 8.

 Suppose we have iterated barycentric subdivision m times. The desired labelling
 can be achieved by allowing all vertices that remain from the (m - 1)-th iteration
 to be labelled A. Any new vertices introduced in the m-th barycentric subdivision
 are barycenters of simplices of the (m - 1)-th subdivision. To each class of vertices
 that are barycenters of faces of the same dimension, assign a distinct owner from
 the persons remaining. There are n - 1 such classes. One may verify that this fully
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 Figure 8. Barycentric subdivision in a 2-simplex, iterated twice.

 labels each of the elementary simplices by owners, because each edge connects
 vertices of different classes.

 Now the proof continues almost exactly as in the case n = 3: since each point in

 S corresponds to a cut-set, we construct a new labelling of the triangulation by
 asking the owner of each vertex, "Which piece would you choose if the cake were
 cut with these cuts?" The new auxiliary labelling is a Sperner labelling and yields
 nearby cut-sets that satisfy each person differently. Because this may be done with

 arbitrarily fine triangulations, by taking subsequences, one may find sequences of

 cut-sets all converging to one set of cuts in which each person chooses a different
 piece.

 5. A CONSTRUCTIVE APPROXIMATE ALGORITHM. Notice that the preced-

 ing proof yields a constructive E-approximate algorithm for cake-cutting-namely,

 for any prespecified E (such as at the level of crumbs), one may find a set of cuts in
 which each person receives a piece he considers to be the best up to E-tolerance in
 the size of the pieces. Simply start the procedure with triangulation mesh size less

 than E, and then the "trap-door" argument gives a constructive method for finding

 a fully owner-labelled elementary simplex. Choosing any vertex of this simplex
 yields a cut-set representing the desired E-approximate solution.

 Such an algorithm could be implemented on a computer, which could keep
 track of what cuts to suggest tentatively and which player to ask, by simply
 following trap-doors through the simplex of cut-sets. Note that players do not have

 to state their preferences on every vertex in the triangulation, but only on vertices
 near a trap-door path, i.e., the complete auxiliary labelling may not need to be

 determined. So while this algorithm terminates in a number of steps bounded by
 the number of simplices of the triangulation, it can terminate much sooner.

 We emphasize that this notion of E-approximation is based on the physical size
 of the pieces, not on any quantitative measure of player preferences. However, if
 one assumes the players' measures are continuous over the simplex, then by
 compactness of the simplex and the finite number of players, for any E > 0 there
 exists a 5 > 0 such that pieces of physical size less than 5 are believed by each of
 the players to be size less than E.

 6. CHORES AND RENT-PARTITIONING. Now we show how Simmons' cake-
 cutting method can be adapted to address other fair-division problems, such as
 chore division and rent-partitioning.

 Finding schemes for envy-free chore division has historically been a more
 complicated problem than cake-cutting. Most envy-free procedures for cake-
 cutting do not carry over to chore division without significant modifications. Oskui
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 [9] solved the case for 3 people; following modifications proposed by Brams and
 Taylor in [2, pp. 37-39] and [3, pp. 153-55], Peterson and Su [10] gave an explicit
 chore division scheme for an arbitrary number of players. We now give a simpler
 E-approximate algorithm for chore division, which falls out nicely as a special case

 of the rent-partitioning problem.
 In this problem, n housemates have decided to rent an n-bedroom house for

 some fixed rent. Each housemate may have different preferences-one may prefer
 a large room, another may prefer a room with a view, etc. Is there a method for

 fairly dividing the rent among the rooms? We prove the following:

 Rental Harmony Theorem. Suppose n housemates in an n-bedroom house seek to

 decide who gets which room and for what part of the total rent. Also, suppose that the
 following conditions hold:

 (1) (Good House) In any partition of the rent, each person finds some room
 acceptable.

 (2) (Miserly Tenants) Each person always prefers a free room (one that costs no
 rent) to a non-free room.

 (3) (Closed Preference Sets) A person who prefers a room for a convergent
 sequence of prices prefers that room at the limiting price.

 Then there exists a partition of the rent so that each person prefers a different room.

 Condition (1) ensures that the problem is well-posed-one cannot talk about
 preferences if some person finds no room acceptable, which might happen, for
 instance, if the rent is too high for all rooms or the rooms are in poor condition.

 The miserly condition (2) can be relaxed a bit, as we show in Section 8. The
 condition also rules out "free closets," i.e., rooms in which no one would live, even
 if free.

 Condition (3) merely says that in the space of all pricing schemes, preference
 sets are closed in the topological sense. Note that preference sets may overlap-if
 in some pricing scheme a person equally prefers two rooms, that person can be

 assigned to either room.
 The rent-partitioning problem may be viewed as a generalization of the cake-

 cutting problem, in which one seeks to divide goods fairly, and the chore division
 problem, in which one seeks to divide bads fairly. However, since the rooms (the
 goods) are indivisible, known cake-cutting solutions cannot be applied to this
 problem. And since the rental payments (the bads) are attached to specific rooms,
 they cannot be divided into more than n pieces and reassembled, which rules out
 the use of known envy-free chore-division methods such as the discrete method
 proposed in [3, pp. 154-55] and the procedures proposed in [10]. The two other
 moving knife schemes proposed for chore division in [3, pp. 153-54] guarantee
 each player at most 1/n of the chores, but are not envy-free.

 Alkan, Demange, and Gale [1, pp. 1031-32] have addressed this generalization
 directly and offer a solution to rent-partitioning via constrained optimization. They
 implicitly assume conditions equivalent to our conditions (1) and (3), and use a
 condition weaker than condition (2), but not quite as weak as the condition (2')
 that we give in Section 8.

 We now show how a Sperner's lemma approach can address the rent-partition-
 ing problem.
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 7. RENTAL HARMONY: CAKE-CUTTING WITH A TWIST. Our proof of the
 Rental Harmony Theorem follows Simmons' proof for cake-cutting, but with a
 twist, so we sketch it.

 Suppose there are n housemates, and n rooms to assign, numbered 1,..., n.
 Let xi denote the price of the i-th room, and suppose that the total rent is 1. Then
 x1 + x2 + +Xn = 1 and xi > 0. From this we see that the set of all pricing
 schemes S forms an (n - 1)-simplex in Rn.

 Now triangulate this simplex by barycentric subdivision of small mesh size.
 Label it with a fully labelled vertex labelling by the names of the housemates (the
 same scheme as suggested for cake-cutting). The name at each vertex will be
 considered the "owner" of that vertex; recall that each vertex corresponds to some
 pricing scheme for the rooms.

 Construct a new labelling from the old by asking the owner at each vertex in the
 triangulation: "If the rent were to be divided according to this pricing scheme,
 which room would you choose?" Condition (1) ensures that some answer can be
 given. Label the vertex by the number of the room that is answered. Let ties in
 preference be broken arbitrarily.

 Here's the twist: the new labelling that results is quite different from the one
 that arose in cake-cutting. It is not a Sperner-labelling. However, because of the
 miserly condition (2), it has the property that along each (n - k)-dimensional face,
 k rooms are free and thus owners along that face prefer one of those k rooms.
 Figure 9 shows what such a labelling looks like for n = 3.

 Is there a Sperner-like combinatorial lemma that shows the existence of a fully
 labelled elementary simplex in this triangulation?

 If so, one could proceed as in cake-cutting, by taking finer and finer triangula-
 tions to get a sequence of fully labelled elementary simplices converging to a point,

 1 or 2

 2 only

 2 or 3 1 or 3

 3 only

 Figure 9. The dual labelling arising from rent-partitioning.
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 which by condition (3) yields a pricing scheme in which all housemates prefer

 different rooms. So, all that remains is to establish the Sperner-like combinatorial
 lemma with a constructive proof.

 There are two ways one may proceed. The reader may enjoy proving a

 Sperner-like lemma for this labelling by using a trap-door argument. The interest-

 ing thing that one discovers about this labelling is that on each facet, there is only

 one fully labelled simplex that can be followed into the interior, so that the
 trap-door procedure succeeds without returning to the boundary again.

 Or the reader may wish to prove the existence of a fully labelled simplex on the
 interior by appealing directly to Sperner's lemma. The key idea is to dualize the

 simplex S to form a new simplex S*. Loosely speaking, the dual of a simplex
 reverses the dimensions of k-dimensional and (n - 1 - k)-dimensional faces. For
 instance, the corner vertices of S become the facets of S*, and the facet

 barycenters of S become the vertices of S*; see Figure 10.

 W

 S becomes S

 Figure 10. The dualization S* of S. Vertices, barycenters, and one elementary simplex are

 marked to show how they are transformed.

 A rigorous treatment of dualization can be found in Vick [15]. Note that S* can
 be triangulated-in fact, using barycentric subdivision, the vertices and elementary
 simplices of S* are in 1 - 1 correspondence with the vertices and elementary
 simplices of S. Let the triangulation of S* inherit a labelling via this correspon-
 dence with S. One may now verify that the labelling of S* is a Sperner labelling!
 Hence there exists a fully labelled elementary simplex of S*, which corresponds to
 a fully labelled elementary simplex of S, as desired. This "dual" Sperner lemma is
 due to Scarf [16].

 A constructive algorithm is obtained by following "trap-doors" in Sperner's

 lemma. Choose an E smaller than the rental difference for which housemates

 wouldn't care (a penny?). Following trap-doors corresponds to suggesting pricing
 schemes and then asking various players, "Which piece would you choose if the
 rooms were priced like this?" Once a fully labelled elementary simplex is found,

 any point inside it corresponds to an E-approximate rent-partitioning. We invite
 the reader to code a trap-door algorithm that could be implemented on a
 computer, one that would propose the necessary cut-sets and question the appro-
 priate players at each step.

 It is possible to obtain the Rental Harmony Theorem without any dualization
 argument and without condition (2) if one allows the possibility of negative rents.
 Specifically, let each person contribute a fixed amount K to a pool from which the
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 rent is paid. The leftover money is used to pay "rebates" associated with each
 room (which may be larger than K). This converts the problem into a fair division

 of goods (rebates), in which the space of rebates is a simplex that assumes a
 Sperner labelling if players demand a non-zero rebate. For large K this is quite
 reasonable. However, solutions may include situations in which a housemate is

 being paid by the others to live there. Thus allowing this possibility may not be
 realistic because in real life, paying housemates are more likely to ditch the

 subsidized housemate and use the extra room (and extra money) in other ways.

 8. COMMENTS AND DISCUSSION. The Rental Harmony Theorem establishes

 the existence of envy-free chore division and a new E-approximate algorithm, by

 simply thinking of the rent payments as chores and ignoring the rooms; divisibility
 of chores can be achieved by dividing the time spent on them. When reinterpreted,
 the three conditions from the Rental Harmony Theorem become: (1) all the chores
 must be assigned, (2) each person prefers no chores to some chores, and (3)
 preference sets are closed. These are pretty reasonable assumptions. The E-ap-
 proximate algorithm that arises from this does not involve a lot of cutting and
 reassembling, as do the exact methods proposed in [3] and [10].

 For rent-partitioning, we point out that condition (2) may not always be a
 reasonable assumption. For instance, someone may be willing to pay a little bit of

 money for a room that is slightly larger than a free room. However, by inspecting
 the proof, one sees that the Rental Harmony Theorem still holds with a weakened
 version of condition (2):

 Condition (2'). Each person never chooses the most expensive room if there is a
 free room available. This does not require the person to choose the free room.

 In particular, this will hold if a person always prefers a free room to a room
 costing at least 1/(n - 1) of the total rent. Hence condition (2') is a slightly
 weaker sufficient condition than that given by [1, pp. 1031-32]. To see why the
 Rental Harmony Theorem still holds, consider its proof and note that using this
 condition gives a more complicated labelling of S, but the corresponding labelling
 on S* still remains Sperner.

 What condition (2') does not address is a situation in which the total rent is so
 low, or some room so large, that one would be willing to pay for the most

 expensive room even when some other room is free. In practice, however, house-
 mates do not usually choose a house with such lopsided arrangements. Even still,
 condition (2') can likely be weakened further, but the extent to which it can (and
 still maintain non-negative rents) is an open question.

 Other triangulations may be used instead of barycentric subdivision. These have
 better convergence properties but are harder to describe; see [17] for a survey and
 applications to fixed point algorithms.

 9. ANECDOTE AND ACKNOWLEDGMENTS. My first exposure to the Sperner
 argument for cake-cutting came via Michael Starbird, who attributed the method
 to a graduate student of his, Forest Simmons. Simmons had been presenting this
 cake-cutting scheme to math clubs and high school groups, but never formally
 submitted the idea for publication. His inspiration was the MONTHLY article by
 Stromquist [14], which made use of a theorem that can be proved by Sperner's
 lemma.
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 Many years later, when my friend Brad Mann told me about the rent-partition-
 ing dilemma that he and his housemates were facing, I was reminded of these
 ideas and realized that Sperner's lemma could also be adapted to treat rent-parti-

 tioning, as well as chore division.

 I am grateful to Arthur Benjamin, Steven Brams, Brad Mann, Forest Simmons,

 and Ravi Vakil for many helpful discussions, and I thank Michael Starbird for

 introducing me to Sperner's lemma.
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