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We study multi-unit auctions for bidders that have a budget constraint, a situation very
common in practice that has received relatively little attention in the auction theory
literature. Our main result is an impossibility: there is no deterministic auction that (1) is
individually rational and dominant-strategy incentive-compatible, (2) makes no positive
transfers, and (3) always produces a Pareto optimal outcome. In contrast, we show that
Ausubel’s “clinching auction” satisfies all these properties when the budgets are public
knowledge. Moreover, we prove that the “clinching auction” is the unique auction that
satisfies all these properties when there are two players. This uniqueness result is the
cornerstone of the impossibility result. Few additional related results are given, including
some results on the revenue of the clinching auction and on the case where the items are
divisible.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The starting point of almost all of auction theory is the set of players’ valuations: how much value (measured in some
currency unit) does each of them assigns to each possible outcome of the auction. When attempting actual implementations
of auctions, a mismatch between theory and practice emerges immediately: budgets. Players often have a maximum upper
bound on their possible payment to the auction – their budget.3 A concrete example is Google’s and Yahoo’s ad-auctions,
where budgets are an important part of a user’s bid, and are perhaps even more real for the users than the rather abstract
notion of a valuation.4 Other examples with identical items include standard Treasury, spectrum or electricity auctions.
Clearly budgets play an important role in all these as well. Addressing budgets properly breaks down the usual results from
the quasi-linear setting, and in particular the VCG mechanism loses its incentive compatibility. The design of dominant-
strategy incentive-compatible mechanisms becomes significantly more involved.

✩ A preliminary and partial version appeared in FOCS’08.
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Our model in this paper is simple: There are m identical indivisible units for sale, and each bidder i has a private value
vi for each unit, as well as a budget limit bi on the total amount he may pay. We also consider the limiting case where
m is large by looking at auctions of a single infinitely divisible good. Our assumption is that bidders are utility-maximizers,
where i’s utility from acquiring xi units (or a fraction of xi of the good, in the infinitely divisible good case) and paying
pi is ui = xi · vi − pi , as long as the price is within budget, pi � bi , and is negative infinity (infeasible) if pi > bi .5 Thus
the utility is linear in the payment only for outcomes in which the payment is at most the budget. This makes our setting
non-quasi-linear.

We study the fundamental question of how to produce efficient allocations in an incentive-compatible way, using the
most basic solution concept of dominant-strategies. As the setting is not quasi-linear, allocational efficiency is not uniquely
defined since different outcomes are preferred by different players.6 We thus focus at a weak efficiency requirement: Pareto
optimality, i.e., outcomes where it is impossible to strictly improve the utility of some players without hurting those of
others (this does not imply agreement among players over allocations – different players may prefer different Pareto optimal
allocations). There exist many Pareto optimal allocation rules, and we wish to identify those that are implementable in
dominant-strategies. In the sequel we always use the term “incentive compatibility” to denote dominant strategy incentive
compatibility (this is usually termed “truthfulness” in the computer science literature).

1.1. Main results

Our main result is an impossibility: there is no deterministic, incentive compatible, and Pareto optimal auction, for any finite
number m > 1 of units of an indivisible good and any n � 2 number of players.7 The cornerstone of the analysis is a
characterization result for the case where budgets are public information. For this case we show that Ausubel’s “clinching
auction” (Ausubel, 2004) is Pareto optimal and incentive compatible.8 Moreover we show that the clinching auction is the
unique (up to tie-breaking) auction that satisfies the above properties, when there are exactly two bidders. The assumption
of public budgets was made many times before us, e.g. by Laffont and Robert (1996) and in Maskin (2000), and thus we
do not wish to argue that private budgets are more plausible than public budgets. On the contrary, we view the second
result as a useful positive result, which completely pin-points the (only) possible incentive compatible mechanism that is
also Pareto optimal.

We emphasize that the main point of the uniqueness result is not that payments are unique for the allocation rule of
the clinching auction. Indeed this would easily follow from the Revenue Equivalence Theorem (which in turn follows from
the Envelope Theorem, as shown in Milgrom and Segal, 2002). Rather, the main point is that the allocation rule itself is
the unique allocation rule that satisfies the above properties, most notably incentive compatibility and Pareto optimality. In
contrast to the quasi-linear setting, where welfare-maximization is the only Pareto optimal rule (regardless of the other
properties), in our setting there exist many deterministic allocation rules that are Pareto optimal, individually rational, and
with no-positive-transfers. There also exist many deterministic dominant-strategy mechanisms that are individually rational
and with no-positive-transfers (even with private budgets). We show that it is the combination of incentive compatibility
and Pareto optimality that yields the impossibility for private budgets, and the uniqueness for public budgets.

To see the type of effects that budget limitations create in this setting, recall that Ausubel’s auction gradually increases a
price parameter, and bidders keep decreasing their demands for items at this price. Whenever the combined demand of the
other bidders decreases strictly below available supply, bidder i “clinches” the remaining quantity at the current price. Thus
different amounts of units are acquired by bidders at different prices, and the total payment of a bidder is the sum of the
prices of all units that he clinched throughout the auction. Ausubel shows that, in the quasi-linear setting, this auction yields
exactly the VCG outcome and is thus incentive compatible. The key property for incentive compatibility is that the demands
for future items are fixed and independent of the prices at which previous items were acquired. With budgets, this property
no longer holds, and demand for future items changes as a function of the remaining budget. If bidder A slightly delays to
report a demand decrease, bidder B will pay as a result a slightly higher price for his acquired items, which reduces his
future demand. In turn, the fact that bidder B now has a lower demand implies that bidder A pays a lower price for future
items, and the contradiction to incentive compatibility becomes evident. Thus with private budgets this auction is no longer
incentive compatible, and our analysis implies that this difficulty is inherent to all Pareto optimal allocation schemes. This
seems to be the most common strategic problem that budgets introduce, see e.g. Benoit and Krishna (2001) and Brusco and
Lopomo (2008). With public budgets (and private values), on the other hand, this manipulation is not possible. Moreover,
for two bidders, the clinching auction is the unique incentive compatible and Pareto optimal auction.

5 This model naturally generalizes to any type of multi-item auction: bidders have a valuation vi(·) and a budget bi , and their utility from acquiring a
set S of items and paying pi for them is vi(S) − pi as long as pi � bi and negative infinity if the budget has been exceeded pi > bi . It is interesting to
note that the “demand-oracle model” (see e.g. Blumrosen and Nisan, 2007) represents such bidders as well. Analyzing combinatorial auctions with budget
limits, even in simple settings such as additive valuations, is clearly a direction for future research.

6 In quasi-linear settings any Pareto optimal outcome must optimize the “social welfare” – the sum of bidders valuations – and thus efficiency is justifiably
interpreted as maximizing social welfare.

7 This theorem assumes “individual rationality” and “no positive transfers”, i.e. that bidders are not paid by the auction nor do they pay more than their
value or budget. Without this, the budget limits can be easily side-stepped, e.g., by using a VCG mechanism that pays losers the total value of the others.

8 The original paper (Ausubel, 2004) makes several initial observations regarding the potential usefulness of the clinching auction when players have
budgets, e.g. in the last paragraph of p. 1457 and in footnote 8.
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To complete the picture we also analyze some revenue properties of the clinching auction in our setting with budgets. We
show that, as the number of items increases and the “dominance” of each bidder decreases, the revenue of this mechanism
approaches the revenue of a non-discriminatory monopoly, that knows the values and budgets of the players and determines
a single unit-price in order to maximize revenue.

While in the quasi-linear setting, exact formulas for the outcome of the auction can be described (this is essentially
the VCG mechanism), in our setting it is quite hard to come up with a parallel closed-form solution, especially in the
infinitely divisible good case for which the auction is a continuous time process. (This once again demonstrates the relative
flexibility of ascending auctions versus direct mechanisms when one slightly changes the model.) Nevertheless we present
exact closed-form descriptions for an infinitely divisible item and two players. These were certainly surprising for us, as they
do not seem to resemble any previously considered auction format. In all cases, once the exact form is found, it is a straight
forward exercise to verify incentive compatibility and Pareto optimality. For example, if both players have equal budgets,
i.e. w.l.o.g. b1 = b2 = 1 and v1 � v2, then if min(v1, v2) � 1 then the high-value player gets everything and pays the second
highest value, and otherwise, the low-value player gets 1/2 − 1/(2 · v2

1) and pays 1 − 1/v1 and the high-value player gets
1/2 + 1/(2 · v2

1) and pays 1. This unfamiliar format has an underlying reasoning that we explain in the body of the paper.
In parallel to the indivisible case, we show for the divisible case as well that when budgets are public, this auction is the
unique anonymous Pareto optimal and incentive compatible deterministic auction. In a follow-up to our work, Bhattacharya
et al. (2010) further analyze the divisible case, showing additional interesting properties. For example, if budgets are private,
then the only profitable manipulation is to over-state one’s budgets.

The impossibility for private budgets crucially depends on the assumption that players demand multiple items. Indeed,
several recent works describe positive results for unit-demand players with budgets. For example, Aggarwal et al. (2009)
show that an extension of the Demange–Gale–Sotomayor ascending auction is incentive compatible and Pareto optimal.
Hatfield and Milgrom (2005) study a more abstract unit-demand model for players with non-quasi-linear utilities that
generalizes both the Gale–Shapley stable-matching algorithm as well as the Demange–Gale–Sotomayor ascending auction,
showing incentive compatibility and (in the context of our setting) Pareto optimality. Ashlagi et al. (2010) extend the gen-
eralized English auction to settings with budget-constraints, again showing incentive compatibility and Pareto optimality.

Another important assumption that is technically being used in our impossibility proof is the deterministic nature of
the mechanisms. Bhattacharya et al. (2010) rely on the fact that understating the true budget is not profitable in the
divisible case to design an incentive compatible and Pareto optimal randomized mechanism for the divisible case. It remains
an interesting open question whether there exists a randomized mechanism that satisfies a randomized version of our
requirements for our main setup with indivisible items.

If budgets are all zero (i.e., no payments are possible), any possible assignment of the items to the players in which all
items are assigned is Pareto optimal, since players’ preferences take a very simple form (namely more items are always
strictly better). Thus there exist many incentive compatible and Pareto optimal mechanisms – all those that arbitrarily
choose an outcome, independent of the players’ values. In this context we note that this setting of no payments is usually
termed “multi-unit assignment”, and when players’ preferences over subsets of items belong to a richer domain, the unique
incentive compatible and non-bossy mechanism is the Sequential Dictatorship mechanism (see for example Hatfield, 2009
and Budish and Cantillon, 2010). In light of these works, an additional contribution of our work is to strengthen and
make more precise this known conceptual clash between incentive compatibility and Pareto optimality. In particular, while
possibility results for the case of zero budgets (mainly dictatorship) and for the case of infinite budgets (the VCG mechanism)
are long known, our results show that in our context there is nothing special about these two extremes, it is the fact that
budgets are public that enables the existence of incentive-compatible and Pareto optimal mechanisms.

1.2. Related literature

Previous literature on auctions with budgets focus on several different directions. A first branch of works (Che and
Gale, 1998; Benoit and Krishna, 2001) analyzes how budgets change the classic results on “standard” auction formats,
showing for example that first-price auctions raise more revenue than second-price auctions when bidders are budget-
constrained, and that the revenue of a sequential auction is higher than the revenue of a simultaneous ascending auction.
A second branch of works (Laffont and Robert, 1996; Pai and Vohra, 2008) constructs single-item auctions that maxi-
mize the seller’s revenue, and a third branch (Maskin, 2000) considers the problem of “constrained efficiency”: maximiz-
ing the expected social welfare under Bayesian incentive compatibility constraints. A fourth branch (Borgs et al., 2005;
Abrams, 2006), taken by the computer science community, tries to design dominant-strategy incentive-compatible multi-
unit auctions that approximate the optimal revenue.

Ausubel’s clinching auction inspired many follow-up studies in various different directions. For example, Perry and Reny
(2005) give a closely related auction for the case of interdependent values. Kagel and Levin (2001) study Ausubel’s auction
in field experiments. Bae et al. (2008) extend the clinching auction to allow for one bidder with a valuation that is not
marginally decreasing. Mishra and Parkes (2009) design a “dual” descending price (Dutch) auction that reaches the VCG
outcome and relies on ideas similar to Ausubel’s clinching technique. Ausubel (2006) extends his own auction to a setting
with heterogeneous items.
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The rest of the paper is organized as follows. We start with basic definitions and preliminary propositions in Section 2.
The clinching auction (adjusted for our setting) is defined in Section 3, where we also analyze its basic properties: Pareto
optimality and incentive compatibility. Section 4 shows the uniqueness of this auction. Relying on this, Section 5 then proves
the impossibility result for private budgets. Section 6 discusses some properties of the revenue of the clinching auction for
players with budgets, and Section 7 describes the closed-form mechanism for a divisible item.

2. Preliminaries and notation

2.1. Outcomes

We will be considering auctions of m identical indivisible items as well as the limiting case of a single infinitely divisible
good.

We have n bidders, where each bidder i has a value vi for each unit he gets, and has a budget limit bi on his payment.
Rather than explicitly declaring a bidder’s utility of going over-budget to be negative infinity, we will equivalently directly
declare such cases to be infeasible.

Definition 2.1. An outcome (x, p) is a vector of allocated quantities x1, . . . , xn and a vector of payments p1, . . . , pn with the
following properties:

1. (Feasibility) In the case of finite m, xi must be a non-negative integer and
∑

i xi � m. In the case of an infinitely divisible
good, xi must be non-negative real and

∑
i xi � 1.

2. (No Positive Transfers (NPT))
∑

i pi � 0.
3. (Individual Rationality (IR)) pi � xi · vi .
4. (Budget limit) pi � bi .

Our “no positive transfers” property is weak, in the sense that it allows the outcome to hand in payments to players. The
only restriction is that, overall, the auctioneer does not hand money to the players. The weaker definition strengthens the
impossibility and uniqueness results, and in addition we note that all the auctions we describe actually satisfy the stronger
version of the “no positive transfers” property, where for every player i we have pi � 0, i.e., no player gets money from
the auction.9 The fact that we require the quantities x1, . . . , xn to be integers also implies that we require deterministic
outcomes.

2.2. Auctions and incentives

We will be formally considering only direct revelation auctions where bidders submit their value and budget to the
auction, that based on the types v1, . . . , vn and b1, . . . ,bn calculates the outcome x1, . . . , xn and p1, . . . , pn . Our auctions
have a very natural interpretation as dynamic ascending auctions,10 but for simplicity we will just consider the auction
mechanism as a black-box direct-revelation one.

Definition 2.2. A mechanism is incentive compatible if for every v = (v1, . . . , vn), b = (b1, . . . ,bn), and every possible ma-
nipulation v ′

i and b′
i , we have that ui = xi · vi − pi � x′

i · vi − p′
i = u′

i , where (xi, pi) are the allocation and payment of i when
he declares (vi,bi) and (x′

i, p′
i) are the allocation and payment of i when he declares (v ′

i,b′
i) (while the other declarations

are fixed at (v−i,b−i)).
A mechanism is incentive compatible for the case of publicly known budgets if the definition above holds for all v ′

i ,
having fixed b′

i = bi .

2.3. Pareto optimality

We start with the classic notion of Pareto optimality:

Definition 2.3. An outcome {(xi, pi)} is Pareto optimal if for no other outcome {(x′
i, p′

i)} are all players better off, x′
i vi − p′

i �
xi vi − pi , including the auctioneer

∑
i p′

i �
∑

i pi , with at least one of the inequalities strict.

9 The weak version is necessary for the uniqueness result. Consider, for example, the following mechanism for one item and two players with infinite
budgets: the item is allocated to player 1 if v1 > 0, and otherwise to player 2. No payments are made. One can verify that this is incentive compatible.
It is also Pareto optimal if one requires the strong NPT property, since if v2 > v1 > 0, the only outcome that Pareto-dominates the one chosen by the
mechanism is an outcome in which player 1 receives a payment of v1, and player 2 receives the item and pays v1. The sum of payments here is 0, so with
weak NPT the outcome is not Pareto optimal, and the mechanism can be ruled out.
10 As usual, the solution concept for the iterative version is ex-post-Nash.
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Recall that an outcome requires by definition that payments will not exceed budgets, hence a player’s utility in some
outcome (x, p) is xi vi − pi . The definition of an outcome also requires this utility to be non-negative.

In our setting, the notion of Pareto optimality is equivalent to the following condition that is much easier to work with,
and that essentially states that no player can re-sell the items he received and make a profit:

Proposition 2.4. An outcome {(xi, pi)} is Pareto optimal in the infinitely divisible case if and only if (a)
∑

i xi = 1, i.e. the good is
completely sold, and (b) for all i such that xi > 0 we have that for all j with v j > vi , p j = b j , i.e. a player may get a non-zero outcome
only if all higher value players have exhausted their budget.

For example, the outcome that awards all items to a buyer with highest value, and requires no payment, is Pareto
optimal, and indeed the two requirements of the claim hold (the second requirement holds in an empty way). The proof is
given in Appendix A. A similar property is equivalent to Pareto optimality also in the case of finite m (the proof is similar
to the proof of the previous claim):

Proposition 2.5. An outcome {(xi, pi)} is Pareto optimal in the case of finite m if and only if (a)
∑

i xi = m, i.e., all the units are sold,
and (b) for all i such that xi > 0 we have that for all j with v j > vi , p j > b j − vi , i.e. a player may get a non-zero outcome only if
there is no player with higher value that has larger remaining budget.

2.4. Warmup: The proportional share auction

Recall that our main goal is to show the impossibility of constructing a mechanism that is Pareto optimal and incentive
compatible when budgets are private. Before that, we wish to point out that if values are guaranteed to be sufficiently large
relative the budgets, a simple mechanism exists:

Definition 2.6. The proportional share auction for an infinitely divisible good allocates to each bidder i a fraction xi =
bi/

∑
j b j of the good and charges him his total budget pi = bi .

We prove in Appendix B:

Proposition 2.7. Let αi = bi/
∑

j b j be the budget share of player i. The proportional-share auction with xi = bi/
∑

j b j and pi = bi

is Pareto optimal and incentive compatible in the range vi �
∑

j b j/(1 − αi) for all i.

3. The clinching auction for players with budgets

We formally describe the clinching auction for players with public budgets, and show that it satisfies Pareto optimality,
individual rationality, and incentive compatibility. The formal auction we describe is a direct mechanism whose outcome
is chosen to be the outcome of Ausubel’s clinching auction, when budget-constrained players bid sincerely in it. Ausubel’s
auction gradually increases a price parameter, and bidders keep decreasing their demands for items at this price. Whenever
the combined demand of the other bidders decreases strictly below available supply, bidder i “clinches” the remaining
quantity at the current price. Thus different amounts of units are acquired by bidders at different prices, and the total
payment of a bidder is the sum of the prices of all units that he clinched throughout the auction.

Before we begin the formal discussion, it might be useful to point out a subtle but important difference between the
course of the clinching auction in the quasi-linear setting versus the budget setting: In the quasi-linear setting the demand
curves of the bidders remain static, unchanged, throughout the course of the auction (the supply of-course changes). In the
budget setting, demands themselves change, as previous clinching affect remaining budget, that in turn affects future demand.
So demand as well as supply change. To emphasize this effect that the change in setup has on the clinching auction, we
add the words “with budgets” to its name.

Formally, the auction keeps for every player i the current number of items qi already allocated to i, the current total
price for these items pi , and his remaining total budget Bi = bi − pi . The auction also keeps the global unit-price p and the
global remaining number of items q. The price p gradually ascends as long as the total demand is strictly larger than the
total supply, where the demand of player i is defined by:

Di(p) =
{ � Bi

p � vi > p,

0 otherwise.

If we were to keep the price ascending until total demand would be smaller or equal to the number items, and only
then allocate all items according to the demands, then a player could sometimes gain by performing a “demand reduction”,
thus harming incentive compatibility. Instead, following Ausubel’s method, we allocate items to player i as soon as the total
demand of the other players decreases strictly below the number of currently available items, q. In particular, if at some
price p we have x = q − ∑

j �=i D j(p) > 0 then we allocate x items to player i for a unit price p. At this point in the auction,
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the relevant variables are updated as follows: qi ← qi + x, pi ← pi + p · x, Bi ← Bi − p · x, and q ← q − x. This will ensure
incentive compatibility. The global picture of such an auction is:

The clinching auction with budgets (preliminary version):
1. Initialize all running variables: p ← 0, q ← m, qi ← 0, pi ← 0, Bi ← bi .
2. While

∑
i Di(p) > q,

(a) If there exists a player i such that D−i(p) = ∑
j �=i D j(p) < q then allocate q − D−i(p) items to player i for a unit

price p. Update all running variables, and repeat.
(b) Otherwise increase the price p, recompute the demands, and repeat.

3. Otherwise (hopefully
∑

i Di(p) = q): allocate to each player his demand, at a unit-price p, and terminate.

Note that step 2(a) does not change the amount of excess demand, since both the total demand and the total supply
are reduced by the same quantity (the number of items that player i gets). Therefore the only factor that affects the excess
demand is the price; as the price ascends the total excess demand decreases. Thus, one would hope that when we reach
step 3 we would indeed get

∑
i Di(p) = q, which will enable us to allocate all items at the end (a necessary condition for

achieving Pareto optimality). However clearly this is not quite the case, because the demand functions are not continuous.
The demand drops integrally, by definition, and may drop by several items at once. In particular, there are two potentially
problematic change points: when the price reaches the value vi , and when the price reaches the remaining budget Bi . The
latter point is identified by using:

D+
i (p) = lim

x→p+ Di(x),

as, for p = Bi < vi , we have Di(p) > 0 and D+
i (p) = 0. Similarly, the former point is identified by using:

D−
i (p) = lim

x→p− Di(x),

as, for p = vi � Bi , we have D−
i (p) > 0 and Di(p) = 0. We modify the above definition of the auction to use these more

refined conditions: (1) the excess demand is computed using D+
i (p), since this ensures that we do not terminate with a

price that is just a bit higher than the remaining budget of a player to whom we wish to allocate one last item, and (2)
just before termination, if we are left with some non-allocated items, then this must have happened because the final price
reached the value of some players (for such a player i we have D−

i (p) > 0 and Di(p) = 0), which caused an abrupt decrease
in his demand. These players are indifferent between receiving or not receiving an item, and so we can allocate to them all
remaining items.

The clinching auction with budgets (complete version):
1. Initialize all running variables: p ← 0, q ← m, qi ← 0, pi ← 0, Bi ← bi .
2. While

∑
i D+

i (p) > q,
(a) If there exists a player i such that D+

−i(p) = ∑
j �=i D+

j (p) < q then allocate q − D+
−i(p) items to player i for a unit

price p. Update all running variables (including the allocated and available quantities, the remaining budgets, and
the current demands), and repeat.

(b) Otherwise increase the price p, recompute the demands, and repeat.
3. Otherwise (

∑
i D−

i (p) � q �
∑

i D+
i (p)):

(a) For every player i with D+
i (p) > 0, allocate D+

i (p) units to player i for a unit-price p and update all running
variables.

(b) While q > 0 and there exists a player i with Di(p) > 0, allocate Di(p) units to player i, for a unit-price p, and
update the running variables.

(c) While q > 0 and there exists a player i with D−
i (p) > 0, allocate D−

i (p) units to player i, for a unit-price p.
(d) Terminate.

We note that there may be multiple players at step 2(a) that can clinch item(s). In this case we arbitrarily pick one of
them, and continue. The other players will subsequently clinch items in the next iterations, before the price increases. In
particular, if there exist two players i, j such that at price p, D+

−i(p) < q and D+
− j(p) < q, and i is chosen to clinch first (say

he receives x items), then at the next iteration the number of items has decreased by x, and D+
− j(p) has also decreased by

x since it includes i’s demand that was reduced by x. Therefore the inequality D+
− j(p) < q still holds, and now j will clinch.

Thus there cannot be any “buying frenzies” during the auction – any player that can clinch a certain number of items at a
certain step will eventually receive all these items, before the price will increase.

Let us consider a short example to illustrate the course of the auction. Suppose three items and three players with
v1 = ∞, b1 = 1, v2 = ∞, b2 = 1.9, v3 = 1, b3 = 1. When the price is below 0.5, each player demands at least two items,
and so, for every player, the other players demand more than three items. Therefore no allocations will take place, and the
price will keep ascending. At p = 0.5, D+(0.5) = D+(0.5) = 1 (note that D1(0.5) and D3(0.5) are still 2). Thus, player 2
1 3
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“clinches” one item for a price 0.5. Immediately after that, the demand of player 2 is updated to be 2. The available
number of items is 2, and so no player can get any items. At a price 0.7 the demand of player 2 reduces to 1, but this
still does not enable the auction to allocate any item to any player. The price keeps ascending until p = 1. At this point,
D+

1 (1) = 0, D+
2 (1) = 1, D+

3 (1) = 0, and so the total demand reduces to be strictly below the number of available items
(which is still 2). Thus we enter step 3. In 3(a) player 2 gets one item and in 3(b) player 1 gets one item. Note that we do
not allocate any item to player 3, though D−

3 (1) = 1. Indeed, moving an item from 2 to 3, for example, will violate Pareto
optimality.

The individual rationality and incentive compatibility of the clinching auction is almost immediate: individual rationality
follows since a player’s payment for every clinched item is not larger than his reported value, and his overall payment is at
most his budget. Incentive compatibility is also easy to show, since the value declaration is equivalent to a simple decision
of when to quit the auction. Since any item clinched in a price lower than the true value strictly increases the player’s
utility, and any item clinched in a price larger than the true value strictly decreases the player’s utility, it follows that the
player’s utility is maximized by quitting exactly when the price reaches his value, which implies incentive compatibility.
Proving Pareto optimality is a slightly more involved task. We first show that all items are always allocated:

Claim 3.1. The clinching auction always allocates all items.

Proof. Define D(p) = ∑
i Di(p) and define D+(p) and D−(p) similarly. Observe that these three functions are monotone

non-increasing, and that D−(p) = D(p) = D+(p) for any continuity point of D(p). Moreover, if p∗ is a discontinuity point
of D(p) and D+(p) > q for any p < p∗ then D−(p∗) � q.

Suppose that the auction enters step 3 at a price p∗ . We wish to argue that D−(p∗) � q. Indeed, for any p < p∗ , at
the beginning of step 2 we had D+(p) > q, and after step 2(a) this inequality is maintained (since if we allocate � units
to player i then the total demand and the number of available items both drop by �). Therefore after step 2(b) we have
D+(p) � q (if p is a continuity point) or D+(p) < q and D−(p) � q (if p is a discontinuity point). In any case, if the auction
enters step 3 then D−(p∗) � q, and the claim follows. �
Claim 3.2. The clinching auction satisfies Pareto optimality.

Proof. We will check the condition of Proposition 2.5. We already showed property (a) (
∑

i xi = m) and it remains to show
property (b). Fix any two players i and j. We need to verify that, if j received at least one item, then i’s remaining budget
at the end of the auction is smaller than j’s value. Consider the last price p at which player j received an item.

First suppose that p is not the price that ended the auction. In this case (step 2(a)), since j received an item, the auction
rules imply that D+

− j(p) exactly equals the number of items left after player j was allocated his items. Since the auction
allocates all items, and since it is IR, we get that each player i �= j received after price p exactly Di(p), his demand at p. In
particular, this means that the remaining available budget of i is at most p (otherwise the demand of i at p was higher –
he could have bought one more item at a price lower than his value). On the other hand, v j > p, since j demanded items
at p, and we are done.

Now suppose that p is the price at which the auction ended. The auction rules imply that if i had D+
i (p) > 0 then he

received all this demand, and so by the same argument as above he does not have any remaining budget to buy an item
from j. A second case is D+

i (p) = 0 and Di(p) > 0. This implies that the remaining budget of player i at this step is Bi = p.
If player i received his demand Di(p) then the argument of above still holds. If not, it must be that player j received her
items in step 3(a) or 3(b) (but not in 3(c), since not all players in 3(b) were awarded their demand). Thus D j(p) > 0 hence
v j > p = Bi and a Pareto improvement cannot take place. The last case is Di(p) = 0 and D−

i (p) > 0. Hence p = vi , and
since v j � p this again rules out the possibility of a Pareto improvement. �

An interesting future work would be to study other more complex settings with complementarities or with non-identical
items. A first step in this direction has been performed very recently by Fiat et al. (2011), studying single valued combina-
torial auctions with budgets, showing how to extend the clinching auction to this setup.

4. Uniqueness of the clinching auction

In this section we show that the ascending clinching mechanism is essentially the only mechanism that is incentive
compatible, individually rational, and Pareto optimal for the setting of publicly known budgets. In the next section we
utilize this result to show that there is no mechanism if the budgets are private.

Strictly speaking, we do not prove uniqueness for all possible budgets b1 and b2, but for “almost” all budgets. This is in
a sense the best we can hope for, as, for example, for one item and b1 = b2 there are indeed multiple possible auctions
(which are identical up to tie breaking). The following technical definition attempts to deal with this issue.

Let S = (S1, S2) be a partition of {1, . . . ,m}. Given b1,b2 � 0, define bk,S
i recursively, for each 1 � k � m: for k = m,

bm,S = b1, bm,S = b2. For each 1 � k � m − 1, if k ∈ S1 then: bk,S = bk+1,S , bk,S = bk+1,S − bk+1,S
1 . If k ∈ S2 then: bk,S =
1 2 1 1 2 2 k+1 1
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bk+1,S
1 − bk+1,S

2
k+1 , bk+1,S

2 = bk+1,S
2 . We say that b1 and b2 are S-generic if for each 1 � k � m we have that bk,S

1 �= bk,S
2 . We say

that b1 and b2 are generic if they are S-generic for all S .
Notice that given any b1 and b2, a small perturbation will make them generic.

Theorem 4.1. Let A be a deterministic incentive compatible mechanism for m items and 2 players with known budgets b1 and b2 that
are generic. Assume that A satisfies Pareto optimality, individual rationality, and no positive transfers. Then if v1 �= v2 the outcome of
A coincides with that of the clinching auction.

The proof shows that all mechanisms that satisfy the requirements of the claim have the same outcome. Since the
clinching auction satisfies all requirements of the claim, all other mechanisms coincide with it. We start with a useful
lemma:

Lemma 4.2. If v j < vi and v j � bi
m then player i receives all items and pays pi = m · v j in any deterministic incentive compatible

mechanism that satisfies Pareto optimality, individual rationality, and no positive transfers. In this case j’s payment, p j , is exactly zero.

Proof. First consider the case v j < vi <
bi
m . In this case if player i receives x < m items then since by IR he pays at most

x · vi < m−1
m bi he has left enough money to buy an item from player j and pay him v j + ε < vi , which contradicts Pareto

optimality. Thus player i receives all items. Standard monotonicity arguments (see e.g. footnote 12 below) now imply that i
receives all items for any vi � bi

m (when v j <
bi
m ).

If v j = bi
m then for vi < m−1

m−2 · bi
m it must be that player i receives x � m − 1 items, otherwise if x � m − 2 then by

individual rationality pi � x · vi � (m−1)bi
m and bi − pi � bi

m = v j , and by Lemma 2.5 this contradicts Pareto optimality since

vi > v j . If x = m − 1 then by monotonicity player i receives m − 1 items for any value in the interval (
bi
m , vi], therefore by

incentive compatibility his payment pi is at most (m−1)bi
m . But then again this contradicts Pareto optimality as above. Thus

player i receives all items in this case as well.
To prove that the payments are as claimed first suppose that v j = 0. By IR p j � 0. For any declaration v ′

i > 0 player i
receives all items (as argued above) and pays at most p′

i � m · v ′
i . Thus by incentive compatibility if v j = 0 then pi � 0.

No-positive-payments requires pi + p j � 0 which implies pi = p j = 0 for the case vi > v j = 0.
For a general value v j , since j receives no items here as well, then incentive compatibility implies p j = 0. Using the

standard argument of the second-price auction we finally have that pi = m · v j , and the claim follows. �
We continue with the main proof. Without loss of generality we assume throughout that b1 < b2. The proof is by

induction on the number of items m, and we start with the base case m = 1.

Lemma 4.3. All mechanisms for one item that satisfy the conditions of Theorem 4.1 have the same outcome if v1 �= v2 .

Proof. We show that the only possible mechanism is the following: the winner is the player i that maximizes min(bi, vi).
The winner pays the mechanism min(b j, v j), where j is the other player, and the loser’s payment is exactly zero.11

It is easy to verify that the above mechanism satisfies the required properties. We now prove that this is the only
possible mechanism. If min(v1, v2) � b1 then the claim follows from Lemma 4.2. Otherwise assume v1, v2 > b1.

We show that player 2 must win the item. First observe that if v1 < min(v2,b2) then the only Pareto optimal outcome
allocates the item to 2 (in the other allocation player 2 can buy the item from 1, and they are both better off). Suppose that
there exists some value v ′

1 > b1 such that 1 wins the item even though v2 > b1. By feasibility 1’s payment in this case is at
most b1, and 1 has positive utility from declaring v ′

1. Thus when 1’s true value is b1 < v1 < min(v2,b2) he can declare v ′
1

and improve his utility, contradicting incentive compatibility.
Therefore for any v2 > b1 player 2 must be the winner. Player 1’s payment must be exactly zero by incentive compati-

bility since his payment must be equal to the case when he declares v ′
1 < b1. This also implies that player 2’s payment is

the minimal possible value he needs to declare in order to win, i.e. min(b1, v1), and the claim follows. �
We now continue the induction, assuming uniqueness for m − 1 items, and proving uniqueness for m items. The logic is

as follows. We start with some arbitrary mechanism A for m items that satisfies the conditions of Theorem 4.1. We need to
show that A is in fact equivalent to the clinching auction. We show this in two parts. First, if min(v1, v2) � b1

m (and suppose
that v j = min(v1, v2) and i is the other player), the clinching auction allocates all items to player i, and his payment is

mv j . Player j pays zero in this case. Now, Claim 4.2 shows that A must do the same, since v j � b1
m � bi

m .

11 Notice that if b1 and b2 are not generic, i.e., b1 = b2, then indeed this auction is not uniquely defined as if v1, v2 > b1 = b2 we can break ties in favor
of either player, resulting in multiple possible outcomes. Also notice that this mechanism is indeed identical to the clinching auction.
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The second case, where v1, v2 � b1
m , is more involved. To characterize A’s behavior in this domain, we use A to construct

a new mechanism Am−1 for m − 1 items and different budgets. We will show a one-to-one mapping between the outcome
of A for values v1, v2 � b1

m and the outcome of Am−1 for the same values. We will then show that Am−1 satisfies the
conditions of Theorem 4.1, and therefore the induction assumption implies that Am−1 is unique. This in turn implies that A
is unique, and therefore it must be the clinching auction (in other words, if there exist A and A′ for m items that satisfy
the conditions of Theorem 4.1 then there exist Am−1 and A′

m−1 for m − 1 items that satisfy the conditions of Theorem 4.1
and this contradicts the inductive assumption).

The mechanism Am−1 is defined as follows. Am−1 works on budgets b′
1 = b1 and b′

2 = b2 − b1
m . Notice that b′

1 and b′
2 are

generic, and that now it is not necessarily true that b′
1 � b′

2. We start by defining Am−1 on instances where v1, v2 > b1
m :

denote the outcome of A for v1 and v2 by (�x, �p), where xi is the amount that i gets, and pi is his payment. Let the outcome
of Am−1 be (x1, p1) for player 1 (i.e., as in A), and for player 2 let the outcome be (x2 − 1, p2 − b1

m ). In particular, observe
that given the outcome of Am−1 on valuations in this domain, we can deduce the outcome of A on the same valuations.
Claims 4.4 and 4.5 below prove that x2 � 1 and p2 � b1

m and thus the definition is valid. Before showing this we need to

complete the definition of Am−1 for valuations where min(v1, v2) � b1
m . In this case we allocate all items to the bidder with

the highest value, and his payment is m − 1 times the value of the other player.

Lemma 4.4. Let A be a mechanism for m items that is Pareto optimal, individually rational, and incentive compatible. Suppose that
min(v1, v2) > b1

m . Then, a player that wins x items pays at least x · b1
m .

Proof. Suppose by contradiction that there exist (v1, v2) in which some player i gets x � 1 items and pays t < x · b1
m .

Consider now a different valuation v ′
i such that t/x < v ′

i <
b1
m . By Lemma 4.2 i is allocated no items when he declares are

v ′
i and the other player declares the same as before. Here i will be better off by declaring vi instead of v ′

i , since he will be
allocated x items and will get a positive utility: x · v ′

i − t > 0, contradicting incentive compatibility. �
Lemma 4.5. Let A be a mechanism for m items that is Pareto optimal, individually rational, and incentive compatible. Suppose that
v2 > b1

m . Then, player 2 wins at least one item.

Proof. Suppose that there is a declaration v1 such that, when the players declare (v1, v2), player 1 wins all items. By
Lemma 4.4 the payment of player 1 is at least m · b1

m = b1. His payment is exactly b1 since this is his budget. By in-

centive compatibility, in any declaration v ′
1 > b1

m he must still win all items (player 2 still declares v2). Fix v ′
1 such that

min(v2,b2) > v ′
1 > b1

m . From above we get that player 1 gets all items when the declarations are (v ′
1, v2). However this

contradicts Pareto optimality, using Claim 2.5, since v2 > v ′
1 but p2 = 0 < b2 − v ′

1. �
Lemma 4.6. Am−1 satisfies the conditions of Theorem 4.1.

Proof. During the proof we abuse notation a bit and identify the outcome of A with A, and the outcome of Am−1 with
Am−1. We break the proof into several claims.

Lemma 4.7. Let A be a mechanism for m items that is Pareto optimal, individually rational, and incentive compatible. Suppose that
v1 >

b1
m . Then, if player 2 wins exactly one item he pays exactly b1

m .

Proof. Fix some v2 such that, when the declaration is (v1, v2), player 2 gets x2 = 1 and pays some p2. By Claim 4.4,
p2 � b1

m . Now fix some v ′
2 such that v2 > v ′

2 > b1
m . Suppose that in the declaration (v1, v ′

2) player 2 gets x′
2 and pays p′

2. It
is well known that incentive compatibility implies that x′

2 � x2.12 By Claim 4.5, x′
2 � 1, and therefore we must have x′

2 = 1.

Incentive compatibility now implies that p2 = p′
2. Therefore we have v ′

2 � p2 � b1
m . Since this is true for any v ′

2 > b1
m we get

that p2 = b1
m , as claimed. �

Claim 4.8. Am−1 is individually rational.

Proof. If min(v1,b1) � b1
m , then Am−1 is a second price auction. Else, if player 1 is allocated no items in Am−1, then he

pays nothing, since A is individually rational and 1 gets nothing also in A. Consider the case where player 2 is allocated no
items in Am−1. It means that it was allocated exactly one item in A, and by Lemma 4.7 his payment is b1

m in A, hence in
Am−1 his payment is 0. �
12 A short proof, based on the W-MON condition of Bikhchandani et al. (2006), is: from incentive compatibility we have v2 · x2 − p2 � v2 · x′

2 − p′
2 since

when the true type is v2 the player will not benefit from declaring v ′
2. Similarly, v ′

2 · x′
2 − p′

2 � v ′
2 · x2 − p2. Combining, we get v ′

2(x′
2 − x2) � p′

2 − p2 �
v2(x′

2 − x2), and since v ′
2 < v2 it follows that x′

2 � x2.
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Claim 4.9. Am−1 is Pareto optimal.

Proof. Consider first the case where v1, v2 > b1
m . By Claim 2.5, it is enough to show two things: (1) If v1 > v2 then p′

1 >

b′
1 − v2: since A is Pareto optimal then p1 > b1 − v2, and since p′

1 = p1 and b′
1 = b1 the claim follows; and (2) If v2 > v1

then p′
2 > b′

2 − v1, or, equivalently, v1 > b′
2 − p′

2: since A is Pareto optimal then v1 > b2 − p2, and since b′
2 − p′

2 = b2 − p2
the claim follows.

Now consider the case where min(v1, v2) � b1
m . Let b′

i = min(b′
1,b′

2). First, observe that we have that if b′
i = b′

1 then

b1
m � b′

1
m−1 , since b′

i = b′
1. For b′

i = b′
2 = b2 − b1

m , we also have that
b′

2
m−1 = b2− b1

m
m−1 � b1− b1

m
m−1 � b1

m . Hence in this case, by
Lemma 4.2, it is Pareto optimal to allocate all items to the bidder with the highest value, as Am−1 indeed does. �
Claim 4.10. Am−1 is incentive compatible.

Proof. Once again we consider several different cases. Start with the case where v1, v2 > b1
m , and suppose player i declares

v ′
i > b1

m instead (and is allocated x′
i items and pays p′

i ). Clearly, i �= 1, as the allocation and payment of player 1 are the
same as in A, and A is incentive compatible. Suppose i = 2 is better off declaring v ′

2: v2(x2) − p2 < v2(x′
2) − p′

2. Observe

that in A we have that: v2(x2 + 1) − (p2 + b1
m ) < v2(x′

2 + 1) − (p′
2 + b1

m ), a contradiction to the incentive compatibility of A.

Suppose that v1, v2 > b1
m , and that player i declares v ′

i < b1
m instead. Notice that x′

i = 0, so i cannot increase his profit
from declaring v ′

i .

In the case where min(v1, v2) � b1
m player i is not better off declaring v ′

i < b1
m , as in this range we are essentially

conducting a second price auction, which is incentive compatible.
Finally, suppose min(v1, v2) � b1

m . Consider player i who declares v ′
i > b1

m . Suppose v j > b1
m , where j is the other player.

Observe that if i wins some items, then by Lemma 4.4 j has to pay at least b1
m for every item he wins, which is more than

his value. If v j < b1
m , then we conduct a second price auction, regardless of what i declares, and this auction is incentive

compatible. �
By the induction hypothesis, we have that Am−1 is unique. By our discussion, this is enough to prove the uniqueness of

A and this concludes the proof of the theorem.

5. An impossibility result for private budgets

Once the public-budgets case is completely analyzed, the impossibility for private budgets follows quite easily.

Theorem 5.1. There is no deterministic incentive compatible mechanism that satisfies Pareto optimality, individual rationality, and no
positive transfers, for private budgets.

Proof. We first prove the theorem for the case of two players. An auction A for private budgets is also incentive compatible
if budgets are public. By our uniqueness result for two players with public budgets, we therefore conclude that the outcome
of A must be the same as the outcome of the clinching auction.

Consider two instances of the clinching auction. First, b1 = 1, v1 = ∞, b2 = 1 + ∑m
k=2

1
k − δ, v2 = ∞, for some small

δ > 0. (δ is chosen to make b1 and b2 generic.) For each of the first m − 1 items, the clinching auction will allocate the item
to player 2 and will charge 1

k for the k’th item. Then, at the k’th item, player 1’s budget is finally larger than player 2’s free
budget, so player 1 wins the last item with a payment of 1 − δ.

Second, b′
1 = 1 + ε , for small enough ε , and the other parameters are as above. The resulting allocation is the same as

above, but player 2 is charged 1+ε
k for the k’th item (for k > 1). Thus, when the auction allocates the last item, player 2’s

free budget is smaller than before: 1 − δ − ∑ ε
k . This is also the payment of player 1.

Therefore player 1 is allocated one item in both cases, but his payment is smaller in the second case, so his utility is
larger. Now, as argued in the first paragraph of this proof, A’s outcome is the same as the outcome of the clinching auction
for both cases. Therefore when the players’ types are as in the first case, player 1 can improve his resulting utility from the
mechanism A by misreporting his budget to be b′

1 = 1 + ε . This will change the outcome of A to be that of the clinching
auction for the second case, and will thus increase player 1’s utility, which contradicts incentive compatibility.

We now prove the theorem for any number of players. Suppose by contradiction that there exists an auction An for
n > 2 players with private budgets that satisfies all properties of the theorem. Then there is an auction A2 for two players
with private budgets that satisfies all properties of the theorem: upon receiving the declarations of the two players, A2
adds n − 2 players that have a budget of zero and a value of zero, and determines the allocation and payments of the two
“real” players to be the same as their allocation and payments in An with the n − 2 dummy players. Since An satisfies all
properties of the claim then A2 satisfies all properties of the claim as well. This contradicts our previous proof, for the case
of exactly two players, and the theorem follows. �
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The contradiction in the proof was obtained by reporting a budget which is higher than the true budget. In a follow-up
paper, Bhattacharya et al. (2010) show that there are cases where it is also profitable to declare a budget lower than the
true budget. They also show that for a divisible item, only higher budgets can be profitable deviations.

6. Revenue considerations

Up to now we have discussed the efficiency properties of the clinching auction for players with budgets. We now ex-
amine its revenue properties. We will compare the revenue of the clinching auction to the revenue of a non-discriminatory
monopoly that knows the budgets and values of the players, and has to determine a single unit-price at which items will be
sold. To strengthen our result and simplify the analysis at the same time, we allow the monopoly (but not the mechanism!)
to sell also fractions of the good, and not just integer quantities.

The approach of comparing an auction’s revenue to the optimal fixed-price revenue was initiated by Goldberg et al.
(2006). In the context of auctions with budget limitations it was used by Borgs et al. (2005) and Abrams (2006). In partic-
ular, Abrams (2006) showed that the optimal monopoly revenue is always at least half of the optimal multi-price revenue,
that may charge different prices from different players.13 Thus, comparing the revenue of the auction to any other revenue
criteria can yield a ratio which may be smaller by a constant factor of at most 1/2.

To formally define our benchmark for revenue, let a fractional allocation be a real vector x = (x1, . . . , xn), where for each
i, xi � 0, and

∑
i xi � m. Given a fractional allocation x, the monopoly revenue from x is

∑
i xi · p∗(x), where p∗(x) is the

largest price that satisfies, for each i with xi > 0, vi � p∗(x), and bi � xi · p∗(x). Thus, the monopoly revenue from x is the
largest unit-price p that maintains the individual rationality of players for the allocation x with unit-price p. The optimal
monopoly revenue is the supremum over all fractional assignments x of the monopoly revenue from x.14 Let x∗ be the
fractional allocation that obtains this optimal monopoly revenue, and p∗ = p∗(x∗). Our analysis uses the following “bidder
dominance” parameter:

β = max
i=1,...,n

x∗
i∑n

j=1 x∗
j

. (1)

If β = 1 then all items are sold to one single player. In this case, one bidder stands out, and the monopoly prefers to focus
on him and extract all his surplus by setting a high price. Thus it is intuitively clear that the clinching auction cannot hope
to extract a large fraction of the monopoly’s revenue since there is no real competition. As β decreases, this “best” bidder
faces more competition, and the clinching auction raises a larger fraction of the monopoly’s revenue. Formally, we show:

Theorem 6.1. The revenue of the clinching auction is at least a fraction of m
m+n · (1 − β) of a fixed-price monopoly’s optimal revenue.

Thus, the clinching auction revenue approaches the optimal monopoly revenue as indivisibility problems become less
important and as bidder dominance decreases. The indivisibility issue, i.e., the fact that the bound in the theorem is inter-
esting only when the number of items m is much larger than the number of bidders n, is a consequence of choosing to
compare to a monopoly that can decide on fractional allocations of items to buyers. For example, suppose there is one item
(m = 1) and every bidder i = 1, . . . ,n has vi = n and bi = 1. The monopoly will choose p∗ = 1 and x∗

i = 1/n for every bidder
i = 1, . . . ,n, yielding a revenue of n, while the clinching auction has revenue 1 because it has to give the item integrally to
one of the players. By this example, the bound in the theorem cannot be significantly improved.

Alternatively, we can compare to a monopoly that is also restricted to assign the items integrally. In this case, an alter-
native statement is that the revenue of the clinching auction is at least a fraction of m

2(m+min(n,m))
· (1 −β) of the monopoly’s

revenue. This claim follows using virtually the same proof we describe below (instead of Claim 6.2 we need to argue that
without loss of generality the monopoly allocates at least half of the items).

We note that it is necessary to have some integrality factor even when comparing to a monopoly that assigns the items
integrally. To demonstrate this, consider the following example. Suppose the number of items and bidders is equal, and all
bidders have a budget 1 and value ∞. The monopoly sells one item to each player for a price of 1. The clinching auction
sells one item to each player, for a price of 1/2, since at this price D+

i (1/2) = 1 for every player i. Thus, there is a ratio of
1/2 between the revenue of the clinching auction and the monopoly’s revenue.

13 The argument is based on the following claim: if in the competitive equilibrium there is more than a single winner, then the revenue of this outcome
is at least half of the optimal revenue (the maximal payment that satisfies individual rationality: pi � bi and pi � xi · vi ). Let us sketch the proof of this.
Let p be the equilibrium price. Split the bidders to those with vi > p and those with vi � p. The equilibrium revenue is m · p. All bidders in the first set
pay their full budget anyway in the equilibrium. We can never get more than a total of payment m · p from all bidders in the second set (since vi � p).
Thus the optimal revenue is at most 2m · p.
14 In the classic definition for a (non-discriminatory) monopoly’s revenue, one optimizes over all prices, where for each price the chosen allocation is

the maximal individually rational allocation (i.e., each buyer consumes until the point where his marginal value equals the pre-determined unit price). We
have reversed the optimization order (first over all allocations, and for each allocation over all individually rational prices), but the end outcome of the two
optimization procedures is clearly identical. We choose the “reverse” description simply because it fits better with our proofs.
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Proof of Theorem 6.1. We denote the optimal monopoly price by p∗ , and the fractional assignment that maximizes the
optimal monopolist price by x∗ = (x∗

1, . . . , x∗
n). We show two claims:

Claim 6.2. It can be assumed without loss of generality that all items are allocated in the fractional assignment that maximizes the
optimal monopolist price. That is,

∑
i x∗

i = m.

Proof. Assume that
∑

i x∗
i < m. Let W = {i | vi � p∗} and B = ∑

i∈W bi . Since the unit-price is p∗ , any player i with vi < p∗
must have x∗

i = 0, hence the optimal monopoly price is at most B . Additionally, for any i ∈ W we must have x∗
i = bi/p∗

since otherwise we can increase the quantity that i gets, contradicting the fact that x∗ maximizes the revenue. This implies
that

∑
i∈W bi/p∗ = ∑

i∈W x∗
i < m, hence p∗ > B/m. Now, by setting p = B/m and xi = bi/p for any i ∈ W (note that vi �

p∗ > B/m = p), we get revenue exactly B , and
∑

i xi = m, thus the claim follows. �
Claim 6.3. No player clinches an item before the price reaches p̃ = m

m+n · (1 − β) · p∗ .

Proof. We will show that, for each player i,
∑

j �=i D j(p̃) � m, which implies the claim. Let W = { j | x∗
j > 0}, and W−i =

W \ {i}. For any j ∈ W , v j � p∗ > p̃, hence D j(p̃) = � b j

p̃ �. We therefore have

∑
j �=i

D j(p̃) �
∑

j∈W−i

D j(p̃) =
∑

j∈W−i

⌊
b j

p̃

⌋
�

∑
j∈W−i

(
b j

p̃
− 1

)
�

∑
j∈W−i

b j

p̃
− n.

We next note that
∑

j∈W−i
x∗

j = m − x∗
i � m − β · m = m(1 − β). This gives us:

∑
j �=i

D j(p̃) �
∑

j∈W−i

b j

p̃
− n = m + n

m
· 1

1 − β
·

∑
j∈W−i

b j

p∗ − n

� m + n

m
· 1

1 − β
·

∑
j∈W−i

x∗
j − n � m + n

m
· 1

1 − β
· m(1 − β) − n = m,

which proves the claim. �
We now prove Theorem 6.1. By Claim 6.2 we may assume that the optimal revenue is achieved by allocating all items

and thus the optimal monopoly revenue is at most m · p∗ . The clinching auction sells all items (by Claim 3.1), and by
Claim 6.3 each item is sold for a price of at least p̃ = m

m+n · (1 − β) · p∗ . Thus the revenue of the clinching auction is at least
m · p̃ = m

m+n · (1 − β) · (m · p∗). �
7. The infinitely divisible good setting

While the clinching auction may be applied in the infinitely divisible setting by treating it as a continuous time process,
the analysis for the divisible case is not a straight-forward extension of the indivisible case, and needs to rely on techniques
different than the ones used in the discrete case. In this section we show explicit results for the divisible case that parallel
our results for the indivisible case. We start by constructing a mechanism for known budgets in Section 7.1, exactly like
our starting point in the indivisible case (the clinching auction in Section 3). In fact, there is a very close connection
between our results in this section and the clinching auction: informally, we rely on the continuous time process that the
clinching auction exhibits in the divisible case to obtain (“guess”) an explicit closed-form auction for a divisible good and
two players. We then directly prove that this closed-form mechanism is incentive compatible and Pareto optimal. We then
show (Section 7.2) uniqueness of this mechanism among all anonymous mechanisms, assuming equal and public budgets
(which is conceptually similar to the second step for the indivisible case, namely the uniqueness result in Section 4). Finally,
Section 7.3 shows an impossibility result for anonymous mechanisms with private budgets, relying on the uniqueness result,
in a similar manner to the way that the impossibility result for the indivisible case in Section 5 relies on the uniqueness
result for that case.

7.1. A mechanism for known budgets

We construct a incentive compatible and Pareto optimal mechanism for two bidders with publicly known budgets. We
start by analyzing two special cases, that will be used later on as building blocks for the general mechanism.

First special case: only one bidder with a budget limit. We first look at the case where only one of the players is budget-
limited. Assume that b1 = 1 (this is w.l.o.g.) and b2 = ∞. There is an available quantity Q of a divisible item. Let us overview
the course of the clinching auction in this case. Player 1 demands the entire quantity if the following two conditions hold:
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(i) the price p is lower than his value v1, and (ii) Q � D1(p) = b1
p = 1

p . Player 2 demands the entire quantity if p � v2

(since he is not constrained by a budget). Thus initially and as long as the price p is below both 1/Q and min(v1, v2), both
players demand all the quantity, and so no clinching occurs. If min(v1, v2) � 1/Q , the player i with the minimal value will
drop out when the price will reach his value, and the other player will get the entire quantity and will pay the lower value.

Otherwise assume that min(v1, v2) > 1/Q . When the price exceeds 1/Q , player 1 starts reducing his demand to quan-
tities smaller than Q . Therefore player 2 starts clinching the quantity that is not being demanded anymore by player 1. The
total quantity clinched up to price p is 1 − D1(p) = 1 − 1/p and thus player 2 clinches d(1 − D1(p))/dp = 1/p2 units at
marginal price p. The total payment of player 2 up to some price x is therefore

∫ x
1/Q

1
p2 p dp = ln x − ln(1/Q ). This continues

until the price reaches min(v1, v2) (recall that player 2 has infinite budget, hence he never reduces his demand unless the
price reaches his value). Once we reach the point p = min(v1, v2), the low-value player drops, and the high-value player
gets the remaining quantity at the current unit-price.

For example, if Q = 1, min(v1, v2) > 1, and v2 > v1, player 2 receives the entire quantity and pays ln v1 (the payment
until the point player 1 quits) plus 1

v1
v1 = 1 (the remaining quantity when player 1 quits is 1

v1
and this is sold to player 2

for a unit price v1). This leads us to “guess” the following mechanism for this special case, and assuming Q = 1 (Q = 1
turns out to be all we need from this special case when constructing the general mechanism):

Definition 7.1 (Mechanism M1 (assumes Q = 1)).

• If min(v1, v2) � 1 then the high-value player gets everything at the second price: xi = 1, pi = v j (and x j = 0, p j = 0),
where vi > v j .

• Otherwise, if v2 � v1 then the high non-budget-limited player gets everything x2 = 1 and pays 1 + ln v1.
• Otherwise, if v1 > v2 then the high-value player gets x1 = 1/v2 and pays p1 = 1, while the non-budget-limited player

gets x2 = 1 − 1/v2 and pays p2 = ln v2.

We give an explicit proof that mechanism M1 indeed satisfies Pareto optimality and incentive compatibility. In the proof,
we use a slightly weaker assumption instead of b2 = ∞, a relaxation that will become important in the sequel.

Proposition 7.2. Fix any two budgets b1 � b2 . Then, mechanism M1 is Pareto optimal and individually rational, and,

1. It is a dominant-strategy for player 1 to declare his true value.
2. If v2 � eb2−1 then it is a dominant-strategy for player 2 to declare his true value. More precisely, let u2(z) denote player 2’s

resulting utility when he declares z. Then u2(v2) � u2(z) for any real number z.

Proof. Pareto optimality follows directly from Proposition 2.4 since in the first two cases the low bidder gets allocated 0,
and in the last case, the high bidder has his budget exhausted.

Let us start by looking at the incentives of bidder 1. If v2 � 1 then he is faced with exactly two possibilities x1 = 1,
p1 = v2 and x1 = 0, p1 = 0. It is clear that he prefers the former if and only if v1 � v2, which is what happens with
the truth. If v2 > 1 then he is faced with two possibilities: either declare some z � v2 in which case he gets x1 = 0,
p1 = 0 or declare some z > v2 and get allocated x1 = 1/v2, p1 = 1. His utility in the first case is ui = 0 and in the second
ui = v1/v2 − 1, which is positive iff v1 > v2 and given to him by the mechanism when telling the truth z = v1.

Now for bidder 2. The case v1 � 1 is as before. Otherwise he may declare either z < v1 getting x2 = 1 − 1/z, p2 = ln z
or declaring z � v1 getting x2 = 1, p2 = 1 + ln v1. In the first case his utility is at most u2(z) = v2 − v2/z − ln z (it is exactly
this term if p2 � b2, otherwise it is smaller). This term for u2(z) is maximized for z = v2 (by solving for du2/dz = 0).
Thus in the first case his utility is at most v2 − 1 − ln v2. In the second case his utility at most u2 = v2 − 1 − ln v1. If
v2 < v1 then the former term is larger than the latter term, and indeed by declaring z = v2 the player obtains a utility
exactly equal to v2 − 1 − ln v2 since when z = v2 we have p2 = ln v2 < ln eb2−1 < b2. If v2 � v1 then the latter term
is better, and indeed by declaring z = v2 the player obtains a utility exactly equal to v2 − 1 − ln v1 since in this case
p2 = 1 + ln v1 � 1 + ln v2 � 1 + ln eb2−1 = b2. Thus declaring z = v2 obtains maximal utility, no matter what is v1.

Individual rationality follows from incentive compatibility, since a player can always obtain a zero utility by declaring
vi = 0. �
Corollary 7.3. Mechanism M1 is Pareto optimal and incentive compatible, assuming only one bidder is budget-constrained.

Second special case: bidders with equal budgets. The second special case we analyze is when the budgets are equal and
the available quantity is Q � 1 (here it will not be sufficient to assume Q = 1). Assume without loss of generality that
b1 = b2 = 1 and v1 � v2.

We again “guess” a mechanism by looking at the course of the clinching auction. Similarly to before, while p � 1/Q
no clinching occurs since each player demands all available quantity. At the point p = 1/Q , the demand of both players
is equal to available quantity, and hence from this point on both players will start clinching. Calculating the exact rate at
which the clinching occurs is slightly more involved in this case. Let Di(p), bi(p) denote the current demand and remaining
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budget of player i at price p, and let qi(p) denote the total quantity that player i have received up to price p. When the
price reaches min(v1, v2), the lower player drops and the high-value player receives the remaining quantity, but before this
point the two players are completely identical, so we can remove the subscript i from the three functions. We have

D(p) = b(p)

p
, b′(p) = −q′(p) · p

where the second equation follows since budget at price p decreases by the quantity clinched at price p times the unit price
paid for this clinched quantity. It will turn out useful to construct the three functions so that clinching will continuously
occur, for all prices p � 1/Q . For this to happen, we need that the current demand of each player will always be exactly
equal to the current available quantity (since in such a case, and only in such a case, when a player decreases her demand,
the other player performs clinching). This means:

D(p) = Q − 2 · q(p).

Solving these three equations, we get:

q(p) = Q

2
− 1

2 · Q · p2
, b(p) = 1

Q · p
.

We next show explicitly that using these functions will indeed yield Pareto optimality and incentive compatibility. Moreover,
in the sequel (Theorem 7.9) we show that this is the unique anonymous mechanism that is Pareto optimal and incentive
compatible.

Definition 7.4 (Mechanism M2 (for any initial quantity Q )). Assume that b1 = b2 = 1 and v1 � v2.

• If v1 � 1/Q then the high-value player gets everything at the second price: x2 = Q , p2 = v1 · Q (and x1 = 0, p1 = 0).
• Otherwise, the low-value player gets x1 = Q /2 − 1/(2 · Q · v2

1) and pays p1 = 1 − 1/(Q · v1) and the high-value player
gets x2 = Q /2 + 1/(2 · Q · v2

1) and pays p2 = 1.

Proposition 7.5. Mechanism M2 is Pareto optimal, individually rational, and incentive compatible, in the case of publicly known and
equal budgets.

Proof. Pareto optimality follows directly from Proposition 2.4: in the first case the high-value player gets all the quantity,
and in the second case the budget of the high-value player is exhausted.

Let us consider the incentives of one bidder with value vi when the other bids a fixed value v j . If v j � 1/Q then bidder
i can choose between declaring z � v j in which case xi = 0, pi = 0 and thus ui = 0 (in case of tie, if xi = 1, pi = v j then we
still have ui = 0) to bidding z > v j in which case xi = Q , pi = v j · Q and thus ui = (vi − v j)Q . The latter is better if and
only if vi > v j , and by bidding z = vi player i gets the better option.

If v j > 1/Q , then bidder i can choose between declaring z < v j in which case xi = Q /2−1/(2 · Q · z2), pi = 1−1/(Q · z)
to bidding z > v j in which case xi = Q /2 + 1/(2 · Q · v2

j ), pi = 1. Thus the utility when bidding z < v j is vi(Q /2 − 1/(2 ·
Q · z2)) − (1 − 1/(Q · z)), and this is maximized by z = vi . Thus the utility when bidding z < v j is at most vi(Q /2 − 1/(2 ·
Q · v2

i )) − (1 − 1/(Q · vi)) (call this u(L)), and the utility when bidding z > v j is exactly vi(Q /2 + 1/(2 · Q · v2
j )) − 1 (call

this u(H)).
A short calculation shows that u(L) > u(H) if and only if vi < v j . Therefore: (1) if vi < v j then a player will maximize his

utility by obtaining a utility equal to u(L) , which can be obtained by declaring z = vi , and (2) if vi > v j then a player will
maximize his utility by obtaining a utility equal to u(H) , which can be obtained by declaring z = vi . Thus no matter what is
v j , declaring vi will maximize player i’s utility. This proves incentive compatibility.

Individual rationality follows from incentive compatibility, since a player can always obtain a zero utility by declaring
vi = 0. �
The general case: bidders with arbitrary budgets. We now reach the case of general budgets, and we assume without loss
of generality that Q = 1. While the general mechanism we define below does not seem related to the clinching auction in
any apparent way, in fact it can be thought of as the “limit” of the clinching auction of Section 3, when the divisibility of
the items increases, as we next explain. Assume that b1 = 1 < b2. As discussed above, if p � vi and Q = 1 � Di(p) = 1

p � bi
p ,

both players demand all available quantity. Thus initially and as long as the price p is below both 1 and min(v1, v2), no
clinching occurs since both players demand the entire quantity. If min(v1, v2) � 1, the player i with the minimal value will
drop out when the price will reach his value, and the other player will get the entire quantity and will pay the lower value.

The interesting situation is when min(v1, v2) > 1. In this case by the above discussion no clinching will occur until the
price will cross the point p = 1. At this point (and just after it) the course of the auction is similar to the first special case
from above: player 2 still demands all quantity so player 1 does not perform clinching, and player 1 starts reducing his
demand (as b1 = 1), so player 2 starts to clinch. Using the equations found in the first special case above, the total clinched
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quantity of player 2 at price p is q2(p) = 1 − 1/p, and his remaining budget is b2(p) = b2 − ln p. This continues until the
available quantity at price p equals the demand of player 2 at that price. This p point satisfies

b2 − ln p

p
= b2(p)

p
= D2(p) = 1 − q2(p) = 1

p

and the solution is p∗ = eb2−1. To verify, note that at this price the available quantity is 1/p∗ , and the remaining budget
of player 2 is b2(p∗) = 1. Hence player 2 demands exactly the remaining quantity. Looking at player 1 we can see that,
since he did not clinch anything up to p∗ , his remaining budget is equal to his original budget, which was b1 = 1. Thus the
demand of player 1 at p∗ is also 1/p∗ , again exactly equal to the remaining quantity. Therefore at p∗ we have switched
to a situation very similar to the second special case from above: both players have remaining budgets that are equal to 1,
and at an initial price p∗ they simultaneously demand exactly the available quantity. Thus, the calculations of the second
special case of above, setting Q = 1/p∗ , describe the course of the auction from this point until the end. In other words,
we see that the general construction is simply a combination of the two special cases studied above. Note that the course
of the above auction stops whenever the price reaches the point min(v1, v2), and this can be in any of the three parts of
the auction – at p < 1, at 1 < p � p∗ , or at p > p∗ . This description yields the intuition behind the general mechanism:

Definition 7.6 (General mechanism). Assume b1 = 1 � b2 and initial quantity of 1. Let p∗ = eb2−1.

• If min(v1, v2) < p∗ then run mechanism M1.
• Otherwise, allocate to player 2 an initial quantity of 1 − 1/p∗ for a total price b2 − 1. Allocate the remaining quantity

Q = 1/p∗ using mechanism M2, where the initial budget of player 2 at the mechanism is b2 = 1, and the rest of the
parameters are unchanged.

Proposition 7.7. The general mechanism is Pareto optimal and incentive compatible in the case of publicly known budgets.

Proof. We first prove Pareto optimality. If min(v1, v2) < p∗ then the outcome is determined by mechanism M1, hence is
Pareto optimal by Proposition 7.2. If min(v1, v2) � p∗ , then mechanism M2 is run, and inside it we always enter the second
option, which implies that the high-value player pays 1. If this is player 1 then this exhausts his budget, and if this is
player 2 then his total payment is (b2 − 1) + 1 = b2, so his budget exhausted as well. Thus by Proposition 2.4 the outcome
is indeed Pareto optimal.

We now prove incentive compatibility. Consider first the incentives of player 1. If v2 < p∗ then mechanism M1 is used,
no matter what player 1 reports, and the claim follows from Proposition 7.2. Otherwise v2 > p∗ . If v1 < p∗ then by the
properties of mechanism M2 player 1 prefers receiving zero utility to receiving some quantity as a result of declaring some
z > p∗ , since, in mechanism M2, when v1 < p∗ player 1 gets nothing. Thus in this case player 1 maximizes utility by the
incentive compatible declaration. If v1 > p∗ then if he declares some z < p∗ he gets zero utility while if he declares v1 he
gets a non-negative utility since mechanism M2 is individually rational. Thus he prefers to declare some z > p∗ and since
mechanism M2 is incentive compatible it must be that z = v1. This proves incentive compatibility for player 1.

Now consider player 2. If v1 < p∗ then the proof is a before. Otherwise v1 > p∗ . If v2 < p∗ then player 2 prefers
getting nothing from mechanism B to getting some positive quantity as a result of declaring some z > p∗ , and he prefers
getting from mechanism M1 a quantity that results from declaring v2 to getting 1 − 1/p∗ and paying b2 − 1 (which results
from declaring z = p∗). Thus player 2 prefers to declare v2 over declaring some z > p∗ , and therefore by the incentive
compatibility of mechanism M1 he prefers to declare v2 over any other declaration z. If v2 > p∗ then player 2 prefers
getting some quantity from mechanism M2 according to the declaration z = v2 over not getting anything from mechanism
M2, since mechanism M2 is individually rational. Additionally, player 2 prefers the outcome x2 = 1 − 1/p∗ , p2 = b2 − 1 over
any other outcome that results from mechanism M1 by declaring some z < p∗ , since v2(1−1/p∗)− ln p∗ > v2(1−1/z)− ln z.
Thus player 2 prefers the outcome resulting from declaring v2 over any other outcome that results from declaring some
z < p∗ . By the incentive compatibility of mechanism M2, declaring v2 will maximize player 2’s utility. Therefore incentive
compatibility for player 2 follows.

Individual rationality follows from incentive compatibility, since a player can always obtain a zero utility by declaring
vi = 0. �
7.2. Uniqueness for equal and known budgets

To show uniqueness we cannot simply use similar arguments to the ones of the discrete case, since there we used
induction on the number of items, while here the number of items is fixed, in some sense. Thus we use completely different
arguments, and rely on an additional property of anonymity: suppose that when player 1 declares v1 and player 2 declares
v2, the outcome is that player i (i = 1,2) gets xi and pays pi . Then, when player 1 declares v2 and player 2 declares v1,
player 1 gets x2 and pays p2 and player 2 gets x1 and pays p1.

As defined, mechanism M2 is not really anonymous, breaking the tie v1 = v2 “in favor” of v2. An anonymous mechanism
with the same properties can be obtained by “splitting” in case of a tie:
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Definition 7.8 (Mechanism M3).

• If v1 = v2 = v � 1 then x1 = x2 = 1/2 and p1 = p2 = v/2.
• If v1 = v2 = v > 1 then x1 = x2 = 1/2 and p1 = p2 = 1 − 1/(2v).
• If v1 �= v2 then run mechanism M2.

It is not hard to verify that mechanism M3 maintains incentive compatibility and Pareto optimality of mechanism M2.
Moreover, we show:

Theorem 7.9. Mechanism M3 is the only anonymous mechanism for the divisible good setting that satisfies individual rationality,
incentive compatibility and Pareto optimality.

Proof. Assume without loss of generality (as budgets are assumed to be equal) that b1 = b2 = 1. Let us fix a mechanism
that satisfies the above properties and reason about it. In the rest of the proof we denote the smaller value by vi , thus
vi � v j .

Step 1: We first handle the case of vi � 1. If also v j < 1 then p j � v j < 1 and thus Pareto optimality implies xi = 0 and
x j = 1. By the usual arguments of incentive compatibility we must have p j = vi . Now for values v j � 1, if x j = 1 then by
incentive compatibility p j is determined by x j and thus is p j = vi . Otherwise xi > 0 and thus by Pareto optimality p j = 1
but this is a contradiction to incentive compatibility since declaring a value vi < v ′

j < 1 both increases x j and decreases p j .

Step 2: We will now show that there exist functions q(t) and p(t) such that whenever vi < v j then xi = q(vi), pi = p(vi),
and x j = 1 − q(vi), p j = 1. That is, the low player’s value determines the allocation between the two players as well as
his own payment, while the high-value player exhausts his budget. First assume to the contrary that for some 1 < vi < v j ,
p j < 1, and thus by Pareto optimality xi = 0, pi = 0, and x j = 1. But then a bidder with p j < v ′

j < 1 < vi that, according to
step 1, gets nothing, would be better off declaring v j and getting positive utility, in contradiction to incentive compatibility.
Thus p j = 1 whenever 1 < vi < v j . Thus, by incentive compatibility, for a fixed vi , different values of v j must get the same
x j , i.e. x j depends only on vi . By Pareto optimality, xi = 1 − x j and thus it also only depends on vi , and then by incentive
compatibility pi must be determined uniquely by xi and thus depends only on vi .

Step 3: Using incentive compatibility as usual, we have that for any 1 < t < t′ < v j : t(q(t′) − q(t)) � p(t′) − p(t) � t′(q(t′) −
q(t)). As usual this implies that dp/dt = t · dq/dt or, more precisely, since we do not know that q is differentiable or even
continuous, that p(t) = tq(t) − ∫ t

1 q(x)dx, where integrability of q is a direct corollary of its monotonicity.

Step 4: Using incentive compatibility and anonymity we have that for 1 < t < v j < t′: tq(t) − p(t) � t(1 − q(v j)) − 1 since
if player i has true value t it should not be beneficial for his to declare value t′ . Similarly, t′(1 − q(v j)) − 1 � t′q(t) − p(t).
Letting t, t′ approach v j we have that v jq(v j)− p(v j) = v j(1−q(v j))−1. Since this holds for every v j we have tq(t)− p(t) =
t(1 − q(t)) − 1, i.e. p(t) = 1 + t(2q(t) − 1) for all t except for at most countably many points of discontinuity of q.

Step 5: Combining the last two steps we have 1 + t(2q(t) − 1) = tq(t) − ∫ t
1 q(x)dx, i.e. q(t) = 1 − 1/t − (

∫ t
1 q(x)dx)/t , except

for at most the countably many points of discontinuity of q. The solution to this differential equation is q(t) = 1/2−1/(2t2),
which gives p(t) = 1 − 1/t . The uniqueness of solution is implied since if another function satisfies the equation everywhere
except for countably many points, then the difference function d(t) would satisfy d(t) = −(

∫ t
1 d(x)dx)/t everywhere except

for countably many points, which only holds for d(t) = 0. �
7.3. The impossibility for private budgets

From Theorem 7.9 we rather easily deduce:

Theorem 7.10. There exists no anonymous, incentive compatible, and Pareto optimal mechanism for the divisible good setting, for the
case of privately known budgets b1 , b2 .

Proof. We first note that by direct scaling of Theorem 7.9 we have that the only mechanism that satisfies all requirements of
the claim for the case of a publicly known budget b1 = b2 = B gives xi = (1− B2/v2

i )/2, pi = B(1− B/vi), x j = (1+ B2/v2
i )/2,

p j = 1 for the case 1 < vi < v j , and x j = 1, p j = vi , xi = 0, pi = 0 for the case vi < 1 and vi < v j .
Let us now assume to the contrary that an auction that satisfies all requirements of the claim exists, then for any fixed

values of b1,b2 it must be identical to the scaled version of mechanism M3. Now let us look at a few cases with v1 = 2,
v2 = 2 + ε . First let us look at the case b1 = b2 = 1. The previous theorem mandates that in this case x1 = 3/8, p1 = 1/2
and x2 = 5/8, p2 = 1 (and thus u2 = 1/4 + O (ε)).



502 S. Dobzinski et al. / Games and Economic Behavior 74 (2012) 486–503
Now let us look at the case where b1 = b2 = 2 − ε . Again the Theorem 7.9 with scaling mandates that x1 > 0 and also
u1 > 0.

Now let us look at the case of b1 = 1 and b2 = 2 − ε . If x2 < 1 then, by Pareto optimality, p2 = b2 = 2 − ε , and thus
u2 < 2ε , which means that player 2 has a profitable lie stating b2 = 1. Thus x2 = 1 and x1 = 0, but then player 1 has a
profitable lie stating that b1 = 2 − ε . �
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Appendix A. Proof of Claim 2.4

Recall that we need to show that an outcome {(xi, pi)} is Pareto optimal in the infinitely divisible case if and only if (a)∑
i xi = 1 and (b) for all i such that xi > 0 we have that for all j with v j > vi , p j = b j .
We first show that if either (a) or (b) do not hold then the outcome is not Pareto. If

∑
i xi < 1 we simply add an

additional quantity to some player for no additional charge, thus making him strictly better off while not harming any other
player. Otherwise

∑
i xi = 1 and there exists a player i with xi > 0 and a player j with v j > vi and p j < b j . Fix some ε such

that ε · vi < b j − p j . Construct an outcome (x′, p′) such that x′
i = xi − ε , x′

j = x j + ε , p′
i = pi − ε · vi , and p′

j = p j − ε · vi .
All other players get the same quantity and pay the same price. Notice that

∑
i p′

i = ∑
i pi and that (x′, p′) is indeed a valid

outcome. It is straight-forward to verify that i’s utility remains the same while j’s utility strictly increases.
For the other direction, fix an outcome (x, p) that satisfies (a) and (b). We will show that any other outcome (x′, p′)

cannot be a Pareto improvement to (x, p) (as in Definition 2.3), implying that (x, p) is Pareto. Since (a) holds then
∑

i xi = 1.
Rename the players such that v1 � v2 � · · · � vn . Property (b) implies that there exists an index 1 � k � n such that, for
any index i < k, xi > 0 and pi = bi , for any index i > k, xi = 0, and at k itself, xk > 0. Let � = ∑k−1

i=1 (xi − x′
i). For any i we

need u′
i � ui , which implies p′

i − pi � vi · (x′
i − xi). We make several observations. First,

n∑
i=k

(
p′

i − pi
)
� vk

(
x′

k − xk
) +

n∑
i=k+1

vi
(
x′

i − xi
)
� vk

n∑
i=k

(
x′

i − xi
) = � · vk

where the second inequality follows since xi = 0 for any i > k, and the third inequality follows since
∑k−1

i=1 (xi − x′
i) −∑n

i=k(x′
i − xi) = 0. Second,

k−1∑
i=1

(
pi − p′

i

)
�

∑
1�i�k−1: xi�x′

i

(
pi − p′

i

)
�

∑
1�i�k−1: xi�x′

i

(
xi − x′

i

)
vi

�
∑

1�i�k−1: xi�x′
i

(
xi − x′

i

)
vk � vk

k−1∑
i=1

(
xi − x′

i

) = � · vk

where the first inequality follows since pi = bi � p′
i for any i < k. Now, if there exists 1 � i � k − 1 such that xi < x′

i

then the above argument yields
∑k−1

i=1 (pi − p′
i) > � · vk . We then get

∑k−1
i=1 (pi − p′

i) − ∑n
i=k(p′

i − pi) > 0. In other words,∑
i pi >

∑
i p′

i , a contradiction to the definition of a Pareto improvement. Therefore assume that xi � x′
i for any 1 � i � k −1.

This implies that

k−1∑
i=1

(
xi − x′

i

)
vi � � · vk �

n∑
i=k

(
x′

i − xi
)

vi .

Putting together these four inequalities, we get

∑
i

(
ui − u′

i

) =
k−1∑
i=1

(
pi − p′

i

) −
n∑

i=k

(
p′

i − pi
) +

k−1∑
i=1

(
xi − x′

i

)
vi −

n∑
i=k

(
x′

i − xi
)

vi � 0.

As a result, ui = u′
i for any player i, hence (x′, p′) is not a Pareto improvement for (x, p) since there does not exist a player

i with u′
i > ui . This concludes the proof of the claim.

Appendix B. Proof of Proposition 2.7

Let αi = bi/
∑

j b j . Recall that we need to prove that the proportional-share auction with xi = bi/
∑

j b j and pi = bi

is Pareto Optimal and incentive compatible in the range vi �
∑

j b j/(1 − αi) for all i. Pareto optimality is trivial from
Proposition 2.4 since we charge bidders their full budget. We now prove incentive compatibility in the specified range.



S. Dobzinski et al. / Games and Economic Behavior 74 (2012) 486–503 503
Since the values vi do not affect the payment or the allocation, it suffices to show that no manipulation of bi is profitable.
Since we charge each bidder his total declared budget, it is clear that declaring b′

i > bi will lead to the bidder exceeding
his budget. Thus it suffices to prove that no smaller declaration b′

i < bi is profitable. Let u(z) be the utility obtained by
bidder i if he declares a budget of b′

i = z. Thus u(z) = vi · z/(z + ∑
j �=i b j) − z. It suffices to show that u is monotonically

increasing with z. To verify this, take the derivative with respect to z: u′(z) = vi
∑

j �=i bi/(z + ∑
j �=i b j)

2 − 1. This derivative

is non-negative, u′(z) � 0, if vi � (
∑

j b j)
2/

∑
j �=i b j = ∑

j b j/(1 −αi), as is indeed specified. This concludes the proof of the
claim.
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