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Abstract
Designing an incentive compatible auction that maximizes 
expected revenue is an intricate task. The single-item case 
was resolved in a seminal piece of work by Myerson in 1981. 
Even after 30–40 years of intense research, the problem 
remains unsolved for settings with two or more items. We 
overview recent research results that show how tools from 
deep learning are shaping up to become a powerful tool 
for the automated design of near-optimal auctions auc-
tions. In this approach, an auction is modeled as a multi-
layer neural network, with optimal auction design framed 
as a constrained learning problem that can be addressed 
with standard machine learning pipelines. Through this 
approach, it is possible to recover to a high degree of accu-
racy essentially all known analytically derived solutions for 
multi-item settings and obtain novel mechanisms for set-
tings in which the optimal mechanism is unknown.

1. INTRODUCTION
Optimal auction design is one of the cornerstones of 
economic theory. It is of great practical importance, as auc-
tions are used across industries and by the public sector to 
organize the sale of their products and services. Concrete 
examples are the US FCC Incentive Auction, the sponsored 
search auctions conducted by web search engines such as 
Google, and the auctions run on platforms such as eBay. 
In the standard independent private valuations model, each 
bidder has a valuation function over subsets of items, drawn 
independently from not necessarily identical distributions. 
The auctioneer knows the value distribution, but not the 
actual valuations (willingness to pay) of bidders. The bid-
ders may act strategically and report untruthfully if this is to 
their benefit. One way to circumvent this is to require that it 
is in each agent’s best interest to report its value truthfully. 
The goal then is to learn an incentive compatible auction 
that maximizes revenue.

In a seminal piece of work, Myerson resolved the opti-
mal auction design problem when there is a single item 
for sale.17 Quite astonishingly, even after 30–40 years of 
intense research, the problem is not completely resolved 
even for a simple setting with two bidders and two items. 
Our focus is on designing auctions that satisfy dominant-
strategy incentive compatibility (DSIC), which is a robust 
and desirable notion of incentive alignment. Although 
there have been some elegant partial characterization 
results,6, 10, 15, 20 and an impressive sequence of algorithmic 
results, for example, Babaioff et al.1 and Cai et al.,2 these 
apply to the weaker notion of Bayesian incentive compat-
ibility (BIC) except for the setting with one bidder, when 
DSIC and BIC coincide.

An extended abstract was published in Proceedings of the 
36th International Conference on Machine Learning, 2019. 
A full version of this paper is available at https://arxiv.
org/abs/1706.03459. All code is available through the 
GitHub repository at https://github.com/saisrivatsan/ 
deep-opt-auctions.

In Dütting et al.,7 we have introduced a new, deep-learning- 
based approach to address the problem of optimal, multi-
item auction design. In particular, we use multilayer neural 
networks to encode auction mechanisms, with bidder valu-
ations forming the input and allocation and payment deci-
sions forming the output. The networks are trained using 
samples from the value distributions, so as to maximize 
expected revenue subject to constraints for incentive com-
patibility. Earlier work has suggested to use algorithms to 
automate the design of mechanisms,3 but where scalable, 
this earlier work had to restrict the search space to auction 
designs that are known to be incentive compatible.13, 23 The 
deep learning approach, in contrast, enables searching 
over broad classes of not necessarily truthful mechanisms. 
Another related line of work has leveraged machine learning 
to optimize different aspects of mechanisms,8, 18 but none of 
these offers the generality and flexibility of our approach.

Our framework provides two different approaches to 
handling DSIC constraints. In the first, we leverage results 
from economic theory that characterize DSIC mechanisms 
and model the network architecture appropriately. This 
approach, which we refer to as RochetNet, is applicable in 
single-bidder multi-item settings and provides exactly DSIC 
mechanisms.22 In the second, we lift the DSIC constraints 
into the objective via the augmented Lagrangian method, 
which has the effect of introducing a penalty term for DSIC 
violations. This approach, which we refer to as RegretNet, is 
also applicable in multibidder multi-item settings for which 
we do not have tractable characterizations of DSIC mecha-
nisms but will generally only find mechanisms that are 
approximately incentive compatible.

In this Research Highlight, we describe the general 
approach and present a selection of experimental results 
in support of our general finding that these approaches 
are capable of recovering, to a high degree of accuracy, 
the optimal auctions from essentially all analytical results 
obtained over the past 30–40 years and that deep learning 
is also a powerful tool for confirming or refuting hypoth-
eses concerning the form of optimal auctions and can be 
used to find new designs. In the full version of the paper, 
we also prove generalization bounds that provide confi-
dence intervals on the expected revenue and expected 
violation of DSIC based on empirical properties obtained  
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during training, the complexity of the neural network used to 
encode the allocation and payment rules, and the number of 
samples used to train the network. Others have provided general-
ization bounds for training revenue-maximizing auctions in sim-
pler settings; see, for example, Morgenstern and Roughgarden.16

Follow-up work has extended our approach to handle 
budget constraints,9 as well as to a problem in social choice, 
the so-called facility location problem,12 studied specialized 
architectures for single-bidder settings,24 introduced net-
works that encode symmetry,21 and provided methods to 
certify the strategy-proofness of learned mechanisms.4

2. OPTIMAL AUCTION DESIGN
We start by stating the optimal auction design problem and 
providing a few illustrative examples.

In the general version of the problem, we are given n bid-
ders N = {1, …, n} and m items M = {1, …, m}. Each bidder i 
has a valuation function vi: 2

M → R≥0, where vi(S) denotes how 
much the bidder values the subset of items S ⊆ M. In the sim-
plest case, a bidder may have additive valuations. In this case, 
she has a value vi({j}) for each individual item j ∈ M, and her 
value for a subset of items S ⊆ M is . If a bid-
der’s value for a subset of items S ⊆ M is  ,  
we say this bidder has a unit-demand valuation. We also con-
sider bidders with specific combinatorial valuations but 
defer the details to our full version.

Bidder i’s valuation function is drawn independently 
from a distribution Fi over possible valuation functions Vi. 
We write v = (v1, …, vn) for a profile of valuations and denote 

. The auctioneer knows the distributions F =  
(F1, …, Fn) but does not know the bidders’ realized valuation v. 
The bidders report their valuations (perhaps untruthfully), 
and an auction decides on an allocation of items to the bid-
ders and charges a payment to them. We denote an auction  
(g, p) as a pair of allocation rules gi : V → 2M and payment 
rules pi : V → R≥0 (these rules can be randomized). Given bids 
b = (b1, …, bn) ∈ V, the auction computes an allocation g(b) 
and payments p(b).

A bidder with valuation vi receives a utility ui(vi; b) =  
vi( gi(b) ) − pi(b) for a report of bid profile b. Let v−i denote the 
valuation profile v = (v1, …, vn) without element vi, similarly 
for b−i, and let  denote the possible valuation 
profiles of bidders other than bidder i. An auction is domi-
nant strategy incentive compatible (DSIC) if each bidder’s  
utility is maximized by reporting truthfully no matter  
what the other bidders report. In other words, ui(vi;(vi, b−i) ) 
≥ ui(vi; (bi, b−i ) ) for every bidder i, every valuation vi ∈ Vi, every 
bid bi ∈ Vi, and all bids b−i ∈ V−i from others. An auction is 
ex post individually rational (IR) if each bidder receives a 
nonzero utility, that is, ui (vi; (vi, b−i) ) ≥ 0 ∀i ∈ N, vi ∈ Vi , and 
b−i ∈ V−i .

In a DSIC auction, it is in the best interest of each bidder 
to report truthfully, and so the revenue on valuation profile v 
is . Optimal auction design seeks to identify a DSIC 
auction that maximizes expected revenue.

Example 1 (Vickrey auction26). A classic result in auction 
theory concerns the sale of a single item to n bidders. It states that 
the following auction—the so-called Vickrey or second-price 

auction—is DSIC and maximizes social welfare: Collect a bid bi 
from each bidder, assign the item to the bidder with the highest 
bid (breaking ties in an arbitrary but fixed manner), and make 
the bidder pay the second-highest bid.

Example 2 (Myerson auction17). A simple example shows 
that the Vickrey auction does not maximize revenue: Suppose 
there are two bidders with vi ∈ U[0, 1], then its expected rev-
enue is 1/3. Higher revenue can be achieved with a second-
price auction with reserve r: As before, collect bids bi, allocate 
to the highest bid but only if this bid is at least r, and make 
the winning bidder (if any) pay the maximum of the runner- 
up bid and r. It is straightforward to verify that this auction is 
DSIC and that choosing r = 1/2 leads to an expected revenue 
of 5/12 > 1/3.

In the simple example with a single item and uniform 
valuations, a second-price auction with reserve 1/2 is in 
fact the optimal auction. This auction illustrates a special  
case of Myerson’s theory for the design of revenue-optimal, 
single-item auctions.17 Comparable results are not available 
for selling multiple items, even when we are trying to sell 
them to a single bidder!

3. THE LEARNING PROBLEM
At the core of our approach is the following reinterpretation 
of the optimal auction design problem as a learning prob-
lem, where in the place of a loss function that measures 
error against a target label, we adopt the negated, expected 
revenue on valuations drawn from F.

More concretely, the problem we seek to solve is the fol-
lowing: We are given a parametric class of auctions, (gw, pw) 
∈ M, for parameters w ∈ Rd for some d ∈ N, and a sample 
of bidder valuation profiles S = {v (1), …, v (L)} drawn i.i.d.  
from F. Our goal is to find an auction that minimizes the 
negated, expected revenue  among all auc-
tions in M that satisfy incentive compatibility.

We consider two distinct approaches for achieving DSIC. 
In the first approach, we make use of characterization results. 
When it is possible to encode them within a neural network 
architecture, these characterizations from economic theory 
usefully constrain the search space and provide exact DSIC. 
At the same time, the particular characterization that we use 
is limited in that it applies only to single-bidder settings. 
The second approach that we take is more general, applying 
to multi-bidder settings, and does not rely on the availability 
of suitable characterization results. On the other hand, this 
approach entails search through a larger parametric space 
and only achieves approximate DSIC.

We describe the first approach in Section 4 and return to 
the second approach in Section 5.

4. THE ROCHETNET FRAMEWORK
We have developed two different frameworks that achieve 
exact DSIC by applying appropriate structure to the neu-
ral network architecture. One framework, referred to as 
MyersonNet, is inspired by Myerson’s lemma17 and can be 
used for the study of multi-bidder, single-item auctions 
(see the full version of this paper). A second framework, 
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is the induced utility. Figure 1(b) shows an example of an 
induced utility function for a single item (m = 1) and a net-
work with a menu consisting of four choices (K = 4).

The network architecture ensures that the utility function 
is monotonically non decreasing, convex, and 1-Lipschitz, 
conforming to Rochet’s characterization.22 It also easily pro-
vides the following theoretical property.

Theorem 4.1. For any parameterization w, the mechanism 
(gw, pw) corresponding to RochetNet is DSIC and IR.

Proof. For DSIC, note that (1) the available choices are 
fixed, and independent of the report; and (2) for a truthful 
report, the “max” structure of RochetNet ensures that the 
bidder receives the choice that maximizes its true expected 
utility, and thus, the bidder can do no better than this. For 
IR, note that the expected utility for a true report is at least 
zero because of the availability of the null outcome.� 

4.2. Training
During training, we seek to minimize the negated, expected 
revenue. Let F denote the distribution on valuation v. To 
ensure that the objective is a continuous function of α and 
β (so that parameters can be optimized through gradient 
descent), the best choice k*(v) at input v is approximated dur-
ing training via a softmax operation in place of the argmax. 
With this, we seek to minimize the following loss function, 
which corresponds to the approximate, negated revenue:

	 � (3)

where

�(4)

and c > 0 is a constant that controls the quality of the 
approximation. The softmax function is softmaxk 

 and takes as input K + 1 real 
numbers and returns a probability distribution with each 
entry proportional to the exponential of the corresponding 
input. Once trained, RochetNet is used at test time with a 
hard max in place of the softmax to ensure exact DSIC and IR.

We train RochetNet using samples drawn from the bid-
der’s value distribution. Given a sample S = {v(1), …, v(L)}, we 
minimize the empirical loss, which is

� (5)

We use projected stochastic gradient descent (SGD) 
to minimize (5). We estimate gradients for the loss using 
mini-batches of size 215 valuation samples in every itera-
tion. In the projection step, we project each parameter αjk 
(for item j, choice k) onto [0, 1] to provide a well-defined 
probability.

5. THE REGRETNET FRAMEWORK
We next describe our second approach to handling DSIC 
constraints and the corresponding framework, which we 
refer to as RegretNet. Unlike the first approach, this second 

referred to as RochetNet, is inspired by Rochet’s charac-
terization theorem for DSIC auctions in single-bidder 
settings.22 We give the construction of RochetNet for addi-
tive preferences, but this can be easily extended to unit-
demand valuations.

4.1. The RochetNet architecture
For this single-bidder, multi-item setting, let  denote 
the bidder’s additive valuation, so that vj is its value for item j. Let 

 denote the bid, which need not be truthful. The alloca-
tion rule , for parameters w, defines for each 
item j ∈ [J] the probability  with which the item 
is allocated to the bidder. The payment rule  
defines the payment pw(b) made by the bidder.

The mechanism (gw, pw) induces a utility function uw: 
. For truthful bids, v, the utility function induced by 

the mechanism is

� (1)

The RochetNet architecture represents the rules of a mech-
anism through a menu. The menu encodes a set of K choices, 
where each choice consists of a randomized allocation together 
with a price. The network selects the choice for the bidder that 
maximizes the bidder’s reported utility given its bid, or chooses 
the null outcome (no allocation, no payment) when this is pre-
ferred. This yields the following utility function:

	 ,� (2)

with parameters w = (α, β), where α ∈ [0, 1]mK and β ∈ RK.  
For choice k ∈ [K], parameters αk ∈ [0, 1]m specify the ran-
domized allocation and parameter βk ∈ R specifies the 
negated price (βks will be negative, and the smaller the value 
of βk, the larger the payment).

For input b, let k*(b) ∈ argmaxk∈[K]∪{0}{αk · b + βk} denote 
the best choice for the bidder, where choice 0 corresponds 
to α0 = 0 and β0 = 0 and the null outcome. This best choice 
defines the allocation and payment rule—for bid b, the allo-
cation is  and the payment is .

RochetNet represents this induced utility function as a 
single layer neural network as illustrated in Figure 1(a). The 
input layer takes a bid  and the output of the network 

Figure 1. RochetNet: (a) Neural network representation of a menu, 
shown here with K choices as well as the null outcome (0); here,  
hk(b) = αk · b + βk  for b ∈ Rm, αk ∈ [0, 1]m, and βk ∈ R.  (b) An induced 
utility function represented by RochetNet for the case of a single 
item (m = 1) and a network with a menu with four choices (K = 4).
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and seek to minimize the empirical loss (negated revenue) 
subject to the empirical regret being zero for all bidders:

	 � (7)

We additionally require the designed auction to satisfy 
IR, which can be ensured by restricting the search space to a 
class of parameterized auctions that charge no bidder more 
than her valuation for an allocation.

5.2. The RegretNet architecture
In this case, the goal is to train neural networks that explicitly 
encode the allocation and payment rule of the mechanism. The 
architectures generally consist of two logically distinct compo-
nents: the allocation and payment networks. These components 
are trained together and the outputs of these networks are  
used to compute the regret and revenue of the auction.

An overview of the RegretNet architecture for additive 
valuations is given in Figure 2.

The allocation network encodes a randomized allocation 
rule gw : Rnm → [0, 1]nm and the payment network encodes a 
payment rule , both of which are modeled as 
feedforward, fully-connected networks with a tanh activa-
tion function in each of the hidden nodes. The input layer of 
the networks consists of bids bij ≥ 0 representing the valua-
tion of bidder i for item j.

The allocation network outputs a vector of allocation prob-
abilities z1   j = g1 j (b), …, znj = gnj (b), for each item j ∈ [m]. To ensure 
feasibility, that is, the probability of an item being allocated is 
at most one, the allocations are computed using a softmax acti-
vation function, so that for all items j, we have . To 
accommodate the possibility of an item not being assigned, 
we include a dummy node in the softmax computation to hold 
the residual allocation probability. The payment network out-
puts a payment for each bidder that denotes the amount the 
bidder should pay in expectation for a particular bid profile.

To ensure that the auction satisfies IR, that is, does 
not charge a bidder more than her expected value for the 

approach does not rely on characterizations of DSIC mech-
anisms. Instead, we replace the DSIC constraints with a 
differentiable approximation and lift the DSIC constraints 
into the objective by augmenting the objective with a term 
that accounts for the extent to which the DSIC constraints 
are violated. Here, we provide an overview of the special 
case in which bidders have additive values for items, but the 
framework also handles more general settings.

5.1. Expected ex post regret
We can measure the extent to which an auction violates 
incentive compatibility through a particular variation on 
ex post regret introduced in Dütting et al.8 Fixing the bids 
of others, the ex post regret for a bidder is the maximum 
increase in her utility, considering all possible nontruth-
ful bids.

For mechanisms (gw, pw), we will be interested in the 
expected ex post regret for bidder i:

where the expectation is over v ∼ F and    
 for model parameters w. We assume that F has full 

support on the space of valuation profiles V, and recognizing 
that the regret is nonnegative, an auction satisfies DSIC if 
and only if rgti(w) = 0, ∀i ∈ N, except for measure zero events.

Given this, we reformulate the learning problem as mini-
mizing expected negated revenue subject to the expected ex 
post regret being zero for each bidder:

Given a sample S of L valuation profiles from F, we esti-
mate the empirical ex post regret for bidder i as:

	 � (6)
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where

The terms  and g
, i in turn involve a “max” over misre-

ports for each bidder i and valuation profile . We solve this 
inner maximization over misreports using another gradi-
ent-based optimizer (lines 6–10).

As the optimization problem is nonconvex, the solver 
is not guaranteed to reach a globally optimal solution. 
However, this method proves very effective in our experi-
ments, and we find that the learned auctions incur very low 
regret and closely match the structure of optimal auctions in 
settings where this is known.

6. EXPERIMENTS
We present and discuss a selection of experiments out of a 
broad range of experiments that we have conducted and that 
we describe in more detail in Düetting et al.7 and the full ver-
sion. The experiments demonstrate that our approach can 
recover near-optimal auctions for essentially all settings for 
which the optimal design is analytically known, that it is an 
effective tool for confirming or refuting hypotheses about 
optimal designs, and that it can find new auctions for set-
tings where there is no known analytical solution.

6.1. Setup
We implemented our framework using the TensorFlow deep 
learning library.

For RochetNet, we initialized parameters α and β in  
Eq. (2) using a random uniform initializer over the interval 
[0,1] and a zero initializer, respectively. For RegretNet, we 
used the tanh activation function at the hidden nodes, and 
Glorot uniform initialization.11 We performed cross-valida-
tion to decide on the number of hidden layers and the num-
ber of nodes in each hidden layer. We include exemplary 
numbers that illustrate the trade-offs in Section 6.6.

We trained RochetNet on 215 valuation profiles and sam-
pled every iteration in an online manner. We used the Adam 
optimizer with a learning rate of 0.1 for 20,000 iterations for 
making the updates. The parameter κ in Eq. (4) was set to 1000. 
Unless specified otherwise, we used a max network over 
1000 linear functions to model the induced utility functions 
and report our results on a sample of 10,000 profiles.

For RegretNet, we used a sample of 640,000 valuation pro-
files for training and a sample of 10,000 profiles for testing. 
The augmented Lagrangian solver was run for a maximum of 
80 epochs (full passes over the training set) with a minibatch 
size of 128. The value of ρ in the augmented Lagrangian was 
set to 1.0 and incremented every two epochs. An update on 
wt was performed for every minibatch using the Adam opti-
mizer with learning rate 0.001. For each update on wt, we ran 
Γ = 25 misreport update steps with learning rate 0.1. At the 
end of 25 updates, the optimized misreports for the current 
minibatch were cached and used to initialize the misreports 
for the same minibatch in the next epoch. An update on λt 
was performed once every 100 minibatches (i.e., Q = 100).

We ran all our experiments on a compute cluster with 
NVDIA Graphics Processing Unit (GPU) cores.

allocation, the network first computes a normalized pay-
ment  for each bidder i using a sigmoidal unit, and 
then outputs a payment , where the zij’s are 
the outputs from the allocation network.

5.3. Training
For RegretNet, we have used the augmented Lagrangian 
method to solve the constrained training problem in (7) over 
the space of neural network parameters w.

Algorithm 1 RegretNet Training

1:    Input: Minibatches S1, …, ST of size B
2:   Parameters: ∀t, ρt > 0, γ > 0, η > 0, Γ ∈ N, K ∈ N
3:   Initialize: w0 ∈ Rd, λ0 ∈ Rn

4:     for t = 0 to T do
5:        Receive minibatch St = {v (1), …, v (B)}
6:        Initialize misreports 
7:         for r = 0 to Γ do
8:             ∀  ∈ [B], i ∈ N:
9:                  
10:    end for
11:    Compute regret gradient: ∀  ∈ [B], i ∈ N:
12:        
13:     
14:    Compute Lagrangian gradient (8) on St and update:
15:     
16:    Update Lagrange multipliers once in Q iterations:
17:         if t is a multiple of Q
18:             Compute  on St

19:            
20:         else
21:                λt+1 ← λt

22: end for

We first define the Lagrangian function for the optimiza-
tion problem, augmented with a quadratic penalty term for 
violating the constraints:

where λ ∈ Rn is a vector of Lagrange multipliers and ρ > 0 is a 
fixed parameter that controls the weight on the quadratic pen-
alty. The solver alternates between the following updates on 
the model parameters and the Lagrange multipliers: (a) wnew 
∈ argminw Cρ (w

old;  λold) and (b) 
The solver is described in Algorithm 1. We divide the 

training sample S into minibatches of size B, estimate gra-
dients on the minibatches, and perform several passes over 
the training samples. The update (a) on model parameters 
involves an unconstrained optimization of Cρ over w and is 
performed using a gradient-based optimizer. The gradient 
Cρ of w.r.t. w for fixed λt is given by:

� (8)
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Giannakopoulos and Koutsoupias10 proposed a Straight-
Jacket Auction (SJA) and gave a recursive algorithm for find-
ing the subdivision and the prices, and used LP duality to 
prove that the SJA is optimal for items. These authors also 
conjecture that the SJA remains optimal for m ≤ 6 general m 
but were unable to prove it.

Figure 5 gives the revenue of the SJA and that found by 
RochetNet for m ≤ 10 items. We used a test sample of 230 
valuation profiles (instead of 10,000) to compute these 
numbers for higher precision. It shows that RochetNet 
finds the optimal revenue for m ≤ 6 items and that it finds 
DSIC auctions whose revenue matches that of the SJA for 
m = 7, 8, 9, and 10 items. Closer inspection reveals that 
the allocation and payment rules learned by RochetNet 
essentially match those predicted by Giannakopoulos and 
Koutsoupias10 for all m ≤ 10. We take this as strong addi-
tional evidence that the conjecture of Giannakopoulos 
and Koutsoupias10 is correct.

6.2. Evaluation
In addition to the revenue of the learned auction on a test 
set, we also evaluate the regret achieved by RegretNet, aver-
aged across all bidders and test valuation profiles, that  
is, . Each  has an inner “max” of the 
utility function over bidder valuations vi′ ∈ Vi (see (6) ). We 
evaluate these terms by running gradient ascent on vi′ with 
a step-size of 0.1 for 2000 iterations (we test 1000 different 
random initial  and report the one that achieves the larg-
est regret). For some of the experiments, we also report the 
total time it took to train the network. This time is incurred 
during offline training, whereas the allocation and payments 
can be computed in a few milliseconds once the network  
is trained.

6.3. The Manelli-Vincent auction
As a representative example the optimal designs from eco-
nomic theory that we can almost exactly recover with our 
approach, we discuss the Manelli-Vincent auction.15

A. Single bidder with additive valuations over two items, 
where the item values are independent draws from 
U[0, 1].

The optimal auction for this setting is given by Manelli 
and Vincent.15 We used two hidden layers with 100 hidden 
nodes in RegretNet for this setting. A visualization of the 
optimal allocation rule and those learned by RochetNet 
and RegretNet is given in Figure 3. Figure 4(a) gives the 
optimal revenue, the revenue and regret obtained by 
RegretNet, and the revenue obtained by RochetNet. Figure 
4(b) shows how these terms evolve over time during train-
ing in RegretNet.

Both approaches essentially recover the optimal design, 
not only in terms of revenue but also in terms of the alloca-
tion rule and transfers. The auction learned by RochetNet is 
exactly DSIC and matches the optimal revenue precisely, with 
sharp decision boundaries in the allocation and payment 
rule. The decision boundaries for RegretNet are smoother, 
but still remarkably accurate. The revenue achieved by 
RegretNet matches the optimal revenue up to a <1% error 
term and the regret it incurs is <0.001. The plots of the test 
revenue and regret show that the augmented Lagrangian 
method is effective in driving the test revenue and the test 
regret toward optimal levels.

The additional domain knowledge incorporated into the 
RochetNet architecture leads to exactly DSIC mechanisms 
that match the optimal design more accurately and speeds 
up computation (the training took about 10 minutes com-
pared to 11 hours for RegretNet). On the other hand, we find 
it surprising how well RegretNet performs given that it starts 
with no domain knowledge at all.

6.4. The Straight-Jacket auction
Extending the analytical result of Manelli and Vincent15 to 
a single bidder and an arbitrary number of items (even with 
additive preferences, all uniform on [0, 1]) has proven elu-
sive. It is not even clear whether the optimal mechanism is 
deterministic or requires randomization.

Figure 3. Side-by-side comparison of allocation rules learned by 
RochetNet (panels (a) ) and RegretNet (panels (b) ) for Setting A. The 
panels describe the probability that the bidder is allocated item 1 
(left) and item 2 (right) for different valuation inputs. The optimal 
auctions are described by the regions separated by the dashed black 
lines, with the numbers in black being the optimal probability of 
allocation in the region.

(a)
0.0

0.0

V
2

V1

0.2

0.4

0

1
0.6

0.8

1.0
Prob. of allocating item 1

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

(b)

0.0
0.0

V
2

V1

0.2

0.4

0

1
0.6

0.8

1.0
Prob. of allocating item 2

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.0
0.0

V
2

V1

0.2

0.4

0

1
0.6

0.8

1.0
Prob. of allocating item 1

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0 0.0
0.0

V
2

V1

0.2

0.4

0

1
0.6

0.8

1.0
Prob. of allocating item 2

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Figure 4. (a) Test revenue and regret for RegretNet and revenue 
for RochetNet for Setting A. (b) Plot of test revenue and regret as a 
function of training epochs for Setting A with RegretNet.
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C. Three additive bidders and ten items, where bidders 
draw their value for each item independently from the 
uniform distribution U[0,1].

D. Five additive bidders and ten items, where bidders 
draw their value for each item independently from the 
uniform distribution U[0,1].

The optimal auction for these settings is not known. However, 
running a separate Myerson auction for each item is optimal  
in the limit of the number of bidders.19 For a regime with a  
small number of bidders, this provides a strong benchmark. We 
also compare to selling the grand bundle via a Myerson auction.

For Setting C, we show in Figure 6(a) the revenue and 
regret of the learned auction on a validation sample of 10,000 
profiles, obtained with different architectures. Here, (R, K) 
denotes an architecture with R hidden layers and K nodes per 
layer. The (5, 100) architecture has the lowest regret among 
all the 100-node networks for both Setting C and Setting D. 
Figure 6(b) shows that the learned auctions yield higher rev-
enue compared to the baselines, and do so with tiny regret.

7. CONCLUSION
The results from this research demonstrate that the methods 
of deep learning can be used to find close approximations to 
optimal designs from auction theory where they are known, 
to aid with the discovery of new optimal designs, and to scale-
up computational approaches to optimal, DSIC auction 
design. Although our approach can be applied to settings that 
are orders of magnitude more complex than those that can be 
reached through other approaches to optimal DSIC design, 
a natural next step would be to scale this approach further 
to industry scale (e.g., through standardized benchmarking 
suites and innovations in network architecture). We also see 
promise for this framework in advancing economic theory, 
for example in supporting or refuting conjectures and as an 
assistant in guiding new economic discovery.

More generally, we believe that our work (together with 
a handful of contemporary works such as Hartford et al.,14 
Thompson et al.25) has opened the door to ML-assisted eco-
nomic theory and practice, and we are looking forward to 
the advances that this agenda will bring along.�

6.5. Discovering new optimal designs
RochetNet can also be used to aid the discovery of new, prov-
ably optimal designs. For this, we consider a single bidder with 
additive but correlated valuations for two items as follows:

B. �One additive bidder and two items, where the bidder’s  
 valuation is drawn uniformly from the triangle  
   where c > 0 is a free  
 parameter.

There is no analytical result for the optimal auction design 
for this setting. We ran RochetNet for different values of c 
(e.g., 0.5, 1, 3, 5) to discover the optimal auction. Based on this, 
we conjectured that the optimal mechanism contains two 
menu items for c ≤ 1, namely {(0, 0), 0} and ,  
and three menu items for c > 1, namely {(0, 0), 0}, {(1/c, 1), 
4/3}, and {(1, 1), 1 + c/3}, giving the optimal allocation and pay-
ment in each region. In particular, as c transitions from val-
ues less than or equal to 1 to values larger than 1, the optimal 
mechanism transitions from being deterministic to being 
randomized. We have used duality theory5 to prove the opti-
mality of this design, as stated in Theorem 6.1.

Theorem 6.1. For any c > 0, suppose the bidder’s valua-
tion is uniformly distributed over set  

. Then, the optimal auction contains two menu 
items {(0, 0), 0} and  when c ≤ 1, and three menu 
items {(0, 0), 0}, {(1/c, 1), 4/3}, and {(1, 1), 1+c/3} otherwise.

6.6. Scaling up
We have also considered settings with up to five bidders and 
up to ten items. This is several orders of magnitude more 
complex than settings that can be addressed through other 
computational approaches to DSIC auction design. It is also 
a natural playground for RegretNet as no tractable character-
izations of DSIC mechanisms are known for these settings.

The following two settings generalize the basic setting 
considered in Manelli and Vincent15 and Giannakopoulos 
and Koutsoupias10 to more than one bidder:

Items SJA (rev) RochetNet (rev)

2 0.549187 0.549175

3 0.875466 0.875464

4 1.219507 1.219505

5 1.576457 1.576455

6 1.943239 1.943216

7 2.318032 2.318032

8 2.699307 2.699305

9 3.086125 3.086125

10 3.477781 3.477722

Figure 5. Revenue of the Straight-Jacket Auction (SJA) computed via 
the recursive formula in Giannakopoulos and Koutsoupias10 and that 
of the auction learned by RochetNet, for various numbers of items m. 
The SJA is known to be optimal for up to six items and conjectured 
to be optimal for any number of items.

(a)

(b)

Setting RegretNet RegretNet Item-wise Bundled
rev rgt Myerson Myerson

C : 3 × 10 5.541 < 0. 002 5.310 5.009
D : 5 × 10 6.778 < 0. 005 6.716 5.453
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Figure 6. (a) Revenue and regret of RegretNet on the validation set 
for auctions learned for Setting C using different architectures, 
where (R, K) denotes R hidden layers and K nodes per layer. (b) Test 
revenue and regret for Settings C and D, for the (5, 100) architecture.
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