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We study economies with indivisibilities that satisfy the gross substitutes (GS)
condition. The simplest example of GS preferences are unit demand preferences. We
prove that the set of GS preferences is the largest set containing unit demand
preferences for which the existence of Walrasian equilibrium is guaranteed. We
show that if a GS economy is replicated sufficiently many times, the equilibrium
payment of any agent in the Vickrey�Clarke�Groves mechanism is equal to the
value of the allocation he receives at the smallest Walrasian prices. The model
extended to include production. Journal of Economic Literature Classification
Numbers: D4, D44, D5, D51. � 1999 Academic Press

1. INTRODUCTION

In this paper we study the problem of efficient production and allocation
of indivisible objects among a set of consumers. We assume that the agents'
preferences depend on the bundle of objects and the quantity of money
they consume. Furthermore, we assume that preferences are quasilinear in
money, and that agents have a large endowment of money.

With indivisibilities, it is well-known that many familiar properties of the
utility functions fail to ensure existence. In their striking analysis of the
matching problem, Kelso and Crawford [5] introduce the gross substitutes
(GS) condition which ensures the non-emptiness of the core. We propose
two new conditions, and show that with quasilinearity they are equivalent
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to the GS condition of Kelso and Crawford. The simplest example of GS
preferences are unit demand preferences. A unit demand preference is such
that the agent can enjoy at most one object. We prove that the set of GS
preferences is the largest set containing unit demand preferences for which
an existence theorem can be established. Thus, we prove a ``converse'' to
Kelso and Crawford's existence result; in a sense, the GS condition is
necessary to ensure existence of a Walrasian equilibrium.

With quasilinear preferences, there is a representative consumer whose
demand function coincides with society's aggregate demand. When the GS
condition is satisfied, the smallest Walrasian price and the largest
Walrasian price of each object can be interpreted as shadow prices. The
largest Walrasian price of any object : represents the decrease in total
utility of an efficient allocation that would result if this object were
removed from the aggregate endowment. Similarly, the smallest Walrasian
price represents the amount of increase associated with an efficient alloca-
tion if a second copy (i.e. a perfect substitute) of this object were added to
the economy. Consequently, we show that the representative consumer's
utility function satisfies submodularity whenever the utility functions of the
individual agents satisfy the GS condition.

In Section 5 we compare Walrasian prices with Vickrey�Clarke�Groves
payments. We prove that for any profile of preferences, the equilibrium
payment of any agent in the VCG mechanism is less then or equal to the
value of the allocation he receives at the smallest Walrasian prices. There-
fore, the total revenue raised by the VCG mechanism is less than or equal
to the value of the aggregate endowment at the smallest Walrasian prices.
We show that these inequalities may be strict. However, the two
inequalities are in fact equalities if the initial economy satisfies the GS con-
dition and is replicated m+1 times (where m is the number of objects in
the initial economy).

In Section 6 we generalize the model to include production.
Kelso and Crawford's analysis of the core of a matching problem plays

a central role in our work. Their framework is more general than ours. In
particular, they do not impose quasilinearity. We rely on their paper for
existence of a competitive equilibrium and utilize quasilinearity to prove
additional results. We compare our results to theirs throughout the paper.

A different approach to the existence problem is provided in Bikhchan-
dani and Mamer [2]. They construct a related economy with quasilinear
preferences without indivisibilities. The total surplus attainable in this
economy is no less than the total surplus attainable in the economy with
indivisibilities. Their main theorem proves that equilibrium in the economy
with indivisibilities exists if and only if the maximal attainable surplus is
equal to the maximal attainable surplus in the corresponding economy
with no indivisibilities. They use this result to identify various sufficient
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conditions for existence with indivisibilities. The necessary and sufficient
condition for their main theorem described above suggests the following
alternative approach for proving existence of Walrasian equilibrium. One
could verify directly that an economy satisfying the GS condition and its
divisible analog defined in Bikhchandani and Mamer [2] yield the same
surplus.

2. PREFERENCES

In this section we study properties of the consumers' preferences. We
confine attention to preferences that are quasilinear in money (that is, to
additively separable utility functions), and study conditions on the
preferences over bundles of objects. 0=[|1 , ..., |m] is the set of objects in
the economy. A bundle is any subset B of 0; the set of all bundles is

20 :=[B | B/0].

A price vector p # Rm
+ includes a price for each object in 0.

Definition. A map u: 20 � R is called a utility function on 0. A utility
function assigns a value to each bundle of 0. With each utility function u
we associate the net utility function v: 20_Rm

+ � R, which is defined by

v(A, p) :=u(A)&(p, A) , where (p, A) := :
a # A

pa

(and by convention, (p, <) :=0).

Definition. A utility function u: 20 � R

(i) is monotone if for all A/B/0, u(A)�u(B).

(ii) is submodular if for all A, B/0,

u(A)+u(B)�u(A _ B)+u(A & B).

(iii) has decreasing marginal returns if for all A/B/0 and a # A,

u(B)&u(B"[a])�u(A)&u(A"[a]).

If u(<)=0 and u is monotone, then u(A)�0 for all A/0. In what
follows, without loss of generality, we normalize every utility function u so
that u(<)=0.

Conditions (i)�(iii), as well as the equivalence of conditions (ii) and (iii),
are well known in the literature. Likewise, one can establish the equiv-
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alence between supermodularity (or convexity), which is obtained by rever-
sing the inequality in the definition of submodularity, and increasing
marginal returns (which is obtained by reversing the inequality in the
definition of decreasing marginal returns).

Lemma 1. u is submodular iff u has decreasing marginal returns.

The proof of this lemma can be found, for example, in Moulin [10].

Definition. For any utility function u: 20 � R, its demand corre-
spondence D: Rm

+ � 20 is defined by

D( p) :=[A/0 | v(A, p)�v(B, p) for all B/0], p # Rm
+ .

Definition. Let A, B, and C be any three bundles. Then *(A) denotes
the number of elements in A,

A2B :=[A"B] _ [B"A]

is the symmetric difference between A and B, *(A2B) is the Hausdorff
distance between A and B, and

[A, B, C] :=(A"B) _ C.

If B is a singleton [b], we write [A, b, C] instead of [A, [b], C] (and
similarly if C is a singleton).

It is easy to see that for any utility function u: 20 � R, its demand corre-
spondence D: Rm

+ � 0 is upper semicontinuous when 20 is endowed with
the Hausdorff metric. That is, if [ pk] is a sequence of price vectors con-
verging to p� and A # D( pk) for all k, then A # D( p� ).

The following definition presents four closely related properties for a
utility function: (GS), (SI), (NC), and (SNC). The first was originally
introduced by Kelso and Crawford [5]; the other three are new.

Definition. A utility function u: 20 � R

(i) satisfies the gross substitutes condition (GS) if for any two price
vectors p and q such that q�p, and any A # D( p), there exists B # D(q)
such that [a # A | pa=qa]/B.

(ii) has the single improvement property (SI) if for any price vector
p and bundle A � D( p), there exists a bundle B such that v(A, p)<v(B, p),
*(A"B)�1, and *(B"A)�1.
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(iii) has no complementarities (NC) if for each price vector p, and all
bundles A, B # D( p) and X/A, there exists a bundle Y/B such that
[A, X, Y] # D( p).

(iv) satisfies, the strong no complementarities condition (SNC) if for
all A, B/0 and X/A, there exists Y/B such that

u(A)+u(B)�u([A, X, Y])+u([B, X, Y]).

Remark. To check whether u has no complementarities, it is enough to
consider the cases in which X/A"B. And for these cases, we only need to
search among bundles Y/B"A.

Suppose an agent with utility function u wants to consume a bundle A
at prices p. Condition GS states that if the prices were increased from p to
q, then the agent would still want to consume the objects in A whose prices
did not increase. That is, at q there is an optimal bundle B that includes
all those objects (and possibly others). Condition SI states that any subop-
timal bundle A at prices p can be strictly improved by either removing an
object from it, or adding an object to it, or doing both. Suppose A and B
are two optimal bundles at prices p, and an arbitrary part X is removed
from A. Condition NC says that a new optimal bundle can be constructed
with the objects that are left and a part Y of the bundle B. Finally, condi-
tion SNC has the following interpretation. Suppose that two identical
agents have utility function u, and are endowed with bundles A and B
respectively (not necessarily disjoint). Suppose agent 1 hands agent 2 a sub-
set X of her endowment. If u has no complementarities, agent 2 should be
able to return to agent 1 a subset Y of his initial endowment, so that their
total utility after the swap is preserved or increased.

The following piece of notation is used throughout the paper. In par-
ticular, it is used in the Appendix, where we present the proof of Theorem 1
divided into Lemmas 2�4, and in Section 4.

Notation. If A is a bundle, eA # Rm denotes its characteristic vector,
whose coordinates are eA

a =1 for a # A, and eA
a =0 otherwise. If A is a

singleton [a], we sometimes write ea instead of eA.

Theorem 1. If u is monotone, then GS, SI, and NC are equivalent.

It is easy to verify that SNC implies NC, and therefore, by Theorem 1,
GS and SI as well. While SNC is a stronger condition, it has the advantage
of being stated directly in terms of the utility function rather than the
demand correspondence. Kelso and Crawford [5] use GS to prove their
main results. However, SI turns out to be more appropriate for our
analysis (i.e., in establishing that the set of Walrasian equilibrium prices is
a lattice).
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Lemma 5. If u is monotone and satisfies GS, then u and v( } , p) are sub-
modular for any price vector p.

Proof. We first show that u is submodular. By Lemma 1, it is enough
to show that u has decreasing marginal returns. Let : # A/B/0. Define
the price vector p as follows: pa=0 for all a # B and pa=M>u(0)
otherwise. By monotonicity, B # D( p). For each =�0, let q(=) :=p+=e:,
and define

=� :=max[= | B # D(q(=))].

Since D is upper semicontinuous, B # D(q(=� )). By GS, for each =�0, there
exists C # D(q(=)) such that C#B"[:]. Since for each =>=� , B � D(q(=)), we
must have that B"[:] # D(q(=)), and by upper semicontinuity, B"[:] #
D(q(=� )). Therefore

u(B)&=� =v(B, q(=� ))=v(B"[:], q(=� ))=u(B"[:]). (1)

Now, define the price vector r as follows: r: :==� , ra :=0 for all
a # A"[:], and ra :=M for all a � A. Clearly, if X is any bundle such that
X/3 A, then X � D(r). Since A=[a # B | ra=qa(=� )], GS implies that
A # D(r). Therefore

u(A)&=� =v(A, r)�v(A"[:], r)=u(A"[:]). (2)

Equations (1) and (2) imply that

u(B)&u(B"[:])==� �u(A)&u(A"[:]).

Hence, u has decreasing marginal returns. Finally, v( } , p) is submodular
because it is the sum of two submodular functions. K

Kelso and Crawford [5] provide an example showing that sub-
modularity and monotonicity do not imply the GS condition. Thus, the
converse of Lemma 5 is false.

Definition. A utility function u represents a unit demand preference if
u(<)=0 and for each nonempty bundle A,

u(A)=max
a # A

u([a]).

A unit demand utility function u is completely specified by the values it
assigns to singletons and the empty set, and we will sometimes abuse nota-
tion and write u(a) instead of u([a]), for a # 0. Every unit demand utility
function satisfies the SNC condition.
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Koopmans and Beckmann [6] study exchange economies where all
consumers have unit demand preferences. They show that the Walrasian
equilibrium problem is equivalent to the standard (linear programming)
assignment problem, and that Walrasian prices coincide with its dual
variables. They note that the dual problem always has a solution, and thus
establish the existence of Walrasian prices. In the same setting, Leonard
[8] shows that Walrasian prices can be interpreted as marginal values of
the (society's) surplus function, and discusses the incentive compatibility of
a generalization of the Vickrey auction (see Section 5 below).

Two other classes of functions that satisfy the GS condition are the set
of additively separable utility functions and the set of additively concave
functions. An additively separable utility function u is also completely
specified by the values it assigns to singletons. Its value for any bundle A
is given by

u(A)= :
a # A

u([a]).

An additively concave utility function partitions 0 into sets of
``homogeneous'' goods. Suppose that there are only two distinct objects :
and ;, and that 0 contains several units of each: 0=[:1 , ..., :r , ;1 , ..., ;s].
Let N denote the set of nonnegative integers. Assume that there are two
increasing functions u: , u; : N � R such that u(A)=u: (x)+u; ( y) when-
ever A contains x units of : and y units of ;. If u: and u; are ``concave''
(that is, have decreasing marginal returns), then u satisfies the SNC condi-
tion. Conversely, if u satisfies the GS condition, u: and u; must be concave.

Bevia, Quinzii and Silva [1] have introduced a class of preferences that
can be represented by utility functions u satisfying the property

u(A)= :
a # A

u([a])&c(*(A)) A/0,

where c: N � R. Any such a utility function satisfies the GS condition if c
is ``convex'' (that is, has increasing marginal returns).

In addition to these classes of GS preferences, there are two operations
that allow us to derive new GS preferences from other known GS prefer-
ences. Suppose that u1 and u2 are two GS functions on 0 and that there
are two bundles A1 and A2 such that A1 & A2=< and ui (Ai)=ui (0),
i=1, 2. Then, the utility function u, defined by u(B)=u1 (B)+u2 (B) for
each B/0, satisfies the GS condition. For any k<m, the k-satiation of
any utility function u is the utility function û defined by

û(A)=max ui (B)

s.t. B/A and *(B)�k.
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If u is additively separable or additively concave, û satisfies the GS condi-
tion. The k-satiation of an additively separable utility function results in a
natural extension of a unit demand preference.

3. WALRASIAN EQUILIBRIA

The economy E=(0; u1 , ..., un) consists of the finite collection of objects
0, and the set of consumers N :=[1, ..., n]. Each consumer i has a
quasilinear utility function Ui : 20_R � R; for each bundle A/0 and
money amount t # R (she has for consumption of other goods),
Ui (A, t)=ui (A)+t, where u i : 20 � R. Without loss of generality, we nor-
malize so that ui (<)=0, and assume that each consumer i is endowed
with a sufficient amount of money Mi>ui (0). We denote by vi consumer
i 's corresponding net utility function. We also assume the economy has free
disposal, and let N0 :=N _ [0].

Note that out description of the economy does not make any reference
to endowments. Due to quasilinearity and our assumption that each agent
is endowed with a large amount of money, the set of Walrasian equilibrium
allocations of objects and the associated prices, as well as the set of efficient
allocations of objects, are independent of the initial endowments of objects.
Thus, we choose to ignore the initial endowment and characterize efficiency
only in terms of the allocation of objects. Walrasian equilibria are fully
described by the allocation of objects, the prices of the goods and the
implied transfers of money.

Definition. X=(X0 , ..., Xn) is a partition (or allocation) of 0 if
(1) Xi & Xj=< for all i{ j; and (2) �n

i=0 Xi=0. The possibility that
Xi=< for some i is allowed. For i # N, Xi represents consumer i 's con-
sumption bundle, and X0 represents the collection of objects that are not
consumed by anyone.

Definition. The tuple (X0 , ..., Xn ; t1 , ..., tn), where (Xi , ti) represents
the bundle and money amount consumed by i, is an outcome for the
economy if it satisfies the feasibility constraints: (1) �i # N ti=�i # N Mi ;
and (2) (X0 , ..., Xn) is a partition of 0 (since each object | # 0 can be
consumed by at most one consumer).

Definition. A Walrasian equilibrium for the economy E=(0; u1 , ..., un)
is a tuple ( p, X), where p # Rm

+ is a price vector, and X=(X0 , ..., Xn) is a
partition of 0 such that (1) (p, X0) =0, and (2) for each i # N,
vi (Xi , p)�vi (A, p) for all bundle A/0.
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Let ( p, X) be a Walrasian equilibrium. Since (p, X0) =0, pa=0 for each
a # X0 , and if u1 is monotone, v1 (X1 _ X0 , p)�v1 (X1 , p). That is, at prices
p, X1 _ X0 is also an optimal bundle for consumer 1. Thus, ( p, X� ), where
X� 0=<, X� 1=X1 _ X0 , and X� j=Xj for each j�2, is also a Walrasian equi-
librium. Therefore, without loss of generality, we will sometimes assume
that the Walrasian equilibria ( p, X) we choose satisfy the additional
requirement that X0=<.

Existence of a Walrasian equilibrium in our model is implied by
Theorem 3 in Kelso and Crawford [5], that guarantees the existence of
strict core allocations. We restate in our notation the definition of a strict
core allocation.

Definition. ( p, X), where p # Rm
+ and X is a partition of 0, is a strict

core allocation if X0=< and there does not exist an agent i, a bundle Yi ,
and a price vector q�p, such that vi (Yi , q)>vi (Xi , p).

Theorem 3 in Kelso and Crawford [5] shows that if agents' preferences
satisfy the GS and the MP condition, then a strict core allocation for E
exists. Condition MP is equivalent in our model to the monotonicity of the
agents' utilities. Hence, if each agent's utility satisfies GS, E has a strict core
allocation. It is easy to show that ( p, X) is a strict core allocation iff ( p, X)
is a Walrasian equilibrium with X0=<. Hence, if all preferences are
monotone and satisfies the GS condition, then a Walrasian equilibrium
exists.

Theorem 2 below establishes that in a sense GS is a ``necessary'' condi-
tion for existence of Walrasian equilibrium. For any consumer with a
monotone utility function u that fails the GS condition, one can find a
collection of unit demand consumers such that the resulting economy has
no Walrasian equilibrium. Thus, Theorem 2 shows that the Kelso and
Crawford's existence theorem is the strongest possible generalization of
Koopmans and Beckmann's result for unit demand economies. The proof
of Theorem 2 is relegated to the Appendix.

Theorem 2. Consider a consumer with a utility function u1 : 20 � R that
violates SI. Then, there exist l&1 unit demand consumers with utility func-
tions ui , i=2, ..., l, such that the economy E=(0; u1 , ..., ul) does not have
a Walrasian equilibrium.

The standard theorems of welfare economics hold for our economy E.
However, for several proofs below we need the following slightly stronger
second theorem of welfare economics.

It is easy to see that an outcome (X, t) is Pareto efficient iff X maximizes
total utility.
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Lemma 6. If p is any Walrasian price vector and Y is any efficient
allocation, then ( p, Y) is a Walrasian equilibrium.

Proof. Suppose the allocation X is such that ( p, X) is a Walrasian equi-
librium. Then (p, X0)=0 and v i (Xi , p)�vi (Y i , p) for each i # N. And
since Y is efficient, we have

:
i # N

u i (Yi)&(p, 0)� :
i # N

ui (X i)&(p, 0) = :
i # N

vi (X i , p)

� :
i # N

v i (Yi , p)= :
i # N

ui (Yi)&(p, 0) +(p, Y0).

These inequalities imply that (p, Y0) =0 and vi (Y i , p)=vi (Xi , p) for each
i # N (that is, Yi is also an optimal bundle for consumer i at prices p). K

Definition. Let p and q be two price vectors. Their join r= p 6 q and
meet s= p 7 q are the price vectors defined by

ra :=max[ pa , qa] and sa :=min[ pa , qa] for each a # 0.

A set of price vectors P is a lattice if for all p, q # P, both p 6 q # P and
p7 q # P. The lattice P is complete if for any Q/P, �(Q) # P and
�(Q) # P, where

� (Q) :=inf [qa | q # Q] and � (Q) :=sup [qa | q # Q] for all a # 0.

Definition. A price vector p supports a partition X of 0 if vi (Xi , p)�
vi (A, p) for each bundle A and consumer i. A price vector supports a
bundle A if p supports a partition X of 0 such that X0=0"A.

Observe that if p supports X, then ( p, X) is a Walrasian equilibrium iff
(p, X0) =0.

The next result, together with Theorems 4 and 5 of Section 4, enables us
to interpret Walrasian prices as shadow prices.

Theorem 3. Assume ui has the SI property for each i # N. Then, the set
of prices that support a partition X of 0 is a complete lattice.

Proof. Let P denote the set of all prices that support X. If P is empty,
we are done. Otherwise, let p, q # P and r :=p 7 q, and assume that r does
not support the partition X. Then there exists i # N and bundle Z such that
vi (Xi , r)<vi (Z, r). By SI, we can assume that Z=[Xi , A, B], where
A/Xi , B & Xi=<, A is either empty or a singleton [a], and B is either
empty or a singleton [b]. The inequality vi (Xi , r)<vi (Z, r) is equivalent to

ui (Z)&u i (Xi)>(r, Z) &(r, Xi)=(r, B) &(r, A) . (V)
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If (r, A) =(p, A) �(q, A) and (r, B) =(p, B)�(q, B) , the above
inequality implies that vi (Z, p)>vi (Xi , p), contradicting the fact that p
supports X. Similarly, if (p, A)�(q, A)=(r, A) and (p, B) �
(q, B)=(r, B) , vi (Z, q)>vi (Xi , q), another contradiction. Therefore,
both A and B are nonempty and either [ra= pa<qa and rb=qb<pb] or
[ra=qa<pa and rb= pb<qb]. Assume the former. Then

(r, B)&(r, A)=qb& pa>qb&qa ,

and (V) above implies that vi (Z, q)>vi (Xi , q), a contradiction. By symmetry,
if we assume the latter, we obtain vi (Z, p)>vi (Xi , p), another contradic-
tion. Therefore r= p 7 q supports X.

The proof that p 6 q also supports X follows a similar argument, and is
omitted. Hence P is a lattice.

For each a # 0, the projection function .( p) :=pa , p # Rm
+ , is con-

tinuous. Therefore, to prove that P is complete, it is enough to show that
P is closed. But p # P iff it satisfies the linear constraints

(p, Xi)&(p, A) �ui (Xi)&ui (A) for all i # N and A/0.

That is, P is a closed simplex in Rm
+ . K

Corollary 1. Suppose ui has the SI property for each i # N. Then, the
set PW of Walrasian equilibrium prices is a complete lattice.

Proof. By Kelso and Crawford [5], PW is nonempty. Suppose
p, q # PW and X is an efficient allocation. Then, by Lemma 6, ( p, X) and
(q, X) are Walrasian equilibria, and both p and q support X. By the
previous Theorem, p 6 q and p 7 q also support X. Since (p, X0) =
(q, X0) =0, we have that (p6 q, X0)=(p 7 q, X0)=0. Therefore
( p 6 q, X) and ( p 7 q, X) are Walrasian equilibria, and PW is a lattice.
Finally, for any efficient partition X, PW is equal to the set of prices p that
support X and satisfy the additional linear constraint (p, X0) =0. There-
fore, PW is a closed simplex, and thus it is a complete lattice as well. K

Definition. Let p
�

:=�(PW) and p� :=�(PW), where PW is the set of
Walrasian prices for E.

By Corollary 1 and the existence of Walrasian equilibria, p
�

and p� exist
and are themselves Walrasian prices.

With two additional conditions, NTW and NTF, which are ``generically''
satisfied, Kelso and Crawford [5] establish that their discrete salary
adjustment process converges to the best discrete core allocation for
the agents (see their Theorem 4). In our context, the best discrete core
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allocation for the consumers is equivalent to the smallest Walrasian prices.
However, the NTW and NTF conditions have no counterparts in our
model since we do not consider discretized economies (i.e., a smallest unit
of currency).

4. SOCIAL SURPLUS

In this section we establish that society's largest and smallest marginal
valuations of an object coincide with the object's largest and smallest
Walrasian prices respectively.

It is necessary here to study situations that involve allocations that are
infeasible. That is, we need to allow for allocations X=(X1 , ..., Xn)/0n

with bundles that are not necessarily pairwise disjoint. Alternatively, we
can interpret such an allocation as if society's endowment has been
increased to include several identical copies of some objects. We also need
to study allocations X where � Xi is a strict subset of 0. We view such
cases as if society's endowment has been reduced to exclude some objects
in 0.

Let 0(n) denote the set that contains n identical copies of each object
a # 0, and let Z :=[0, 1, ..., n]m. We endow Z with the standard partial
ordering: for w, z # Z, wPz iff wa�za for all a # 0. With this partial order-
ing, Z is a lattice. Each z # Z represents a bundle in 0(n) which, for each
a # 0, contains za copies of a. We next extend the notion of an indicator
vector, defined earlier. For any bundle A # 0(n), let eA # Z denote the
indicator vector, whose coordinate eA

a is equal to the number of copies of
a contained in A, for each a # 0. As before, if A is a singleton [a], we will
write sometimes ea instead of eA. Note that for any z # Z, z7 e0 is a vector
whose a-th coordinate is equal to 1 if za�1 and equal to 0 otherwise. We
change the domain of the utility function ui from 0 to Z as follows:
ui*(eA) :=ui (A) for each A/0, and ui*(z) :=ui*(z 7 e0) for any z # Z.
With the change of domain, we can also extend the domain of the function
ui to 0(n): for any A # 0(n), ui (A) :=ui*(eA). The interpretation of the
extension ui* to vectors z having coordinates greater or equal to 2 is that
buyer i's utility does not increase with the consumption of additional copies
of the same object, no matter what other objects she is already consuming.
It is easy to verify that if ui : 0 � R satisfies the GS condition, then its
extension ui : 0(n) � R satisfies the GS condition as well. Similarly, if ui is
monotone, its extension is monotone.

0(n) endowed with the set inclusion ordering (APB iff A/B) is also a
lattice. It is interesting to compare the lattices Z and 0(n). In general, there
are bundles A{B for which eA=eB. Thus, A/B implies eA�eB, but
eA�eB does not imply that A/B.
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We now consider exchange economies E*=(z; u1*, ..., un*) with total
endowment z # Z. Alternatively, we consider economies E$=(A; u1 , ..., un),
with total endowment A/0(n). By the previous comment, if ui : 0 � R has
no complementarities for each i # N, then all the results of Section 3 (espe-
cially, Lemma 6 and Theorem 3) apply to the economy E$=(A; u1 , ..., un),
for any A/0(n).

Definition. The surplus function S: Z � R assigns to each m-dimen-
sional resource vector z (with nonnegative integer coordinates) the value

S(z) :=max { :
i # N

ui*(zi) | (z1 , ..., zn) # Zn and :
i # N

zi�z= .

S(z) is the total society value that can be achieved with a resource vector
z # Z.

Prices for 0(n) are of dimension nm, while prices for Z are of dimension
m. Thus, when working with the domain Z, we are implicitly assuming that
all copies of an object have the same price. However, since different copies
of an object are indistinguishable for the consumers, it is intuitive that
even when prices for different copies are allowed to differ, in equilibrium
these must coincide. But, this result is not used until Section 5, where we
formally state it and prove it in Lemma 8.

Theorem 4. Suppose ui is monotone and has the SI property for each
i # N. Let p be the smallest prices that support A/0. Then, for each a � A,
pa=S(eA+ea)&S(eA). In particular, the smallest Walrasian prices are
p
�

a=S(e0+ea)&S(e0), a # 0.

Proof. Pick any a � A and let qa :=S(eA+ea)&S(eA). Consider the
economy E$ :=(A _ [a]; u1 , ..., un , ua), where ua denotes the unit demand
preference defined by

ua(b)={+
0

if b=a
otherwise,

and + is a parameter to be specified.
Consider first the choice +=qa&= for some =>0. Let X be an efficient

allocation for E$. Since +<qa , we must have that Xa=<. Thus p (restricted
to A _ [a]) together with X is a Walrasian equilibrium for E$. Therefore
pa�+=qa&=, and since this holds for any =>0, we conclude that pa�qa .

Now consider the choice +=qa+= for some =>0. Again, let (r, X) be a
Walrasian equilibrium of E$. By efficiency, Xa=[a], and therefore ra�+.
Let M>ui (0) for all i # N, and define rb :=M for each b � A _ [a], to
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construct a price vector for 0 (which, with abuse of notation, we denote
by the same symbol r). Then r supports A. Therefore pa�ra�qa+= for all
=>0. Hence pa�qa . K

Theorem 5. Suppose ui is monotone and has the (SI ) property for each
i # N. Then, p� a=S(e0)&S(e0&ea) for every a # 0.

Proof. Pick any a # 0 and define qa :=S(e0)&S(e0&ea). For ua and
+ as defined in the proof of Theorem 4, let E$ :=(0; u1 , ..., un , ua). We
first show that p� a�qa by contradiction. Suppose that p� a>qa and
let + :=(qa+ p� a)�2. Let ( p� , X) be a Walrasian equilibrium of E, and
X$ :=(X, Xa), where Xa :=<. Since p� a>+, ( p, X$) is a Walrasian equi-
librium of E$. By the first theorem of welfare economics, the maximal social
surplus in E$ is equal to that of E (that is, equal to S(e0)). But if instead
we allocate optimally 0"[a] among the first n consumers and give a to the
last consumer, then the total surplus is S(e0&ea)++>S(e0&ea)+qa=
S(e0), which is a contradiction.

Now make + :=qa . Let X be an efficient allocation in E$ such that
Xa=<. By Lemma 6, p� supports X. Therefore p� a�+=qa . K

Theorems 4 and 5 generalize Leonard's [8] results for unit demand
economies.

Theorem 6. Suppose each ui is monotone and has the SI property. Then,
S: Z � R has decreasing marginal returns.

Proof. It is easy to show that S is submodular iff for any z # Z such that
for two elements a, b # 0, za , zb<n,

S(z+ea)+S(z+eb)�S(z)+S(z+ea+eb).

Suppose z # Z and a, b # 0 satisfy the above conditions. Let A, B/0(n)
be such that eA=z and eB=z+ea+eb. Define +a :=S(z+ex)&S(z) and
+b :=S(z+eb)&S(z). Consider the economy E$ :=(B; u1 , ..., un , ua , ub),
where the last two consumer have unit demand preferences and only care
about objects a and b respectively. Allocate A efficiently among consumers
i # N, and give a to consumer a and b to consumer b; call this allocation
X. If p denotes the smallest prices that supports A (in the economy
En :=(0(n); u1 , ..., un)), then ( p, X) is a Walrasian equilibrium of E$. By
the definition of +a , another efficient allocation in E$ can be constructed by
allocating A _ [a]1 efficiently among consumers i # N, give nothing to con-
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sumer a and b to consumer b. By Lemma 6, p together with this new
allocation is also a Walrasian equilibrium of E$. This implies that p also
supports A _ [a] (in E n) and that pb�+b . By Theorem 4, pb�
S(eA+ea+eb)&S(eA+ea). Thus S(eA+eb)&S(eA)�S(eA+ea+eb)&
S(eA+ea), as was to be shown. K

Suppose ui : 20 � R is monotone and has the SI property for each i # N.
Lemma 1 then implies that S: Z � R is submodular. It can be shown,
however, that if each ui is only submodular (and monotone), S may fail to
be submodular.

The following comparative static result is reminiscent of Topkis'
monotonicity theorem [11]. View the Walrasian equilibrium problem as
parametrized by the set of objects available in the economy, and endow 20

(the set of parameters) with the partial order APB iff A/B. As in Topkis'
theorem, for each parameter A, the set of solutions PA (Walrasian prices)
associated with A is a complete lattice, and if APB, then � PA�� PB

and � PA�� PB. A similar result holds if we view the Walrasian equi-
librium problem as parametrized by the set of consumers.

Theorem 7. Suppose each ui is monotone and has the SI property. For
each bundle A/0 and consumer i define the economies EA :=(A; u1 , ..., un)
and E&i :=(0; u&i). Let p

�
A and p� A denote respectively the smallest and

largest equilibrium price vector for EA. Define p
�

&i and p� &i similarly for E&i.
Then (i) if A/B/0, p

�
A
a �p

�
B
a and p� A

a �p� B
a for all a # A; and (ii) p

�
&i�p

�
and

p� &i�p� .

Proof. (i) follows directly from Theorems 4, 5, and 6.
Next we show that p

�
&i�p� . Denote by S i the surplus function associated

with E&i. Let (p
�

&i, X&i) be a Walrasian equilibrium for E&i, and suppose
the bundle Xi maximizes vi (B, p

�
&i) over all B/0. Then, (p

�
&i, X) is a

Walrasian equilibrium for the economy E$=(A; u1 , ..., un), where A/0(2)
is the bundle that contains two copies of each object in Xi and one copy
of all other objects in 0"Xi . By part (i), for each a # 0,

p
�

&i
a =S i (e0+ea)&Si (e0)=S i (e0+ea)+ui (X i)&[Si (e0)+ui (X i)]

=S i (e0+ea)+ui (Xi)&S(e0+eXi)

�S(e0+eXi+ea)&S(e0+eXi)�p
�

a .

The second inequality in (ii) is proved analogously. K

With the two additional conditions NTW and NTF discussed earlier,
Kelso and Crawford's [5] Theorem 5 establishes for their discretized
economy results similar to our Theorem 7.
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5. VICKREY AUCTIONS

In this section we compare the outcomes of strategy-proof mechanisms
studied by Vickrey [12], Clare [3] and Groves [4] with Walrasian out-
comes. In particular, we show that the Vickrey�Clarke�Groves (VCG)
payment for a bundle is never greater than the value of that bundle at the
smallest Walrasian prices. Moreover, we show that the gap between these
two values disappears if the economy is replicated at least m+1 times,
where m is the number of different objects. Throughout this section we
assume that agent 0 (the seller) initially owns all the objects and has no
utility for them.

In discussing mechanism design issues, we need to consider the
possibility that agents do not report truthfully, and thus, temporarily, we
make explicit the dependence of the surplus function on the profile of
utilities.

Definition. For a given profile of preferences u=(u1 , ..., un) over 0,
z # Z, and consumer i, let

S(z; u) :=max { :
j # N

uj (Xj) } :
j # N

eXj�z=
Si (z; u&i) :=max {:

j{i

uj (Xj) } :
j # N

eXj�z= .

Vickrey auction. Each buyer i submits a complete utility function
ui : 20 � R (this is equivalent to reporting a vector of dimension 2m&1).
The seller then finds an efficient allocation X with respect to the reported
profile of preferences (u1 , ..., un). Consumer i # N receives the bundle Xi and
pays the Vickrey payment qi (Xi ; u&i), where

qi (Xi ; u&i) :=S i (e0; u&i)&S i (e0&eXi ; u&i).

Note that the Vickrey payments depend on the efficient allocation
chosen, and that there might be several efficient allocations associated with
the same utility profile u=(u1 , ..., un). It is well known that the buyers and
the seller are indifferent about which efficient allocation is chosen when
every buyer reports his true preferences (see, for example, Krishna and
Perry [7]), and that the VCG mechanism is strategy-proof. For the rest of
this section, we assume that the agents report truthfully their preferences,
and drop the profile u form the list of arguments in the functions S, Si , and
qi , i # N.

Consider the case where all consumers have unit demand preferences.
We only need to consider allocations that assign at most one object to each
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consumer. Thus, the Vickrey payments are defined for objects. Leonard [8]
has shown that in this case, the Vickrey payments coincide with the
smallest Walrasian prices. It is easy to extend this result to the case in
which each consumer i has ``linear preferences'' of the form

ui (A)= :
a # A

ui ([a]), A/0.

However, the following example shows that with more general utility func-
tions that have the SI property, this result typically does not hold. There
are three identical objects and two consumers with the same preferences.
For i=1, 2, ui (A) is equal to 0 if *(A)=0, to 10 if *(A)=1, to 18 if
*(A)=2, and to 20 if *(A)=3. Since the objects are indistinguishable, in
any equilibrium their prices must coincide. All efficient allocations assign
one object to one consumer and two objects to the other. Therefore,
(8, 8, 8) is the unique Walrasian price vector. The Vickrey payment for the
consumer getting one object is 20&18=2<8, and for the consumer get-
ting two objects is 20&10=10<8+8=16. Thus, each consumer is paying
strictly less in the Vickrey auction than in (any) Walrasian equilibrium.
Although the equality is not attained in general, the next theorem estab-
lishes that even without the GS condition, a consumer's Vickrey payment
for her bundle is never more than the value of that bundle at the smallest
Walrasian prices.

Theorem 8. Let ( p; X) be a Walrasian equilibrium of E=(0; u1 , ..., un).
Suppose each ui is monotone. Then, (p, Xi)�qi (X i) for each i # N.

Proof. Consider the economy E$=(0; u1 , ..., ui&1 , u$i , ui+1 , ..., un),
where consumer i is replaced by a consumer with linear preferences, given
by

u$i (A)= :
a # A & Xi

pa .

It is easy to see that ( p, X) is also a Walrasian equilibrium of E$, with
associated total surplus

S$=(p, Xi) +S i (e0&eXi).

Now consider the economy E", where consumer i is replaced by a con-
sumer with utility function ui" (A)=0 for all A. Its total surplus is
S"=Si (e0). Obviously S$�S", and by definition, Si (e0)=q i (Xi)+
Si (e0&eXi). Hence, (p, Xi) �qi (Xi). K
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Makowski and Ostroy [9] prove that in a quasilinear economy the
private marginal product of each agent is no greater than his social
marginal product. Straightforward manipulations of their definitions of
private and social marginal product reveal this result to be equivalent to
Theorem 8 above.

The next results deal with replica economies. For any k # N, the k-replica
of economy E=(0; u1 , ..., un) is the economy E� with set of objects 0(k)
containing k identical copies of each object in 0, and k ``copies'' i1, ..., ik
of each consumer i. The utility function of a consumer ij is defined as
follows. For any bundle A/0(k), let uij (A) :=ui*(eA 7 e0) (as defined in
the previous section).2

If X is an allocation for E, then Xk denotes the allocation for E� in which
each consumer type i receives the same bundle Xi . If p̂ is a price vector in
E� , then p̂=( p̂1, ..., p̂k), where p̂ j represents the prices for the j-the copy of
each object.

Lemma 7. Suppose ui is monotone and has no complementarities for each
i # N. If X is an efficient allocation for E, then Xk is an efficient allocation
for its k-replica economy E� , and if p is a Walrasian price vector for E, then
p̂=( p, ..., p) is a Walrasian price vector for E� . Conversely, if p̂ is a
Walrasian price vector for E� , there exists a price vector p in E such that
p̂=( p, ..., p).

Proof. Let X be an efficient allocation for E. By Lemma 6, if p is any
Walrasian price vector for E, then ( p, X) is a Walrasian equilibrium. It is
easy to see that (( p, ..., p), Xk) is a Walrasian equilibrium for E� . Therefore,
by the first theorem of welfare economics, Xk is an efficient allocation
for E� .

Now, suppose ( p̂, X� ) is a Walrasian equilibrium for E� . Then, by the
definition of the preferences of the consumers in E� , we can assume wlog
that for each ij, X� ij contains at most one copy of a, for every a # 0. There-
fore, for any two copies a$ and a" of the same object a, p̂a$= p̂a" , for
otherwise the individual consuming the most expensive copy would rather
consume the cheapest copy instead. K

Since we will only consider Walrasian prices p̂ for E� , by Lemma 7 and
with abuse of notation we will view p̂ as an m-dimensional vector only.

Corollary 2. P� W=PW.
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We have proven above that the smallest Walrasian prices p
�

are always
an upper bound for the set of Vickrey payments, in the sense that the value
of consumer i's bundle at prices p

�
is never less then its corresponding

Vickrey payment. The next theorem shows that if the economy is replicated
at least k=m+1 times, then the Walrasian prices ``coincide'' with the Vickrey
payments. For each consumer ij of E� , we denote by S� and S� ij the surplus
functions of E� , and for any bundle A/0, let q̂ij (A) :=S� ij (ke0)&
S� ij (ke0&eA) (note that e0(k)=ke0). As before, we omit the profile of
preferences because it is assumed to be fixed at the true profile.

Theorem 9. Suppose that ui is monotone and has no complementarities
for each i # N. Let k�m+1 and E� be the k-replica economy. If X� is any
efficient allocation of E� (not necessarily of the form Xk for some efficient
allocation X of E), then q̂ij (X� ij)=(p

�
, X� ij) for each replica ij of consumer i,

and each i # N.

Proof. Let Y be any efficient allocation in E, and pick any consumer in
E� ; without loss of generality, and to simplify the notation, assume this is
a consumer rk in the last cohort. By Lemma 7, we have

k } S(e0)=S� (e0(k))=S� rk (e0(k)&eX� rk)+urk (X� rk). (1)

One possible allocation of 0(k) among the consumers excluding rk is
obtained as follows. Suppose Yr = [a1 , ..., al]. For each j = 1, ..., l,
distribute 0 _ [aj] efficiently among the consumers in the j th cohort. For
each j=l+1, ..., k&1, give each consumer ij, i # N, the bundle Yi . Finally,
for the last cohort, give each consumer ik, excluding consumer rk, the
bundle Yi . This allocation has total surplus

:
l

j=1

S(e0+eaj)+(k&l&1) S(e0)+[S(e0)&ur (Yr)]

=kS(e0)+(p
�
, Yr)&ur (Yr).

Therefore,

S� rk (0(k))�kS(e0)+(p
�
, Yr)&ur (Yr), (2)

and

q̂rk (X� rk)=S� rk (e0(k))&S� rk (e0(k)&eX� rk)

�[kS(e0)+(p
�
, Yr)&ur (Yr)]&[kS(e0)&urk (X� rk)]

=urk (X� rk)&ur (Yr)+(p
�
, Yr) ,
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where the last inequality follows from (1) and (2). Since X� is efficient, wlog
we can assume that X� rk /0, and therefore urk (X� rk)=ur (X� rk). Again by
Lemma 7, (p

�
, Y) and (p

�
, X� ) are respectively Walrasian equilibria of E and

E� . Thus

ur (Yr)&(p
�
, Yr)=ur (X� rk)&(p

�
, X� rk) .

Substituting this equality in the previous inequality, we get q̂rk (X� rk)�
(p

�
, X� rk) . Theorem 8 then implies that q̂rk (X� rk)=(p

�
, X� rk). K

6. PRODUCTION

In this section we introduce a production technology that satisfies a con-
dition, no complementarities in production (NCP), analogous to the NC
condition. We show how a production economy endowed with this
technology can be identified with an exchange economy satisfying the GS
condition. We then use this construction to extend results from preceding
sections to economies with production. Suppose that there are l firms in
the economy, and define L :=[1, ..., l]. Let 0 denote the maximal collec-
tion of objects (including multiple units or copies) that the agents would
ever consume collectively. Without any assumptions, the set 0 may be
infinite. We will assume below that production costs are ``convex'', and that
there exists a set 0 sufficiently large so that the marginal surplus for the
consumers (when they consume 0) of any additional (unit of an) object is
less than the marginal cost of producing that object (when the firms are
already producing 0 efficiently). As before, m :=*(0).

Firm k is totally characterized by its cost function ck : 20 � R+ . We will
require that each ck be monotone and have no production complemen-
tarities (as defined below).

Definition. Firm k's profit function ?k : 20_Rm
+ � R and supply

correspondence 7k : Rm
+ � 20 are defined by

?k (A, p) :=(p, A) &ck (A) A/0, p # Rm
+ ,

7k ( p) :=[A | ?k (A, p)�?k (B, p) for all B/0] p # Rm
+ .

Definition. The cost function ck : 20 � R+ is monotone if ck (A)�
ck (B) for all A#B, and has no production complementarities (NPC) if for
every A, B # 7k ( p) and X/A"B, there exists Y/B"A such that
[A, X, Y] # 7k ( p).
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Definition. ( p; X1 , ..., Xn ; Y1 , ..., Yl) is a Walrasian equilibrium for the
production economy EP=(0; u1 , ..., un ; c1 , ..., cl) if

(1) vi (Xi , p)�vi (A, p) for all A/0 and i # N.

(2) ?k (Yk , p)�?k (A, p) for all A/0 and k # L.

(3) �i # N eXi��k # L eYk (the difference of these two vectors
represents the set of objects that are produced and not consumed).

A firm that produces Ac=0"A can be viewed as ``consuming'' the
bundle A. To construct a Walrasian equilibrium, we will transform every
firm into a consumer and expand the set of objects in the economy to 0(l).

Definition. Firm k's utility function uP
k , net utility function vP

k , and
demand correspondence DP

k are defined as follows:

uP
k(A) :=ck (0)&ck (Ac) A/0,

vP
k (A, p) :=uP

k (A)&(p, A)

=ck (0)&ck (Ac)&(p, A) A/0, p # Rm
+ ,

DP
k( p) :=[A | vP

k (A, p)�vP
k (B, p) for all B/0] p # Rm

+ .

Clearly, ?k (Ac, p)&?k (0, p)=vP
k (A, p). Thus, A maximizes firm k's net

utility at prices p iff Ac maximizes firm k's profits at prices p. That is,
A # DP

k( p) iff Ac # 7k ( p).

Lemma 8. If ck has no production complementarities then uP
k has no com-

plementarities, and if ck is monotone then uP
k is monotone.

Proof. Suppose ck is monotone and A#B. Then Ac/Bc and uP
k (A)=

ck (0)&ck (Ac)�ck (0)&ck (Bc)=uP
k(B). Hence uP

k is monotone.
Now, suppose A, B # DP

k( p) and X/A"B. Then Ac, Bc # 7k ( p) and
X/Bc"Ac. Let X� :=A & Bc & X c; clearly X� /Bc"Ac. By (NPC), there exists
Y� /Ac"Bc=B"A such that [Bc, X� , Y� ] # 7k ( p). But,

[Bc, X� , Y� ]c=[(Bc & X� c) _ Y� ]c=(B _ X� ) & Y� c

=[B _ (A & Bc & X c)] & Y� c

=[(A _ B)"X] & Y� c=[A, X, (B"Y� )]

Let Y :=B"Y� /B; then [A, X, Y]=[Bc, X� , Y� ]c # DP
k ( p). K

View 0(l) as � 0k*, where each 0k* is a different copy of 0. 0k*
represents the production set of firm k. Let 6: 0(l) � 0 be the projection
map that to any k and ``copy'' ak* # 0k* of a # 0, assigns its ``original'' object
a. Then, for any A/0(l) and k, let Ak* :=A & 0k* and Ak :=6 (Ak*)/0.
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We extend the consumers' utilities as in Section 4. For each A/0(l) and
i # N, ui (A) :=ui (6 (A)). The producers' utilities on 0(l), however, are
defined in a different way: uP

k(A) :=uP
k(Ak) for any A/0(l) and k # L. If

the original uP
k is monotone and�or has no complementarities, the new uP

k

just defined has the same properties. We are abusing notation here, since
we denote by the same symbol the utilities on 0 and on 0(l). Notice that
the producers utilities on 0(l) are not ``extensions'' of their utilities on 0:
producer k has positive utility only for copies in 0k*.

To study the existence and properties of Walrasian equilibria of the
production economy, we consider the exchange economy E=(0(l); u1 , ...,
un , uP

1 , ..., uP
l ). In this exchange economy we refer to agent i (i=1, ..., n) as

consumer i, and to agent n+k (k=1, ..., l) as producer k.

Theorem 10. Assume each ui and each ck in the economy EP is
monotone and has no ( production) complementarities. Then EP has a
Walrasian equilibrium. Moreover, the set of Walrasian equilibrium prices for
EP is a complete lattice.

Proof. By Kelso and Crawford [5], the exchange economy E has a
Walrasian equilibrium (( p1, ..., pl); X0*, ..., Xn* , X P

1 , ..., X P
l ). Since each

producer k assigns no value to objects outside 0k* , we can assume without
loss of generality that X P

k /0k* for each k. Let Yk :=6 (0k*"X P
k ), k # L.

Then, eYk=e0&eXp
k (recall that for any B/0(l) and a # 0, eB

a is the
number of copies of a contained in B). Similarly, let Xi :=6 (X i*), i # N. By
the way the consumers' preferences are extended to 0(l), we can assume
that eXi=eX*i for each i # N (that is, each consumer does not get more than
a copy of each object). Now, since (X0*, ..., Xn*, X P

1 , ..., X P
l ) is a partition

of 0(l),

le0= :
i # N0

eX*i+ :
k # L

eX k
P
=eX*0+ :

i # N

eXi+ :
k # L

[e0&eYk].

That is,

:
k # L

eYk=eX*0+ :
i # N

eXi� :
i # N

eXi.

The price vector pk denotes the prices of objects in 0k* (charged by
producer k). Since consumers i # N find the objects in 0k* equivalent to the
objects in 0j* for any j{k, we must have pk= p j. Suppose to the contrary
that for some j{k and object a, pk

a>p j
a�0. Then object ak* is consumed

by some consumer i (because its price is positive). But i is indifferent
between aj* and ak*, and aj* is cheaper; this is a contradiction. Therefore
pk= p1 for all k>1.
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Since X i* is optimal for i in 0(l) at prices ( p1, ..., p1), X i is optimal for
i in 0 at prices p1. Similarly, X P

k is optimal for k in 0(l) at prices
( p1, ..., p1) iff Yk is profit maximizing in 0 for firm k at prices p1. Therefore,
( p1; X1 , ..., Xn ; Y1 , ..., Yl) is a Walrasian equilibrium of the production
economy EP.

It is straightforward to extend to production economies Theorem 3 and
Corollary 1. K

7. CONCLUSION

In this paper we have studied the problem of efficient production and
allocation when the commodity space consists of m indivisible goods and
one divisible good (money). The key assumptions are the quasilinearity in
the divisible good, the GS condition, and that each consumer is endowed
with a sufficient amount money.

Within this setting, we were able to provide an analysis of Walrasian
equilibrium. We also established a relationship between Walrasian equi-
librium and strategy-proof mechanisms. Two of the three main assump-
tions of the model that have been developed in this paper are familiar from
auction theory. Quasilinearity in money and the fact that agents are
endowed with a significant amount of money are standard assumptions in
the literature. In a companion paper we build on this connection to auction
theory, and study a dynamic auction�tâtonnement process when preferen-
ces and cost functions satisfy the GS condition.

8. APPENDIX

The next three lemmas show that if u is monotone, then the three condi-
tions GS, NC, and SI are equivalent.

Lemma 2. If u is monotone, GS implies SI.

Proof. Pick a price vector p, and let A � D( p). For any price vector q
define

H(q) :=[B/0 | v(B, q)>v(A, q)]

H1 (q) :=[B # H(q) | *(B"A)�*(C"A) for all C # H(q)]

H2 (q) :=[B # H(q) | *(A"B)�*(A"C) for all C # H(q)].

H(q) are the bundles that have strictly higher net utility then A at prices
q. Since A � D( p), D( p)/H( p), and therefore H1 ( p) is nonempty. We first
show that for any B # H1 ( p), *(B"A)�1.
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Let B # H1 ( p) and p̂ be the price vector such that p̂a= pa for all
a # A _ B and p̂a=M>u(0) otherwise. Observe that <{D( p̂)/
H( p̂)/H( p). Pick any C # H( p̂). Then C/A _ B, and therefore
C"A/B"A. That is, C # H1 ( p). Hence H( p̂)#H1 ( p̂)/H1 ( p). To con-
clude, it is enough to show that *(C"A)�1. By contradiction, suppose
*(C"A)�2. Pick [x, y]/C"A, and for each =�0, let q(=) :=p̂+=e[x, y].
Let

2 :=[=�0 | A � D(q(=)) and C # D(q(=))].

Since q(0)= p̂, 0 # 2. Let =� :=sup 2. Since D is upper semicontinuous,
C # D(q(=� )).

There are two possibilities at =� = either A � D(q(=� )) or A # D(q(=� )).
Assume first the former. Then, there exists =̂>=� such that A, C � D(q( =̂)).
Pick any X # D(q(=̂)); then X/A _ B, and either x � X or y � X (or both).
Moreover, v(X, p)�v(X, q(=̂))>v(A, q(=̂))=v(A, p). Therefore, X # H( p)
and *(X"A)�*(C"A)&1, which contradicts the fact that C # H1 ( p).
Alternatively, now assume that A # D(q(=� )). Let r(=) :=q(=� )+=ex. Note that
for all =>0, A # D(r(=)) and C � D(r(=)). By GS, there exists X such that
C"[x]/X # D(r(=)) for all =�0. Moreover, since C � D(r(=)) for all =>0,
x � X. Pick any =>0; then v(A, p)=v(A, r(=))=v(X, r(=)), and since y # X,
v(X, r(=))<v(X, p). Consequently, X # H( p) and *(X"A)�*(C"A)&1,
which is again a contradiction. We have thus shown that *(B"A)�1 for
all B # H1 ( p).

For the rest of the proof, fix B # H1 ( p) and define p̂ as follows: p̂a= pa

for all a # A _ B and p̂a=M>u(0) otherwise.
Pick E # H2 ( p̂) and define p0 as follows: p0

a=0 for a # A & E, and p0
a= p̂a

otherwise. Recall that H( p̂)#H1 ( p̂)/H1 ( p). Therefore, H2 ( p̂)/H1 ( p̂),
and thus E # H1 ( p̂) as well. Hence, E"A=B"A. To finish the proof, we
show that *(A"E)�1. More specifically, assume that *(A"E)>1; we
then show that there exists G # H1 ( p̂) such that *(A"G)<*(A"E), which
is a contradiction.

Observe that if X # H( p0), then 0<v(X, p0)&v(A, p0)�v(X, p̂)&
v(A, p̂). So X # H( p̂)#H1 ( p̂), and therefore H( p0)#H1 ( p0)/H1 ( p̂).
Thus, X"A=E"A=B"A. Also, E # H1 ( p0) and A � D( p0).

We now show that E # D( p0). By contradiction, suppose that v(X, p0)>
v(E, p0); let X* :=X _ (A & E). Then, v(X*, p0)>v(E, p0). Hence, X*{E,
X*/A _ E, and A & E/X*. Thus, *(A"X*)<*(A"E), contradicting
the fact that E # H2 ( p0). Therefore, E # D( p0).

For =�0, let q(=)= p0&=eA"E. Define

2 :=[=�0 | q(=)�0, A � D(q(=)), and E # D(q(=))].
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Since E # H2 ( p0), p0
a>0 for all a # A"E. Also, since A � D( p0), A � D(q(=))

for all =>0 sufficiently small. Let =� :=sup 2. We show that =� >0. If not,
E � D(q(=)) for all =>0, and therefore there exists F such that
v(F, q(=))>v(E, q(=)) for all =>0 sufficiently small. Let F* :=F _ (A & E).
Then, v(F*, q(=))>v(E, q(=)) for all small =>0. By continuity, since
E # D( p0) and q(0)= p0, F* # D( p0)/H( p0). Also F*{E, and by earlier
remark, F*"A=E"A. Therefore, *(A"F*)<*(A"E), which contradicts
the fact that E # H2 ( p0). Hence, =� >0.

At =� one of three things happen: (i) qx(=� )=0 for some x # A"E;
(ii) A � D(q(=� )) and E � D(q(=)) for all =>=� ; (iii) A # D(q(=� )). In case (i),
make G :=E _ [x]. In case (ii), there exists G # D(q(=� )) such that
A & E/G/A _ B and G{E. In these two cases v(G, q(=� ))=v(E, q(=� ))>
v(A, q(=� )) and *(A"G)<(A"E). But, v(G, q(=� ))&v(A, q(=� ))=v(G, p0)&
v(A, p0), so G # H( p0), which contradicts the fact that E # H2 ( p0).

Finally, in case (iii), A # D(q(=� )). Since by assumption *(A"E)>1, there
exist x{ y such that [x, y]/A"E. Define the price vector r by: rx= p0

x

and ra=qa(=� ) for a{x. By GS, there exists G # D(r) such that
A"[x]/G/A _ E. Now, A � D(r) because otherwise A # D(q(=)) for some
=<=� , contradicting the definition of =� . Hence, v(G, r)>v(A, r). But,
v(G, r)&v(A, r)=v(G, p0)&v(A, p0), so G # H( p0), contradicting the fact
that E # H2 ( p0). K

Lemma 3. If u is monotone, then SI implies NC.

Proof. Fix a price vector p, and let A, B # D( p) and X/A"B. Define

F :=[F # D( p) | F/A _ B and A"X/F].

Note that A # F, so F{<. Let E # argmin[*(F & X ) | F # F]. If
E & X=<, we are done: define Y :=E & B and note that E=[A, X, Y].

Otherwise, suppose E & X{<; we show that this leads to a contradic-
tion. For each =�0, define the price vector q(=) as follows: qa(=)=M>
u(0) for a � A _ B, qa(=)= pa for a # (A _ B)"X, and qa(=)= pa+= for
a # X. Observe that v(F, q(=))=v(F, p)&*(F & X ) } = for all F/A _ B.
Thus, for all =>0, B # D(q(=)) and v(B, q(=))>v(E, q(=)). Hence, there
exists F/A _ B such that *(E"F )�1 and *(F"E)�1, and v(F, q(=))>
v(E, q(=)) for all =>0 sufficiently small. Since D is upper semicontinuous,
F # D( p). Now,

v(F, p)&*(F & X ) } ==v(F, q(=))>v(E, q(=))

=v(E, p)&*(E & X ) } =,
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and v(F, p)=v(E, p) imply that *(F & X)<*(E & X ). Since *(E"F )�1,
E"X/F and A"X/F. Thus, F # F and *(F & X)<*(E & X ), which
contradicts the definition of E. K

Lemma 4. If u is monotone, then NC implies GS.

Proof. Let p and q be two price vectors such that q�p, and define

C :=[a # 0 | qa>pa].

The proof is by induction on the cardinality of C.
Suppose *(C)=1. Hence, C=[:] for some : # 0, and q=p+

(q:& p:) e:. Pick ant A # D( p), and define

=� :=sup [= | A # D( p+=e:)].

Since D is upper semicontinuous, A # D( p+=e:) for all = # [0, =� ]. Thus, if
=� �qa& pa , then A # D(q), and we can choose B=A. (In particular, note
that if : � A, then =� =+�.)

Suppose now that =� <qa& pa (so : # A). Note that if =>=� and
E # D( p+=e:), then : � E, for otherwise

0�v(A, p)&v(E, p)=v(A, p+=e:)&v(E, p+=e:)�0,

which contradicts the definition of =� . Since 0 is finite, there exists E/0
and a monotone sequence [=k] of positive numbers converging to 0 such
that E # D( p+(=� +=k) e:) for all k. Again, the upper semicontinuity of D
implies that E # D( p+=� e:). Since A # D( p+=� e:) as well, there exists Y/E
such that [A, C, Y] # D( p+=� e:). Since : � [A, C, Y]=: B, B # D( p+=e:)
for all =�=� . In particular, B # D(q), and clearly B#A"C, as desired.

Suppose now that the result holds whenever *(C)�k, and assume that
*(C)=k+1. Pick any : # C and define the price vector q~ as follows:
q~ := p: and q~ a=qa for all a{:. Let C� :=C"[:], and pick any A # D( p).
Since *(C� )=k, by inductive hypothesis, there exists B� # D(q~ ) such that
B� #A"C� . By inductive hypothesis again, there exists B # D(q) such that
B#B� "[:]#A"C. K

Theorem 2. Consider a consumer with a utility function u1 : 0 � R that
violates SI. Then, there exist l&1 unit demand consumers with utility func-
tions ui , i=2, ..., l, such that the economy E=(0; u1 , ..., ul) does not have a
Walrasian equilibrium.

Proof. By assumption, there exist a price vector p and a set A � D1 ( p)
such that for all C/0 with *(A"C)�1 and *(C"A)�1 we have that
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v1 (A, p)�v1 (C, p). That is, A is not optimal (at prices p), but no single
switch can improve A. Consider the optimization problem

argmin *(A2C)

s.t. v1 (C, p)>v1 (A, p).

Since A � D1 ( p), its feasible set is nonempty; let B be an optimal solution.
Then, by assumption, either (i) *B"A>1 or (ii) *A"B>1.

Assume (i). Let k=*B"A and ==[v1 (B, p)&v1 (A, p)]�2k>0.
We now introduce a collection of unit demand consumers. There is a

special consumer, indexed by 2, and one consumer for each a � A & B.
Thus, N=[1, 2] _ [0"(A & B)] will be the set of consumers in the
economy E. Their utility functions are defined as follows. For each
a # 0"(A & B), let

ua(C)={sa

0
if a # C
otherwise,

where

pa if a # A"B

sa={pa+= if a # B"A

u1 (0)+1 if a # 0"(A _ B).

For consumer 2, define ra= pa+u1 (0)+1 for each a # B"A, and

u2 (C)={max[ra | a # C & (B"A)]
0

if C & (B"A){<
otherwise.

Assume that a Walrasian equilibrium (t, Y) exists for the economy E.
Since consumer 2 only values objects in B"A, we can assume wlog that
Y2 /B"A. Define q as follows: qa=ta for a � A, qa=0 for a # A & B, and
qa= pa for a # A"B. For each a # A"B, either a # Y1 or a # Ya . If a # Y1 ,
then ta�pa (since a � Ya), and if ta were decreased to pa , Y1 and Ya would
remain optimal for consumers 1 and a respectively. Similarly, if a # Ya , then
ta�pa , and if ta were increased to pa , Y1 and Ya would remain optimal for
consumes 1 and a respectively. Moreover, all consumers, except (possibly)
consumer 1, give zero value to objects in A & B. Therefore, (q, Y) is also a
Walrasian equilibrium of E. And, if we define the allocation X such that
X1=Y1 _ (A & B) and Xi=Yi "(A & B) for i{1, (q, X ) is also a Walrasian
equilibrium of E.

121WALRASIAN EQUILIBRIUM



Clearly each agent a # 0"(A _ B) must consume a in equilibrium, that is
a # Xa for all a # 0"(A _ B). Therefore

A & B/X1 /A _ B.

Agent 2 must be consuming some a # B"A, otherwise qa�pa+u1 (0)+1
for all a # B"A. But at those prices, nobody else wants to consume any
a # B"A. Therefore, B"X1 {<.

Suppose (B"A) & X1 {<. Since A & B/X1 , we have that *(A2X1)<
*(A2B), and by the minimality of B, it follows that v1 (X1 , p)�v1 (A, p).
For each a # (B"A) & X1 , a � Xa and therefore qa�pa+=. Hence,
v1 (X1 , q)<v1 (A, q), which is a contradiction. Therefore, X1 /A.

We finally show that X1 /A also leads to a contradiction. Assume that
X1 /A. Then each a # B"A is either consumed by agent 2 or agent a, and
agent 2 consumes at most one object. We first show that qa�pa+= for all
a # B"A. Note that if a # B"A is consumed by agent a, then qa�pa+=.
Hence, if X2=<, qa�pa+= for all a # B"A. If X2=[b], since k�2 by
assumption, there exists a # B"A such that a{b. The optimality of X2

implies that

pb+u1 (0)+1&qb=rb&qb�ra&qa= pa+u1 (0)+1&qa ,

and since qa�pa+=, we must have that qb�pb+=, as desired. Now,
X1 /A and A & B/X1 imply that *(A2X1)<*(A2B), and by the mini-
mality of B, we must have that v1 (X1 , p)�v1 (A, p). But qa=0 for
a # A & B and qa= pa for a # A"B. Therefore, v1 (X1 , q)�v1 (A, q). Also
qa�pa+= for all a # B"A implies that v1 (A, q)<v1 (B, q). Thus, v1 (X1 , q)
<v1 (B, q), a contradiction.

We have shown that (i) contradicts the existence of equilibrium. Next,
assume (ii) *(A"B)>1 and *(B"A)�1.

Now we let the set of consumers be N=[1, 2] _ [0"(A _ B)] if
B"A=< and N=[1, 2, 3] _ [0"(A _ B)] if B"A is a singleton. Note that
in the former case, A & B & N=<, while in case (i) before we defined N so
that A & B/N. The utility functions of consumers a # [0"(A _ B)] are
defined as before. Consumer 2 now has utility function

u2 (C)={0
max[ pa+u1 (0)+1 | a # C & (A"B)]

if C & (A"B)=<
otherwise.

When B"A is a singleton [b], we define

u3 (C)={0
max[ pa+u1 (0)+1 | a # C & (A2B)]

if C & (A2B)=<
otherwise.
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Again by contradiction, assume that (q, X ) is a Walrasian equilibrium
for the economy with consumers N. As argued above, we can assume wlog
that A & B/X1 /A _ B, and qa=0 for all a # A & B. Finally, if *(X2)>0,
then the marginal utility of at most one object in X2 is strictly positive for
player 2. Hence all remaining objects must have 0 price and can be given
to any player without upsetting the equilibrium. When agent 3 exits, the
same argument can be applied to him. So, we will assume wlog that
*(X2)�1 and *(X3)�1.

We now show that *(X2)=1, and if agent 3 exists, then X3=[b] as
well. To see this note that *(X2)=0 implies qa>u1 (0) for all a # A"B, so
agent 1 is not consuming any a # A"B either, which is a contradiction. If 3
exists and does not consume b, then a similar argument yields a contradic-
tion.

Since A & B/X1 and b � X1 , we have that v1 (X1 , p)�v1 (A, p)<
v1 (B, p). By assumption, *(A"B)>1, so *(X2)=1 implies that
X1 & (A"B){<. Let

==min[qa& pa | a # X1 & (A"B)],

and c be any optimal solution of this problem. If a # (A _ B)"X1 , that is,
if a is consumed by player 2 (or 3), then

pa+u1 (0)+1&qa�pc+u1 (0)+1&qc .

Hence, qa�pa& pc+qc�pa+=. So qa<pa for some a # X1 & (A"B) (i.e.,
=<0) implies qa<pa for all a # (A _ B)"X1 . But then v1 (X1 , p)�v1 (A, p)
implies v1 (X1 , q)<v1 (A, q), a contradiction. Therefore, qa�pa for all
a # X1 & (A"B) and =�0. If B"A=[b], the optimality of X3=[b] implies
that

pb+u1 (0)+1&qb�pc+u1 (0)+1&qc .

Thus, qb�pb+=, and v1 (B, q)�v1 (B, p)&= whether B"A is the empty set
or the singleton [b]. Since X1 & (A"B){<, v1 (X1 , q)�v1 (X1 , p)&=, and
therefore

v1 (X1 , q)�v1 (X1 , p)&=<v1 (B, p)&=�v1 (B, q),

which contradicts the optimality of X1 . K
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