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We study economies (with indivisibilities) that satisfy the gross substitutes (GS)
condition. We define an excess demand set with the property that increasing the
prices of all goods in excess demand eventually leads to the smallest Walrasian
prices. This procedure is a generalization of the auction studied by G. Demange,
D. Gale and M. J. Sotomayor, Polit. Econ. 94 (1986), 863�872. In our auction,
truthful revelation of demand is a perfect Bayesian equilibrium if the smallest
Walrasian prices correspond to the Vickrey�Clarke�Groves payments. However, no
dynamic auction can reveal sufficient information to implement the Vickrey
mechanism if all GS preferences are allowed. Journal of Economic Literature
Classification Numbers: D4, D44, D5, D51. � 2000 Academic Press

1. INTRODUCTION

A dynamic auction can be described as a rule for adjusting prices given
the observed history of demand (i.e., bids) and a rule for terminating the
price adjustment procedure and specifying an allocation (i.e., determining
who gets the good(s) and at what price(s)). The English auction is also
identified with the property that prices are non-decreasing. More specifi-
cally, the English auction is typically identified with the procedure of
increasing the prices as long as there is excess demand.
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It is possible to study the English auction in two separate dimensions: as
a method of eliciting demand information and also as a strategic game. The
popularity of the English or ascending bid auction both in theory and in
practice is likely to derive from the attractive characteristics it has along
both of these dimensions. Without the requisite strategic properties the
desired outcome would not be attained. Conversely, if the English auction
was not an ``economical'' method for getting the desired information, it
would be less attractive than the associated direct mechanism since, by the
revelation principle, it cannot have better strategic properties than the
latter.

The English auction, as a rule for allocating a single object, has been
studied extensively. It is known to be an efficient (with respect to revenue
or consumer surplus) mechanism under various assumptions. Thus, in the
single unit case, the English auction extracts the necessary preference infor-
mation and leads to ``optimal'' allocations (see, for example, Milgrom [9]).
When all agents know their valuations (i.e., in the private values case),
truthfully revealing one's demand is a dominant strategy. Moreover, the
equilibrium, when all agents use their dominant strategies, results in a
Walrasian allocation and the revenue collected is the value of the object at
the smallest Walrasian price.

Related results have been established in a number of different settings.
With multiple goods and unit demand consumers (that is, consumers that
get satiated with the consumption of one good), Leonard [8] has shown
that the Walrasian allocation with the corresponding minimal prices is
incentive compatible. Demange et al. [2] have designed an English auction
for this setting. They utilize a linear programming algorithm to develop
an ascending price auction that stops at the smallest Walrasian price
vector. Thus, their auction is a dynamic rule that implements the direct
mechanism studied by Leonard [8]. Demange et al. [2] do not consider
the possibility of strategic behavior in the dynamic mechanism. Neverthe-
less, Leonard's result for the associated direct mechanism ensures that
truthful revelation of demand constitutes a Nash equilibrium of their
dynamic game.

More recently, Ausubel [1] has studied the English auction in the set-
ting with multiple units of a homogeneous good and with consumers with
decreasing marginal utilities. In this framework, increasing prices as long as
there is excess demand also leads to the smallest Walrasian price vector.
More importantly, by keeping track of the level of excess demand, Ausubel
[1] is able to recover the Vickrey [11] payments associated with an
efficient allocation.

Our work is closely related to and builds upon Kelso and Crawford's
[7] study of the core of a matching problem. In their setting, a firm can
be matched with multiple workers. However, Kelso and Crawford's model
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can be reinterpreted so that each firm corresponds to a consumer and
the workers correspond to goods. With this interpretation, the core of
the matching problem corresponds to the set of Walrasian equilibria of the
associated exchange economy, and the algorithm they propose corresponds
to a dynamic auction. The key ingredient in Kelso and Crawford's analysis
is their gross substitutes (GS) condition. It is easy to verify that Kelso and
Crawford's framework includes as a special case the settings of all the
papers mentioned above. Nevertheless, there are significant differences in
the results offered. First, while Ausubel's and Demange et al.'s dynamic
auctions are easily seen to be generalizations of the English auction for a
single object, Kelso and Crawford's mechanism is different; their economy
is discretized (i.e., there is a small unit of currency), the consumers make
bids on the objects they desire rather than announcing their demand, and
there are constraints on the bids agents can make. Second, as noted above,
the dynamic price adjustment rules investigated by Demange et al. [2] and
Ausubel [1] reveal enough information to compute the Vickrey�Clarke�
Groves payments. Hence, both of these auctions have the desired strategic
properties. In contrast, Kelso and Crawford [7] do not investigate
strategic behavior and assume truthful revelation of demand.

In this paper, we study economies with quasilinear preferences satisfying
the (GS) condition. We assume that individuals are endowed with a suf-
ficient quantity of the divisible good, ``money,'' so that they are able to
purchase as many of the indivisible goods as they wish. We utilize proper-
ties of (GS) preferences that we have proven in a companion paper (Gul
and Stachetti [5], hereafter G6S) to develop an alternative ``auction'' (or
algorithm) to the one studied by Kelso and Crawford [7]. They key ele-
ment in our analysis is the notion of an excess demand set. With multiple
discrete goods, determining which goods are in excess demand is not an
easy task. When preferences satisfy the (GS) condition, it is possible to
define a criterion for excess demand such that at every price p, there is a
feasible allocation (a distribution of the goods that satisfies all demands) if
and only if there is no excess demand. Moreover, we show that increasing
the prices of all the goods that are in excess demand eventually leads to the
smallest Walrasian price vector. Our notion of excess demand is related to
the idea of an over-demanded set which has been used to study one-to-one
matching problems. Hence, our auction turns out to be the appropriate
generalization of the Demange et al. [2] auction from settings with unit
demand preferences to settings with (GS) preferences.

Finally, we investigate the strategic properties of our auction. Here, our
main finding is a negative result. We show that truthful revelation of
demand is a perfect Bayesian equilibrium in our auction if the smallest
Walrasian price vector corresponds to the Vickrey�Clarke�Groves payments.
The latter holds in the case of unit demand consumers but cannot be
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guaranteed without a joint restriction on the set of preferences in the case
of (GS) preferences. More importantly, we show that no dynamic auction
can reveal sufficient information to implement the Vickrey mechanism if all
(GS) preferences are allowed. Thus, the unit demand case of Demange et
al. [2] and the multiple homogeneous goods case of Ausubel [1] are the
most general environments for which generalizations of the English auction
can be used to implement efficient, strategy-proof allocations.

2. AN EXAMPLE

In this paper we provide a generalization of the English auction to the
case in which multiple objects are to be sold simultaneously, and each
agent may wish to consume a bundle of different objects.

The following example illustrates our dynamic procedure. There are two
agents, agents 1 and 2, and two objects, a and b. Agents' utilities for the
various subsets of [a, b] are given by the following table:

< [a] [b] [a, b]

u1 0 8 9 12
u2 0 6 8 14

We wish to mimic the English auction by announcing prices and asking
the agents to declare their demand. Specifically, let us announce
pa= pb=0. At these prices, we find out both agents demand [a, b]. We
conclude that both a and b are in excess demand. We raise the price of
both objects. At prices pa=pb=3, the demand of agent 1 changes. Now,
agent 1 wants to purchase either element of the set D1(3, 3)=[[b],[a, b]].
Moreover, if the price of a increases any further, agent 1 will no longer
want to buy [a, b]. At this stage, we conclude that only b is in excess
demand, since it is possible to satisfy agent 1 without a and there is only
one other agent. So we raise the prices of b, while keeping constant the
price of a of 3. At p=(3, 4), the demand of the first agent becomes
D1(3, 4)=[[a], [b], [a, b]]. Note that if the prices a and b raised
simultaneously by a small amount, agent 1's demand becomes [[a], [b]],
while agent 2's only preferred bundle remains [a, b]. Thus, if we had an
extra unit of a or b, we could satisfy the demand of both agents. We con-
clude that both a and b are in excess demand, although the level of excess
demand is a single unit. Thus, we increase the prices of both objects at the
same rate. The next change in demand occurs at price p=(6, 7). Then, the
demand of agent 2 becomes D2(6, 7)=[[b], [a, b]]. Note that now it is
possible to satisfy both agents' demands. Thus the equilibrium outcome of
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the auction is to allocate a to agent 1 and b to agent 2 at prices 6 and 7,
respectively.

A number of features of the ``algorithm'' above are worth noting. First,
observe that at prices (3, 3), there was only one agent interested in consum-
ing object a, and we decided that a was not in excess demand. Only agent 1
insists on consuming a at prices (3, 4) as well. Yet, in that case we con-
cluded that a was in excess demand. They key distinction between the two
cases is that at prices (3, 3), a second unit of a would not have helped in
satisfying both agents' demands, whereas the additional unit would resolve
the problem at prices (3, 4). An important step in our specification of the
auction is the construction of a criterion for identifying the objects that are
in excess demand. A useful criterion for excess demand should have the
property that it is possible to satisfy all demands if and only if no object
is in excess demand.

The second important feature of this example is that the algorithm stops
at prices that are Walrasian. Indeed, (6, 7) are the smallest Walrasian
prices. This is a general feature of our auction.

The procedure developed in this paper ``works'' if preferences satisfy the
(GS) condition. That is, with the (GS) condition, the notion of excess
demand we offer has the property that demands can be met if and only if
no good is in excess demand. Furthermore, increasing all goods in excess
demand eventually leads to the smallest Walrasian prices. To establish
these results, we use theorems from submodular optimization. In par-
ticular, the classic result of Edmonds [3] on matroid partitioning plays an
important role in our analysis.

3. UTILITY FUNCTIONS AND DEMAND CORRESPONDENCES

In this section we restate definitions and results about the agents'
preferences, first introduced in our companion paper G6S. We then pre-
sent characterizations of the demand correspondences. As in G6S, we
study here economies with a finite number of objects. 0=[|1 , ..., |m]
denotes the set of objects. A bundle is any subset B of 0; the set of all
bundles is

20 :=[B | B/0].

A price vector p # Rm
+ contains a price for each object in 0.

Definition. A map u: 20 � R is called a utility function on 0. A utility
function assigns a value to each bundle of 0. With each price vector p # Rm

+
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and utility function u we associate the net utility function v: 20_Rm
+ � R,

which is defined by

v(A, p) :=u(A)&(p, A) , where (p, A) := :
a # A

pa

(and by convention, (p, <) :=0). A utility function u represents unit
demand preferences if for each A/0,

u(A)=max
a # A

u([a]).

Without loss of generality, we normalize every utility function so that
u(<)=0.

Definition. Let A, B, and C be any three bundles. Then *(A) denotes
the number of elements in A,

A q B :=[A"B] _ [B"A]

is the symmetric difference between A and B, *(A q B) is the Hausdorff
distance between A and B, and

[A, B, C] :=(A"B) _ C.

If B is a singleton [b], we write [A, b, C] instead of [A, [b], C] (and
similarly if C is a singleton).

Definition. If u: 20 � R is a utility function, its demand correspondence
and minimal demand correspondence D, D*: Rm

+ � 20 are respectively
defined by

D( p) :=[A/0 | v(A, p)�v(B, p) for all B/0],

D*( p) :=[A # D( p) | *(A)�*(B) for all B # D( p)].

At any given price p, D( p) is simply the collection of optimal (i.e., net
utility maximizing) sets. In the rest of this section, we are concerned with
alternative ways of representing this collection.

Definition. A utility function u: 20 � R

(i) is monotone if for all A/B/0, u(A)�u(B).

(ii) satisfies the (GS) condition if for any two price vectors p and q
such that q�p and any A # D( p), there exists B # D(q) such that
[a # A | pa=qa]/B.
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(iii) has no complementarities (NC) if for all price vectors p, and
bundles A, B # D( p) and X/A"B, there exists Y/B"A such that
[A, X, Y] # D( p).

(iv) has the single improvement property (SI) if for all price vectors
p and bundles A � D( p), there exists a bundle B such that v(B, p)>v(A, p),
*(A"B)�1 and *(B"A)�1.

In G6S we prove that for monotone utility functions, (GS), (NC), and
(SI) are equivalent. For a discussion of these related properties, the reader
should look at G6S. As in G6S, property (SI) is particularly useful for
proving many of our main results. In particular, (SI) is closely related to
the main property of a matroid (see property (I2) in Appendix 1).

Consider a consumer with utility function u. At a given price vector p
and for each bundle A, we want the consumer to determine the minimal
number of objects in A that she would need to construct any of her optimal
consumption bundles. To minimize this number, she will choose an optimal
bundle which minimizes the intersection with A.

Definition. For any utility function u, its corresponding requirement
function K: 20_Rm

+ � N is defined by

K(B, p) := min
A # D( p)

*(A & B).

Conversely, it turns out that the requirement function partially charac-
terizes the demand correspondence. Clearly, if A # D( p), then *(A & B)�
K(B, p) for all B/0. Thus, an arbitrary set A/0 is a candidate for an
optimal set only if it satisfies the previous inequality for all B/0. Not all
sets A that satisfy this condition are optimal. However, any such set must
contain an optimal set.

Lemma 1. For any price vector p, let

D� ( p) :=[A/0 | *(A & B)�K(B, p) for all B/0].

Then, for every A # D� ( p) there exists C # D( p) such that C/A.

Proof. Let A/0 be such that for each B # D( p), B/3 A. That is, for
each B # D( p), Ac & B{<, and we can choose an element aB # Ac & B. Let
C :=[aB | B # D( p)]. Then *(A & C)=0 and K(C, p)>0, because for
each B # D( p), C & B contains at least aB , and therefore is nonempty.
Hence, K(C, p)>*(A & C), and A � D� ( p). K

Many proofs use the technique of raising (or lowering) the prices in a
given bundle. Therefore, the following notation will be used often.
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Definition. The characteristic vector eA of a bundle A is the m-dimen-
sional vector whose coordinates are eA

a =1 for each a # A and eA
a =0

otherwise. If A is a singleton [a], we will sometimes write ea instead of eA.

Lemma 2. Suppose u has the (SI) property, and fix any price vector p.
Then, for any A # D( p), there exists B # D*( p) such that B/A. Thus, for
each bundle C,

K(C, p)= min
B # D*( p)

*(B & C).

Proof. Pick any A # D( p)"D*( p) and B # D*( p). We show that if
*(B"A)>0, there exists C # D*( p) such that *(C"A)=*(B"A)&1.
Suppose b # B"A. Define the price vector p̂ by p̂a= pa for a # A _ B and
p̂a=M>max[u(A) | A/0] otherwise. Clearly, A, B # D( p̂)/D( p). For
each =�0, let q(=) :=p̂+=eb. Then v(A, q(=))>v(B, q(=)) for all =>0. Since
20 is finite, (SI) implies that there exists C such that *(B"C)�
1, *(C"B)�1, and v(C, q(=))>v(B, q(=)) for all =>0 sufficiently small.
Obviously, C/A _ B and b � C, and by continuity, C # D( p̂). Moreover,
*(C)�*(B), so C # D*( p), and *(C"A)=*(B"A)&1.

The previous argument shows that

min[*(B"A) | B # D*( p)]=0.

Thus, any B that attains the min satisfies B/A. K

Definition. \*: 20 � N is a dual rank function2 on 0 if for every two
bundles A and B, it satisfies the following properties:

(i) \*(<)=0 and \*(A _ B)�\*(A)+*(B) (growth bound).

(ii) \*(A)�\*(B) for all A#B (monotonicity).

(iii) \*(A _ B)+\*(A & B)�\*(A)+\*(B) (supermodularity).

Theorem 1 below establishes that for each p, K( } , p) is a dual rank func-
tion. Property (iii) (supermodularity) plays a central role in the extension
of Hall's Theorem [6] (see Theorem 3 below) and the definition of the
algorithm in Section 3. The proof of Theorem 1, as well as those of
Theorems 2�4 and Lemmas 6�7 below, is deferred to Appendix 2.

Theorem 1. Suppose u is monotone and has the (SI ) property. Then, for
each p # Rm

+ , \* :=K( } , p) is a dual rank function on 0.
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The next theorem partially justifies the definition of a utility function
with no complementaries. It is also key for the construction of the English
auction. Fix a bundle A and starting from a price vector q, raise the prices
of some of the objects not in A to obtain the price vector p. Then, a con-
sumer with a utility function that has no complementaries will (weakly)
increase her requirement on A and (weakly) decrease her requirement
on Ac.

Theorem 2. Suppose u has the (SI) property. Let p and q be two price
vectors and A be a bundle such that p�q and pa=qa for each a # A. Then

(i) K(A, p)�K(A, q), and
(ii) K(Ac, p)�K(Ac, q).

Remark. Equivalently, part (ii) can be restated as follows. Let B be a
bundle and p and q be two price vectors such that p�q and pa=qa for
each a # Bc. Then K(B, p)�K(B, q).

4. WALRASIAN EQUILIBRIUM

We confine our analysis to an economy E=(0; u1 , ..., un) with a finite
collection of objects 0=[|1 , ..., |m] and a finite collection of consumers
N :=[1, ..., n]. In addition to the objects in 0, there is a divisible com-
modity (money). Each consumer i has a quasilinear preference represented
by the function Ui (A, t)=ui (A)+t, A/0 and t # R, where u i is a utility
function on 0, and t is an amount of money that consumer i has for the
consumption of other goods. We assume that agents are endowed with a
sufficient amount of money to guarantee that they can purchase as many
of the indivisible goods as they may wish. This will be ensured, for
example, if each agent's endowment of money y is greater than his utility
of the aggregate endowment, u(0). The economy has free disposal, and we
let N0 :=N _ [0]. For each i, vi and K i denote respectively consumer i 's
surplus function and requirement function.

Definition. X=(X0 , ..., Xn) is a partition (or allocation) of 0 if (i)
Xi /0 for each i; (ii) Xi & Xj=< for all i{ j; and (iii) �i # N0

Xi=0. The
possibility that Xi=< for some i is allowed.

A partition X has the following interpretation: for each i # N, Xi

represents the bundle consumed by agent i, and X0 represents the set of
objects that are not consumed by any agent (freely disposed).

Definition. A Walrasian Equilibrium of the economy E=(0; u1 , ..., un)
is a pair ( p, X), where p # Rm

+ is a vector of prices, and X=(X0 , ..., Xn) is
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a partition of 0 such that (i) (p, X0)=0, and (ii) for each
i # N, vi (Xi , p)�vi (A, p) for all bundle A/0.

Definition. A price vector p supports a partition X if vi (Xi , p)�
vi (B, p) for each bundle B and consumer i. The price vector p supports a
bundle A, if p supports a partition X such that X0=Ac.

Note that ( p, X) is a Walrasian equilibrium for E iff p supports X and
(p, X0) =0.

It follows from Theorem 3 in Kelso and Crawford [7] that if each ui is
monotone and satisfies the (GS) condition, then the economy
E=(0; u1 , ..., un) has a Walrasian equilibrium. In G6S we show that (GS) is
equivalent to (SI). Theorem 3 below provides an alternative characterization of
Walrasian equilibrium in terms of the requirement functions Ki , i # N. This is
a generalization of Hall's Theorem (see Hall [6]) for economies with unit
demand consumers. The algorithm described in the next section is stated in
terms of requirement functions. This alternative characterization is important
to show the convergence of the algorithm.

Theorem 3. Suppose each ui , i # N, is monotone and has the (SI) property.
Then, for a given price vector p, KN(A, p) :=�i # N Ki (A, p)�*(A) for all
A/0 iff there exists a partition (B0 , ..., Bn) of 0 such that Ki (A, p)�
*(A & Bi) for each i # N and A/0.

Corollary. Suppose each ui , i # N, is monotone and has the (SI) property.
Then KN(A, p)�*(A) for all bundles A iff there exists a partition
B=(B0 , ..., Bn) supported by p.

Proof. Suppose p supports the partition B. Then Bi # Di( p) for each i # N,
and Ki (A, p)�*(A & Bi) for all i # N and bundle A. Thus,

KN(A, p)� :
i # N

*(A & Bi)=*(A & Bc
0)�*(A).

Conversely, assume that KN(A, p)�*(A) for all bundles A. By Theorem 3,
there exists a partition Y such that Ki (A, p)�*(A & Yi) for each i # N and
bundle A. By Lemma 1, for each i # N there exists Bi # Di( p) such that Bi /Yi .
Let B0 :=[�i # N Bi]

c. Then p supports the partition B=(B0 , ..., Bn). K

5. THE ENGLISH AUCTION

In G6S we show that the set of Walrasian equilibrium prices for the
economy E=(0; u1 , ..., un) is a complete lattice if E satisfies the (GS)
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property and we denote by p
�

the smallest such price. Moreover, for any
Walrasian equilibrium price p and efficient allocation X, ( p, X) is a Walrasian
equilibrium. In this section we propose a tâtonnement process that, starting
with all prices equal to 0, converges to p

�
in a finite number of steps.

Assumption. In this section we assume throughout that each ui is monotone
and has the (SI) property, i # N.

By the Corollary of Theorem 3, a necessary condition for p to be a Walrasian
equilibrium price is that KN(A, p)&*(A)�0 for all A/0.

Definition. Let f: 20_Rm � Z be the function

f (A, p) :=KN(A, p)&*(A) for each A/0 and p # Rm,

(here Z denotes the set of integer numbers) and let O: Rm � 20 be the corre-
spondence

O( p) :=[A/0 | f (A, p)� f (B, p) for all B/0].

O( p) is the collection of max-demanded bundles at prices p # Rm
+ .

The following lemma, due to Ore [10], is well known in the literature.

Lemma 5. O( p) is a lattice for each p # Rm
+ .

Proof. Fix p # Rm, and let A, B # O( p) and z :=f (A, p). Since the sum of
supermodular functions is supermodular, KN(X, p) is supermodular in X, and

z� f (A _ B, p)� f (A, p)+ f (B, p)& f (A & B, p)�2z& f (A & B, p)�z.

Therefore z= f (A _ B, p)= f (A & B, p). K

Definition. For each p # Rm
+ , let O

*
( p) and O*( p) denote respectively the

smallest and largest element of O( p). O
*

( p) is called the excess demand set.
Also, let $( p) denote the characteristic vector of the excess demand set. That is,
$( p) # Rm has coordinates

$a( p)={1
0

if a # O
*

( p)
if a � O

*
( p).

If f (A, p)>0, then at prices p, no matter what bundle each consumer picks
from his or her optimal collection, there would be more requests for the objects
in A than there are elements in A. Hence, it is not possible to divide the objects
in the set A among the consumers in such a way that each consumer can
simultaneously start constructing an optimal bundle.

Obviously f (<, p)=0, and so f (A, p)�0 for all A/0 iff < # O( p), and
< # O( p) iff O

*
( p)=<. Starting with p(0)=0, the algorithm specifies a
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procedure to construct an increasing sequence of prices [ p(t)]T
t=0 such that

O
*

( p(t)){< for all t<T, but O
*

( p(T ))=<. In each iteration t, only the
prices of the objects in the excess demand set O

*
( p(t)) are raised.

Algorithm. T and the sequence [ p(t)]T
t=0 are defined inductively by the

following procedure:

Step 1. p(0) :=0, and t=0.
Step 2. If $( p(t))=0, make T=t and stop; otherwise go to Step 3.
Step 3. Define

=(t) :=sup [s | O
*

( p(t)+s$( p(t)))=O
*

( p(t))]

p(t+1) :=p(t)+=(t) $( p(t)).

Increase t by 1 and go to Step 2.

The algorithm stops when $( p(T ))=0, or equivalent when O
*

( p(T ))=<.
We will see that T is finite because =(t)>0 for all t<T (so p(t+1){ p(t) for
all t<T, and the algorithm does not get stuck in step 3), and O

*
( p(T ))=<

for some finite T.
Since each ui is monotone, ui (A)�ui (0)�u* for each bundle A, where

u* :=maxi # N ui (0). Fix a # 0. Suppose p # Rm
+ is any price vector such that

pa>u* and A is a bundle such that a # A. Then, vi (A, p)�u i (0)& pa<0=
vi (<, p), and A � Di ( p). Hence, Ki (A, p)=Ki (A"[a], p) for each i # N, and
f (A, p)= f (A"[a], p)&1. This implies that A � O( p), and thus a � O

*
( p).

Since p(t)�0 and $( p(t))�0 has at least one coordinate equal to 1 for each
t<T, it must be that =(t)�u* for each t<T.

For the algorithm not to get stuck in Step 3, we need that whenever
O

*
( p(t)){<, as we simultaneously increase all the prices in O

*
( p(t)) from

p(t) to p(t)+$( p(t)), the excess demand set remains constant for =>0
sufficiently small.

Lemma 6. O
*

( p(t)){< iff =(t)>0.

Lemma 7. O
*

( p(T ))=< for some finite T.

Note that the algorithm stops when O
*

( p(T ))=<. That is, it stops when
f (A, p(T ))�0 for all bundles A. By the Corollary of Theorem 3, there exists
a partition X of 0 supported by p(T ). We will see that p(T ) is in fact the
smallest Walrasian equilibrium price p. Hence, the partition X can be chosen
to be a Walrasian allocation.

Theorem 4. p(T )=p
�
.

We now implement the algorithm as the following English Auction Game.
To make the implementation easier, let us assume that all utility functions are
integer valued. That is, assume that u i : 20 � N, i # N. The rules of the auction
are as follows.
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Step 1. p(0) :=0, and t=0.

Step 2. The players report simultaneously their demands D� i ( p(t)), i # N,
and the seller computes the excess demand set O�

*
( p(t)). If O�

*
( p(t)) is not well

defined given the players' reports, make T=� and stop. If $� ( p(t))=0, where
$� ( p(t)) is the characteristic vector of O�

*
( p(t)), make T=t and stop.

Otherwise go to Step 3.

Step 3. Let p(t+1) :=p(t)+$� ( p(t)). Increase t by 1 and go to Step 2.

If the auction never stops (because the agents keep bidding the prices up
forever) or stops with T=�, each player receives the empty set and pays
nothing. Otherwise, the seller finds a partition X supported by p(T ), as
ensured by Theorem 3 and its corollary. Then, each player i receives the
bundle Xi and pays to the seller (p(T ), Xi) .

In Step 2 we are considering the possibility that the players do not report
their demands honestly (that is, that D� i ( p(t)){Di ( p(t))), in which case
f� (A, p(t)) may not be supermodular in A, and O� ( p(t)) need not be a lattice.
The timing of the auction does not correspond to the timing of the algorithm;
the auction moves more slowly because in the notation of the algorithm
(assuming the players report honestly), =(t) may be greater or equal to 2, in
which case Step 3 of the algorithm accomplishes in a single move a change in
prices that requires several rounds in the auction.

6. DYNAMIC INCENTIVE PROPERTIES OF
THE ENGLISH AUCTION

In the preceding section we did not explore the incentive properties of the
English auction. We investigated the consequences of truthful behavior only.
If one takes the view that Walrasian equilibrium is an adequate criterion for
approximate incentive compatibility or decentralized optimal behavior, then
the assumption of honest behavior might be justified. Alternatively, one
might wish to seek further restrictions on preferences or specify a different
allocation rule to render the auction dynamically incentive compatible.

In this section we will explore the possibility of implementing the
Vickrey�Clarke�Groves (VCG) mechanism through a dynamic auction.
For any profile of utility functions (u1 , ..., un) on 0, subset I/N, and sub-
set X/0, let

SI (X) :=max :
i # I

ui (Xi)

s.t. .
i # I

X i=X and Xi & Xj=< for all i{ j.
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Then, a VCG mechanism 9 associates with any profile u=(u1 , ..., un) an
allocation X=(X1 , ..., Xn) and vector of payments q # Rn

+ such that X is
efficient (i.e., it attains the value SN(0)) and

qi=SN"[i](0)&SN"[i](0"Xi), i # N.

Thus, for each i # N, 9i (u)=Xi is the bundle assigned to player i, and
9n+i (u)=qi is his corresponding payment. It is easy to verify that both the
revenue and the agents' utilities are independent of the particular efficient
allocation X chosen. Hence, we speak of the VCG mechanism instead of a
VCG mechanism.

In G6S we show that when every ui is monotone and satisfies the GS
condition, the set of Walrasian equilibrium prices is a lattice. We also
prove that a player's payment in the VCG mechanism is never greater than
the value of his assigned bundle at the smallest Walrasian prices. That is,

9n+i (u)�(p
�
, Xi) , i # N.

We show by example that these inequalities may be strict. However, if an
economy with n agents and m goods is replicated k times, where k�m+1,
then, for the resulting economy, the VCG payments coincide with the values
of the allocations at prices p

�
. For a formal statement of the replicated

economy and for the result we refer the reader to G6S.
Let U be any class of monotone and GS preference profiles that satisfies

the ``no gap'' condition

9n+i (u)=(p
�
, 9i (u)) for all i # N and u # U,

where p
�

is the smallest Walrasian price vector of the economy E=(0; u).
We now show that for this class of preferences, honest behavior is a
Bayesian�Nash equilibrium of the sequential English auction, for any prob-
ability distribution F over U. Since the VCG mechanism is strategy-proof,
it is an optimal strategy for each buyer i to report his type truthfully for
any report u&i # U&i by his opponents (where U&i=[u&i | (ui , u&i) # U for
some ui]). Therefore, to report truthfully is also optimal in expectation
when the opponents' report is chosen randomly (perhaps according to the
marginal of F ). If follows that honesty is incentive compatible in the
English auction viewed as a direct mechanism because, for the class of
preferences U, it attains the same outcome as the VCG auction. A slightly
more delicate observation is that truthful behavior in the English auction
is a sequentially rational best response to honest behavior by the
opponents. That is, truthful behavior is a perfect Bayesian equilibrium of
the English auction with incomplete information.
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Theorem 5. Suppose the buyers' preferences are drawn randomly from
U according to a probability distribution F. Then, honestly reporting
demands at each price vector is a perfect Bayesian equilibrium of the English
auction game (defined in Section 5).

Proof. Fix i # N and the profile u # U, where ui is the true utility func-
tion of buyer i. Let p

�
denote the smallest Walrasian price of the economy

E=(0; u). Suppose that player i follows a strategy other than reporting
demand truthfully, while his opponents report honestly. First, note that i
does not want to report so that the outcome where he receives nothing and
pays nothing is achieved, because by reporting honestly he could obtain his
allocation in a Walrasian equilibrium, which he (weakly) prefers. Thus,
suppose that his strategy leads to an outcome ( p̂, X). Consider the utility
function ûi defined by

ûi ([a]) :={ 0
p̂a+1

if a � Xi

if a # Xi
and û i (A)= :

a # A

ûi ([a]), A/0.

Since ûi values only objects in Xi and his preferences are additively
separable, ( p̂, X) is a Walrasian equilibrium of the economy E� =(0; ûi ,
u&i). Moreover, in every efficient allocation for E� , agent i must receive all
the objects in Xi .

Suppose the seller uses the VCG mechanism instead. If i reports ûi while
his opponents report u&i , he will receive Xi . Since the VCG mechanism is
strategy-proof and u # U,

ui (9 i (u))&(p
�
, 9i (u))=ui (9i (u))&9n+i (u)

�ui (9i (ûi , u&i))&9n+i (û i , u&i)=ui (Xi)&9n+i (û i , u&i).

Since VCG payments are never higher than Walrasian equilibrium
payments, we also have that 9n+i (ûi , u&i)�(p̂, X i). Therefore,

ui (9 i (u))&(p
�
, 9i (u)) �ui (Xi)&(p̂, X i).

The last inequality establishes that for player i, in the English auction,
honestly reporting his demand is a perfect best response against opponents
with preferences u&i that follow the same strategy. Since this is true for any
profile u&i honest behavior is a perfect best response for player i, no matter
what his beliefs over U are at each one of his information sets. K

The ``no gap'' condition of Theorem 5 is a joint restriction on prefer-
ences. In G6S we show that this no gap condition is satisfied for k-replica
economies of E with k�m+1 (see Theorem 9 of G6S). Leonard [8]
establishes that the no gap condition is satisfied in all unit demand
economies.
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We now argue that when all GS preferences are allowed, no generaliza-
tion of the English auction can extract enough information to determine an
efficient allocation and corresponding Vickrey payments. The idea is
simple. To construct Vickrey payments, the seller must be able to compute
total surplus when a consumer is missing and when a consumer and the
bundle he is allocated are missing. This is not always possible when the
price trajectory is restricted to be monotone in each coordinate.

Definition. An ascending price trajectory is a function p: [0, 1] � Rm
+

such that for all s<t and a # 0, pa(s)�pa(t). The set of all ascending price
trajectories is 6.

We denote by S the set of all monotone and GS utility functions.

Definition. An ascending auction is a pair of functions ?: Sn � 6 and
!: 6 � Rn

+ _[20]n+1 such that (i) for all ascending paths p # 6, !1( p) is a
vector of payments and !2( p) is a partition of 0; and (ii) if u, u$ # Sn are
such that p=?(u) and Di ( p(t))=D$i ( p(t)) for all i # N and t # [0, 1], then
?(u$)=?(u) (where Di and D$i denote respectively i 's demand corre-
spondence when her utility function is ui and u$i).

The map ? of an ascending auction mechanism determines the ascending
price trajectory as a function of the preference profile u=(u1 , ..., un) # Sn.
Given the ascending price trajectory p generated by the auction
mechanism, the map ! determines the players' payments and allocation.
That is, !2( p)=X, where X=(X0 , ..., Xn) is a partition of 0. Condition (ii)
requires that the price trajectory be responsive only to the demand corre-
spondences of the players along the price trajectory. Thus, if the profile u
generates a price trajectory p, and along p the players' demand corre-
spondences with preference profile u coincide with those of the preference
profile u$, then the profile u$ must generate the same price trajectory as u
(and hence the same allocation). This requirement encapsulates our notion
of an ascending auction.

Theorem 6. If n�3 and m�4, there is no ascending auction mechanism
that yields a Vickrey outcome for each profile u # Sn.

Proof. We construct a parametrized example with three players and
four goods where the preference of player 1 is fixed and those of players 2
and 3 depend on two parameters. Let 0=[a, b, c, d], R1=[a, b], R2=
[c, d], C1=[a, c], and C2=[b, d]. The player's preferences for any
bundle A are

u1(A)=u1(A & R1)+u1(A & R2)

ui (A)=ui (A & C1)+ui (A & C2), i=2, 3,
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and

[a] [b] [c] [d] [a, b] [c, d] [a, c] [b, d]

u1 8 8 8 8 9 9 16 16
u2 6 6 x 0 12 x 6 6
u3 y 0 6 6 y 12 6 6

where x, y # (1, 3) are two parameters.
There are four efficient allocations X=(X1 , X2 , X3):

X1=[a, c], X2=[b], X3=[d], or

X2=[a, d], X2=[b], X3=[c], or

X1=[b, c], X2=[a], X3=[d], or

X1=[b, d], X2=[a], X3=[c].

For any A/Rj with j=1 or 2, u1 clearly satisfies the (SI) property at A
and any price p. But then, since u1(A)=u1(A & R1)+u1(A & R2), u1

satisfies the (SI) property at every A/0 and every price p. A symmetric
argument establishes that u2 and u3 also satisfy the (SI) property. The
unique Walrasian equilibrium price vector of this economy is pW=
(6, 6, 6, 6). It is also easy to see that in all four efficient allocations, the
corresponding Vickrey payments are q1(X1)=12, q2(X2)= y, and q3(X3)=x.

Consider an ascending auction mechanism (?, !), and let p=?(u).
Suppose that there does not exist t # [0, 1] such that

pc(t)�x and pa(t)& pc(t)�6&x. (V)

Then, for any t # [0, 1] and A # D2( p(t)), we must have pc(t)=0 or c � A.
This is clear: if pc(t)>x, then player 2 will never want to consume c, and
if pc(t){0 and pa(t)& pc(t)<6&x, then in any situation where player 2
would consider adding c to his demand, he would prefer to add a instead.
Let u$ be the profile where the preferences of players 1 and 3 are as in u,
and those of player 2 correspond to decreasing x to x&= for some small
=>0. Clearly now, with greater reason, player 2 will never want to con-
sume c. Thus, along the trajectory p, Di ( p(t))=D$i ( p(t)) for all i=1, 2, 3
and t # [0, 1]. Therefore, ?(u$)= p and u and u$ induce the same allocation
and payments. But then, player 3's payment cannot be x when the
preference profile is u and x&= when the preference profile is u$.

We have then shown that to always yield Vickrey outcomes for (?, !) we
must have that (V) be satisfied for some t # [0, 1]. By symmetry, there must
also exist s # [0, 1] such that

pa(s)� y and pc(s)& pa(s)�6& y.
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Since p(s)�0, we have that

pc(s)�6& y>3>x�pc(t),

which by monotonicity implies that s>t. Symmetrically, since p(t)�0,

pa(t)�6&x>3> y�pa(s),

which implies that t>s. As s>t and t>s are incompatible, (?, !) cannot
always yield Vickrey outcomes.

When n>3 or m>4, set ui #0 for i�4 and ui (A)=ui (A & [a, b, c, d])
to embed the example above into the larger economy. K

One can show that any efficient and strategy-proof mechanism must
charge a constant translation of VCG prices. More specifically, for any
preference profile u, such a mechanism must allocate 9i (u) and charge
%i (u&i)+9n+i (u) to player i (%i (u&i) is a constant that does not depend
on i 's preferences). Hence, Theorem 6 implies that when all GS preferences
are allowed, no ascending price auction can be efficient and strategy-proof.

7. CONCLUSION

In this paper we have developed a generalization of the English auction
for the case in which agents demand bundles of different objects. Our main
result is that the auction converges to the smallest Walrasian prices.

We also investigated the strategic properties of our auction. We noted
that if the smallest Walrasian prices correspond to VCG payments, then
our dynamic auction can be used to strategically implement the VCG
mechanism. Finally, we showed that in general, no efficient, dynamic auc-
tion can extract enough information to implement any strategy-proof
mechanism.

One by-product of our analysis is the resulting connection with matroid
theory and with submodular optimization. It is likely that this connection
will prove useful in the analysis of markets and mechanisms.

APPENDIX 1

Matroid Theory

For an excellent source on matroid theory the reader is referred to
Fujishige [4]. The concept of a matroid was introduced by Whitney (1935)
to capture the linear independence structure of the columns of a matrix.
Briefly, let M be an l_m matrix and 0=[1, ..., m] be the set of columns
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of M. X/0 is an independent set if the corresponding columns of M are
linearly independent. Let I denote the collection of all independent sets.
Then, (0, I ) is a (matric or linear) matroid. In what follows 0=[1, ..., m],
which for our purposes still denotes the collection of objects.

Definition. Let I/20. The pair (0, I ) is a matroid if

(I0) < # I.

(I1) A/B # I implies A # I.

(I2) A, B # I and *(A)<*(B) implies that there exists a # B"A such
that A _ [a] # I.

Each A # I is called an independent set of the matroid (0, I ), and I is the
family of independent sets. An independent set which is maximal in I with
respect to set inclusion is called a basis. The family of all bases is denoted
by B.

It turns out that B/20 is a family of bases for the matroid (0, I ) iff it
satisfies

(B0) B{<.

(B1) for all A, B # B and each a # A"B, there exists b # B"A such that
[A, a, b] # B.

Moreover, if B is a family of bases for the matroid (0, I ) then I=
[A | A/B for some B # B].

Definition. Let I be an arbitrary collection of subsets of 0. The rank
function \: 20 � Z of (0, I ) is defined by

\(X) :=max[*(A) | A/X and A # I] X/0.

In the case of a linear matroid, the rank function assigns to each collec-
tion X of columns of the matrix M the dimension of the subspaces spanned
by those columns. Then, standard linear algebra results show that the
rank function satisfies conditions (\0)�(\2) below. In fact, these conditions
characterize a matroid.

The function \: 20 � Z is the rank function of some matroid (0, I ) iff it
satisfies

(\0) 0�\(X)�*(X) for all X/0.

(\1) X/Y/0 implies that \(X)�\(Y).

(\2) \(X)+\(Y)�\(X _ Y)+\(X & Y) for all X, Y/0.

Moreover, if \ is the rank function of (0, I), then I=[A | \(A)=*(A)].
It is easy to see that (\0) and (\2) imply that for all X/0 and
a � X, \(X _ [a])�\(X)+1.
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Thus, a matroid is uniquely defined by its family of independent sets I,
or family of bases B, or rank function \, and sometimes it is denoted by
(0, B) or (0, \).

Definition. The dual of a function f: 20 � R is the function f *: 20 � R
defined by

f *(X) :=f (0)& f (X c) X/0.

It is easy to verify that if f is monotone, then f * is monotone, and if f
is submodular (when 20 is given the standard set inclusion ordering), then
f * is supermodular. Furthermore, if f (<)=0, then ( f *)*= f. In par-
ticular, if \ is the rank function of a matroid (0, I ), then \*(<)=0, and
\* is monotone and supermodular.

Let (0, Ii), i=1, ..., n, be a collection of matroids. The matroid partition-
ing problem is to find n pairwise disjoint sets Ai , i=1, ..., n such that Ai # Ii

for each i=1, ..., n, and � Ai=0.

Theorem 7 (Edmonds [3]). Let (0, I i), i=1, ..., n, be a collection of
matroids. Then, there exists a base Bi of (0, I i) for each i=1, ..., n, such that
� Bi=0 iff

\1(X)+ } } } +\n(X)�*(X) for each X/0.

APPENDIX 2

Proofs

The following definitions are used in Lemmas 3 and 4 below. Let u be a
utility function on 0. Pick any : # 0, and for any price vector p and bundle
A let

D*&( p, :) :=[B # D*( p) | : � B], K&(A, p, :) := min
B # D*&( p, :)

*(A & B),

D*+( p, :) :=[B # D*( p) | : # B], K+(A, p, :) := min
B # D*+( p, :)

*(A & B).

Lemma 3. Suppose u is monotone and has the (SI ) property, and that
D*&( p, :){< and D*+( p, :)=<. Then
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(i) for each A # D*+( p, :) and B # D*&( p, :), there exists y # B"A such
that [A, :, y] # D*&( p, :).

(ii) for each B # D*&( p, :), there exists x # B such that [B, x, :] #
D*+( p, :).

Proof. For part (i), let A # D*+( p, :) and B # D*&( p, :). Then
A, B # D*( p) and A{B. Let p̂ be the price vector defined by p̂a= pa for all
a # A _ B and p̂a=M>u(0) otherwise. Clearly, A, B # D( p̂)/D( p). For
each =�0, let q(=)= p̂+=e:. Now, for each =>0, A � D(q(=)) and
B # D(q(=)). By (SI ), there exists C such that *(A"C)�1, *(C"A)�1,
and v(C, q(=))>v(A, q(=)) for all =>0 sufficiently small. The latter implies
that C{A, and obviously C/A _ B. By continuity, v(C, p̂)�v(A, p̂), and
thus C # D( p̂). In addition, : � C, otherwise v(C, q(=))=v(A, q(=)) for all
=>0. Thus A"C=[:]. Finally, *(C"A)=1, for otherwise *(C"A)=0,
so *(C)=*(A)&1, which contradicts the fact that A # D*( p). Therefore,
C"A=[ y] for some y # B"A, and C=[A, :, y] # D*&( p, :).

We now prove part (ii). Let B # D*&( p, :) and pick any A # D*+( p, :).
Suppose that *(A"B)�2. Then there exists z{: such that z # A"B. That
is, A # D*+( p, z) and B # D*&( p, z). By the proof of part (i), there exists
y # B"A such that A* :=[A, z, y] # D*( p). Obviously A* # D*+( p, :) and
*(A*"B)=*(A"B)&1. Thus,

min[*(A"B) | A # D*+( p, :)]=1.

Let A be any optimal solution of this problem. Since *(B)=
*(A), *(B"A)=1, and there exists x # B such that [B, x, :]=
A # D*+( p, :). K

Proof of Theorem 1. Fix the price vector p. We first establish that
(0, D*( p)) is a matroid with basis D*( p). By definition D*( p){<. (In
particular, if p is ``very'' large, then D*( p)=[<].) We only need to check
condition (B1) for a basis. Suppose A, B # D*( p) are such that A{B. Let
x # A"B. Then A # D*+( p, x) and B # D*&( p, x), and by part (i) of Lemma 3,
there exists y # B"A such that [A, x, y] # D*( p).

It is easy to check that the rank function of the matroid (0, D*( p)) is
given by

\(X)=K(0, p)&K(Xc, p), X/0.

That is, \=K*( } , p). Since K(<, p)=0, \*=K( } , p). K

Lemma 4. Suppose u is monotone and has the (SI ) property, and that
D*&( p, :){< and D*+( p, :){<. Then, for any bundles A and Z, with : � A
and : # Z,
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(i) K+(A, p, :)�K&(A, p, :);

(ii) K&(Z, p, :)�K+(Z, p, :).

Proof. Throughout the proof, fix : and the price vector p, and for each
bundle B, let \*

&(B) :=K&(B, p, :) and \*
+(B) :=K+(B, p, :).

(i) Pick any bundle A such that : � A, and let B # D*&( p, :) be such
that *(A & B)=\*

&(A). By (ii) of Lemma 3, there exists C # D*+( p, :) and
x # B such that C"[:]=B"[x]. Therefore

\*
+(A)�*(A & C)=*(A & [B"[x]])�\*

&(A).

(ii) Let Z be any bundle such that : # Z, and let C # D*+( p, :) be
such that *(Z & C)=\*

+(A). By (i) of Lemma 3, there exists B # D*&( p, :)
and y # B such that B"[ y]=C"[:]. Hence

\*
&(Z)�*(Z & B)�*(Z & [B"[ y]])+1

=*(Z & [C"[:]])+1=*(Z & C)=\*
+(Z). K

Proof of Theorem 2. The proof of (i) and (ii) are by induction on the
cardinality of the set C :=[a # 0 | pa {qa]/Ac. Obviously, if *(C)=0,
the result is true. Suppose (i) and (ii) are true for any p and q for which
*(C)�k. Let p and q be such that *(C)=k+1, and for the rest of the
proof, fix : # C. We first show that (i) holds. We consider two cases.

Case 1. Suppose there exists B # D*(q) such that : � B. Define

q$a={ qa

p:

if a{:
if a=:,

and C$ :=[a # 0 | pa {q$a]. Then *(C$)=*(C)&1. Therefore, by the
inductive hypothesis, K(A, p)�K(A, q$). If E, F # D*(q) are such that : # E
and : � F, then obviously v(E, q$)<v(F, q$) and F # D*(q$). Therefore,

D*(q$)=[B # D*(q) | : � B]/D*(q),

and hence K(A, q$)�K(A, q). Together with the previous inequality, this
implies that K(A, p)�K(A, q), as we wanted to show.

Case 2. Now suppose that : # B for all B # D*(q). For =�0, define r(=)
as follows:

ra(=)={ qa

q:+=
if a{:
if a=:.
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Since : # B for each B # D*(q), D*(r(=))=D*(q) for all =>0 sufficiently
small. As = is increased, eventually new minimal bundles will become
optimal at prices r(=). Obviously, any such new bundle B satisfies : � B. Let
=̂ be the smallest =>0 for which D*(r(=)){D*(q). If =̂>p:&q: , define q$
and C$ as in Case 1; that is, make =$ :=p:&q: and q$ :=r(=$). Since =$< =̂,
D*(q$)=D*(q), and by the same argument above, K(A, p)�K(A, q$)=
K(A, q). If instead =̂�p:&q: , let q̂ :=r(=̂). If K(0, q̂)=K(0, q), then

D*(q̂)=D*&(q̂, :) _ D*+(q̂, :), D*+(q̂, :)#D*(q), and D*&(q̂, :){<.

By part (i) of Lemma 4, we have that

K(A, q̂)=min[K+(A, q̂, :), K&(A, q̂, :)]=K+(A, q̂, :)=K(A, q).

If K(0, q̂){K(0, q), then it follows from Lemma 2 that D(q̂)=
[B"[:] | B # D(q)]. Hence we have K(A, q̂)=K(A, q). Furthermore, if
=̂<p:&q: , q̂ satisfies the assumptions of Case 1, and if =̂= p:&q: , ( p, q̂)
satisfies the inductive hypothesis. Therefore K(A, p)�K(A, q̂). This con-
cludes the proof of (i).

We now show that (ii) holds. Again, we divide the proof into two cases.

Case 3. Suppose : # B for some B # D*( p). Define

p$a :={pa

q:

if a{:
if a=:,

and C$ :=[a # 0 | p$a {qa]. Then *(C$)=*(C)&1, and by the inductive
hypothesis, K(Ac, p$)�K(Ac, q). Also

D*( p$)=[B # D*( p) | : # B]/D*( p).

Therefore, K(Ac, p)�K(Ac, p$), and (ii) follows from the last two inequal-
ities strung together.

Case 4. Now suppose that : � B for all B # D*( p). For =�0, define r(=)
as follows:

ra(=)={ pa

p:&=
if a{:,
if a=:.

We have that D*(r(=))=D*( p) for all =>0 sufficiently small, and as = is
increased, eventually new minimal bundles will become optimal at prices
r(=). Moreover, any new optimal bundle B will satisfy : # B. Let
=$ :=p:&q: and =̂ be the smallest = for which D*(r(=)){D*( p). If =$<=̂, let
p$ :=r(=$) and C$ :=[a # 0 | p$a {qa]; otherwise, let p̂ :=r(=̂). In the former
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case, since *(C$)=*(C)&1, we have as in Case 3 that K(Ac, p)=
K(Ac, p$)�K(Ac, q). In the latter, we have that

D*( p̂)=D*&( p̂, :) _ D*+( p̂, :), D*&( p̂, :)#D*( p), and D*+( p̂, :){<.

By part (ii) of Lemma 4, K(Ac, p̂)=K(Ac, p), and if =$>=̂, p̂ satisfies the
assumptions of Case 3, otherwise =$= =̂ and ( p̂, q) satisfies the inductive
hypothesis. Therefore K(Ac, p̂)�K(Ac, q). K

Proof of Theorem 3. If such a partition (B0 , ..., Bn) exists, then for any
bundle A,

:
i # N

Ki (A, p)� :
i # N

*(A & Bi)=*(A & Bc
0)�*(A).

Conversely, for each i # N, and A/0, let \i (A) :=Ki (0, p)&Ki (Ac, p).
Suppose for the moment that Kn(0, p)=*(0)=m. We will prove the
theorem for this case first, and later deal with the case KN(0, p)<m. Then,
for each A/0,

:
i # N

\ i (A)=KN(0, p)&KN(Ac, p)=*(0)&KN(A c, p).

Since by assumption KN(Ac, p)�*(Ac), we have that � i # N \ i (A)�*(A)
for every A/0. Therefore, by Edmonds' theorem, there exists Bi #
Di*( p), i # N, such that � Bi=0. By definition of the rank function,
\i (Bi)=*(Bi) for each i # N, so

:
i # N

\ i (Bi)=KN(0, p)& :
i # N

Ki (Bc
i , p)=KN(0, p)=*(0)

(since Ki (Bc
i , p)=*(Bc

i & Bi)=0 for each i # N). But, � i # N *(Bi)=
*(0)=*(�i # N Bi) implies that the sets Bi , i # N, must be disjoint.
Thus, if B0 :=<, (B0 , ..., Bn) is a partition of 0 supported by p, and
Ki (A, p)�*(A & B i), i # N. This concludes the proof for the case in which
KN(0, p)=m.

Now, suppose that KN(0, p)=k<m. Define the ``demand corre-
spondence''

D0*( p) :=[A/0 | *(A)=m&k], p # Rm
+ .

It is easy to see that for each p, D0*( p) is the basis of a matroid. If we let
K0 be the corresponding requirement function, then

K0(A, p)=max[0, *(A)&k].
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Define \0(A) :=K0(0, p)&K0(Ac, p)=m&k&K0(Ac, p) for each A/0.
Then

:
n

i=0

Ki (0, p)=m and :
n

i=0

Ki (A, p)�*(A) for each A/0.

Thus, by the previous case, there exist Bi # Di*( p), i # N0 , such that
(B0 , ..., Bn) is a partition of 0. K

Proof of Lemma 6. If =(t)>0, then there exists s>0 such that
O

*
( p(t)+s$( p(t))){O

*
( p(t)). This implies that $( p(t)){0, and therefore

that O
*

( p(t)){<.
Conversely, suppose O

*
( p(t)){<. For any s�0 define

q(s) :=p(t)+s$( p(t)) and r(s) :=p(t)+se0.

Obviously, r(0)#q(0)#p(t). We need to show that when O
*

(q(0)){<,
then O

*
(q(s))=O

*
(q(0)) for all s>0 sufficiently small. This is a kind of

``right continuity'' of O
*

.
By definition, for each i, A # Di (q(0)) and B � D i (q(0)), we have

that vi (A, p(t))>vi (B, p(t)). Therefore, there exists =1>0 such that
vi (A, q(s))>vi (B, q(s)) for all s # [0, =1], A # Di (q(0)), and B � Di (q(0)).
Let

w := min
C # Di ( p(t))

*[C & O
*

( p(t))].

Then

Di (q(s))=[B # Di (p(t)) | *[B & O
*

( p(t))]=w],

and clearly Di (q(s))/Di (q(0)). Similarly, there exists =2>0 such that
Di (r(s))=Di*(r(0)) for all s # [0, =2]. Let =0 :=min[=1 , =2]. We now show
that O

*
(q(s))=O

*
(q(0)) for all s # [0, =0].

Pick any s # [0, =0] and any bundle A. Since Di*(r(s))=Di*(r(0)) for
each i # N and r(0)=q(0)= p(t),

f (A, r(s))= f (A, q(0)). (1)

Also, since Di (q(s))/Di (q(0)) for each i # N,

f (A, q(s))� f (A, q(0)). (2)
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Finally, if A/O
*

(q(0)), part (i) of Theorem 2 implies that

f (A, r(s))� f (A, q(s)). (3)

When A=O
*

(q(0)), inequalities (1)�(3) imply that

x :=f (O
*

(q(0)), q(0))#f (O
*

(q(0)), r(s))#f (O
*

(q(0)), q(s)), (4)

and when A=O
*

(q(0)) & O
*

(q(s)), they imply that

y :=f (O
*

(q(0)) & O
*

(q(s)), q(0))#f (O
*

(q(0)) & O
*

(q(s)), r(s))

#f (O
*

(q(0)) & O
*

(q(s)), q(s)). (5)

Finally, (1) and (2) also hold when A=O
*

(q(0)) _ O
*

(q(s)), and from
part (ii) of Theorem 2, we also have

f (O
*

(q(0)) _ O
*

(q(s)), q(0))� f (O
*

(q(0)) _ O
*

(q(s)), q(s)). (3$)

Therefore

z :=f (O
*

(q(0)) _ O
*

(q(s)), q(0))#f (O
*

(q(0)) _ O
*

(q(s)), r(s))

#f (O
*

(q(0)) _ O
*

(q(s)), q(s)). (6)

Since for all s$�0 and bundle A, f (O
*

(q(s$)), q(s$))� f (A, q(s$)), we
have

f (O
*

(q(s)), q(s))� y and f (O
*

(q(s)), q(s))�z (7)

x� y and x�z, (8)

where the first inequality in (7) follows from (5), the second from (6), and
the inequalities in (8) follow from (4)�(6). From the supermodularity of
f ( } , q(s)) and the equality f (O

*
(q(0)), q(s)))=x, it follows that f (O

*
(q(s)),

q(s)))+x� y+z. So, (7) and (8) imply f (O
*

(q(s)), q(s)))=x= y=z.
That is, O

*
(q(0)) # O(q(s)), and therefore O

*
(q(s))/O

*
(q(0)). Conversely,

(1)�(3) imply O
*

(q(s)) # O(q(0)), so O
*

(q(0))/O
*

(q(s)). Therefore, O
*

(q(s))
=O

*
(q(0)). K

Proof of Lemma 7. Let ct :=(m+1) f (O
*

( p(t)), p(t))&*(O
*

( p(t))).
Note that c0�(m+1)(n&1) m and ct is a nonnegative integer for each t.
Thus, to complete the proof, we show that ct+1<ct for each t<T. To
accomplish this, we establish that
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(i) f (O
*

( p(t+1)), p(t+1))� f (O
*

( p(t)), p(t)) for all t<T.

(ii) if O
*

( p(t)){< and f (O
*

( p(t+1)), p(t+1))= f (O
*

( p(t)), p(t)),
then *(O

*
( p(t+1)))>*(O

*
( p(t))).

(iii) if ct>0 then *(O
*

( p(t))){<.

Let t be such that O
*

( p(t)){< (that is, t<T ). As in the previous
lemma, let q(s) :=p(t)+s$( p(t)), and let =(t) be as defined in step 3 of the
algorithm. Then p(t+1)=q(=(t)). Let =<=(t) be large enough so that
Di (q(s)) remains constant for each i and s # (=, =(t)). Then, for any
s # (=, =(t)), we have

f (O
*

( p(t+1)), p(t+1))� f (O
*

( p(t+1)), q(s))

� f (O
*

( p(t)), q(s))� f (O
*

( p(t)), p(t)). (9)

The first inequality follows from the observation made after the specifica-
tion of the algorithm: Di (q(s))/Di ( p(t+1)) for all s # (=, =(t)). By defini-
tion of =(t), O

*
(q(s))=O

*
( p(t)) # O(q(s)) for all s # (=, =(t)); this implies

the second inequality. The last inequality follows from part (ii) of
Theorem 2. This establishes (i).

Suppose equality obtains in (i). From (9), it must be that
f (O

*
( p(t+1)), q(s))= f (O

*
( p(t)), q(s)). Hence O

*
( p(t+1)) # O(q(s)) for

all s # (=, =(t)), and since O
*

( p(t)) is the minimal element of O(q(s)) for all
s # (=, =(t)), we must have that O

*
( p(t))/O

*
( p(t+1)). So, if O

*
( p(t+1))

{O
*

( p(t)), we have that *(O
*

( p(t+1)))>*(O
*

( p(t))). This establishes
(ii). Finally, (iii) is obvious. K

Lemma 8. Let [|1 , ..., |k] be a collection of distinct objects in 0.
Consider the enlarged economy E� =(0; u1 , ..., un , un+1 , ..., un+k), where con-
sumer n+i has the unit demand utility function

un+i (A)={ 0
p
�

|i

if |i � A,
if |i # A.

Then the set P� E of Walrasian equilibrium prices for E� coincides with the set
PE of Walrasian equilibrium prices for E.

Proof. Let X be any efficient allocation in E such that X0=<, and
define the allocation X� of E� as follows: X� i=Xi for each i=1, ..., n, and
X� n+i=< for each i=1, ..., k. Pick any p # PE. By definition, p|i�p

�
|i for

each i=1, ..., k. If p|i=p
�

|i , consumer n+i 's optimal choices are to con-
sume nothing or to consume [|i], while if p|i>p

�
|i , consumer n+i

definitely prefers to consume nothing. In either case, at prices p, X� n+i is an

92 GUL AND STACCHETTI



optimal choice for consumer n+i, and ( p, X� ) is a Walrasian equilibrium
of E� .

Conversely, note that by the first theorem of welfare economics, X� is an
efficient allocation of E� . Therefore, if p is a Walrasian equilibrium price in
E� , (p, X0)=0 and p supports X� in E� . But this implies that p supports X
in E, and thus ( p, X) is a Walrasian equilibrium of E. K

Lemma 9. If p supports X, then (p, X0) �(p
�
, X0).

Proof. Let Y be any efficient allocation with Y0=<. Then for each
i # N,

ui (Xi)&(p, Xi)�ui (Yi)&(p, Yi) ,

which implies that

:
i # N

ui (Xi)& :
i # N

ui (Yi)�&(p, X0). (10)

Also, for each i # N,

ui (Yi)&(p
�
, Yi)�ui (Xi)&(p

�
, Xi) ,

and therefore

:
i # N

ui (Yi)& :
i # N

ui (Xi)�(p
�
, X0) . (11)

Adding inequalities (10) and (11) we obtain 0�(p
�
, X0) &(p, X0) . K

Proof of Theorem 4. We first show that p(T )�p
�
. Suppose not. Then

there exists t and s # [0, =(t)) such that q(s) :=p(t)+s$( p(t))�p
�

and
O

*
(q(s)) & W(q(s)){<, where for any price p,

W( p)=[a # 0 | pa=p
�

a].

Note that since s<=(t), O
*

(q(s))=O
*

( p(t)){<. Let W1 :=W(q(s)) &
O

*
(q(s)) and W2 :=O

*
(q(s))"W(q(s)).

For #>0, define the price vector p as follows: pa=q(s) for a � W2 and
pa=q(s)+# for a # W2 . Choose #>0 small so that pa<p

�
a for a # W2 , and

Di ( p)=[X # Di (q(s)) | *(X & W2)=Ki (W2 , q(s))].
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For some X # Di ( p), Ki (W1 , p)=*(X & W1) and Ki (W2 , q(s))=*(X &
W2). Therefore,

Ki (O*
(q(s)), q(s))�Ki (W1 _ W2 , q(s))�*((W1 _ W2) & X)

=Ki (W1 , p)+Ki (W2 , q(s)),

and thus Ki (W1 , p)�Ki (O*
(q(s)), q(s))&K i (W2 , q(s)). Summing over i

and subtracting *(W1)=*(O
*

(q(s)))&*(W2), we obtain

f (W1 , p)� f (O
*

(q(s)), q(s))& f (W2 , q(s)).

Since W2 is a strict subset of O
*

(q(s)), f (W2 , q(s))< f (O
*

(q(s)), q(s)).
Therefore f (W1 , p)>0. By Theorem 2, then, f (W1 , p

�
)>0, which con-

tradicts the fact that p
�

is a Walrasian equilibrium.
Next we show that p(T )=p

�
. Let X be a partition which is supported by

p(T ). The previous lemma then implies that (p(T ), X0)�(p
�
, X0) . There-

fore, pa(T )=p
�

a for all a # X0 .
Suppose X0=[|1 , ..., |k]. Let E� =(0; u1 , ..., un , un+1 , ..., un+k) be the

enlarged economy where each un+i , i=1, ..., k is as defined in Lemma 8
above. At prices p(T ), consumer n+i 's optimal bundles are < and [|i].
Therefore, ( p(T ), X� ), where X� 0=<, X� i=Xi for i # N, and X� n+i=[|i] for
i=1, ..., k, is a Walrasian equilibrium of E� . Hence, by Lemma 8, p(T ) is a
Walrasian equilibrium price for E, and thus p(T )�p

�
. K
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