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Econometrics is a key component to gauging 
user satisfaction and advertisers’ profits.

BY DENIS NEKIPELOV AND TAMMY WANG

THE TRANSITION OF the largest online advertising 
platforms to auction-based automated real-time 
designs has transformed the advertising industry. 
The advertisers had an opportunity to design flexible 
goal-specific advertising campaigns, target focused small 
groups of consumers, and perform fast and efficient 
experi mentations. At the same time, consumers can 
be exposed to a smaller number of higher quality 
advertisements. However, in order to achieve the 
design goals, such as optimal placement of ads that 
maximizes the sum of utilities of users or revenue 
generated by the auction platform, the auction needs 
to be carefully optimized. To optimize the auction, the 
auctioneer typically chooses a relatively small number 
of auction parameters that determine the allocation of 

items and prices based on submitted 
bids. Typical auction parameters in-
clude reserve prices, which determine 
the minimum bid and can correspond 
to any allocation. Another parameter 
used in sponsored search auctions is 
the quality score, which is a positive 
bidder-specific weight used to discount 
or inflate submitted bids before they 
are ranked. The setting of auction pa-
rameters requires a knowledge of ad-
vertisers’ preferences and consumers 
behavior, which can be acquired from 
data. This makes econometric infer-
ence from observed data of high im-
portance for the design and analysis of 
online advertising auctions.

The structure of online advertising 
exchanges is becoming significantly 
complex, and requires multiple param-
eters to be input by auction design-
ers. These parameters are required 
to yield consistent advertising alloca-
tions, relevant user ad experiences 
over time and catering ad placements 
to advertisers’ goals. This operational 
structure of online ad exchanges 
has been incorporated into the algo-
rithmic implementation of advertis-
ing auctions, see Muthukrishnan,29 
Aggarwal and Muthukrishnan,30 and 
Muthukrishnan31 for details of such 
an implementation. However, the 
increased heterogeneity and dynam-
ics of the marketplace call for quick 
“on demand” adjustments of auction 
parameters in order to pursue auction 
platform revenue goals and relevant ad 
experiences for users. Recent evidence 
from the sponsored search advertising 

Inference 
and Auction 
Design 
in Online 
Advertising

 key insights
 ˽ Modern advertising platforms are 

automated systems powered by auctions 
that allocate and price advertising  
slots contemporaneously based on  
the bids submitted.

 ˽ Real-time auction-based systems require 
good predictions of user behavior, need 
to adapt to the changing marketplace, 
and require fast and robust methods for 
evaluating performance.

 ˽ These challenges can be addressed  
by applying econometric methods to  
the data from advertising platforms.
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expresses this bidder’s value per click. 
Inference of bidders’ values per click  
is, therefore, one of the key ingredients 
of counterfactual inference. Another 
ingredient is the computation of the 
Bayes-Nash equilibrium of the auction.

The Bayes-Nash equilibrium of an 
auction is the set of bids and beliefs 
of bidders regarding the distribution 
of uncertainty in the auction such that 
the bids optimize bidders’ expected 
utilities, and the beliefs of bidders 
correctly capture the realized distribu-
tion of uncertainty. When bidders use 
Bayes-Nash equilibrium strategies 
and the equilibrium is unique, the val-
ues can be inferred directly from data 
by inverting bidders’ best response 
functions. The inferred bidder value 
makes the observed bid the best 
response to the observable empirical 
distribution of opponent bids. Athey 
and Nekipelov3 adopted this strategy 
to infer bidders’ values in sponsored 
search auctions. Sponsored links that 
appear beside Internet search results 
on major search engines are sold 
using real-time auctions. Advertisers 
place standing bids where they are 
associated with search phrases that 
form part or all of a user’s search query. 
Each time a user enters a search query, 
applicable bids are entered to an auc-
tion. The ranking of advertisements 
and the prices paid depend on adver-
tiser bids as well as “quality scores” 
assigned for each advertisement and 
user query. These quality scores are 
traditionally set equal to the predicted 
probability of a user click on an ad. 
They vary over time because the sta-
tistical algorithms predicting quality 
produce different predictions based 
on the features of the user issuing the 
search query.

In theory, the allocation and payment 
functions in standalone position auc-
tions are discontinuous with respect 
to bid, because the price only changes 
when the bidder goes up in the ranking 
with an increased bid. However, in ad 
auctions each bid is typically applied to 
many auctions. With sufficient uncer-
tainty over auctions, the expected auc-
tion outcomes will be continuous. As 
a result, to accurately characterize the 
behavior of bidders in this setting, 
Athey and Nekipelov3 propose a model 
that has these properties.

The model proposed by Athey and 

marketplace indicates that there are 
significant gains (both in terms of over-
all welfare and ad exchange revenue) 
from adopting data-driven designs. 
For example, Ostrovsky and Schwarz34 
described the experiment on Yahoo!’s 
search engine where the advertisers 
‘per-click values were recovered from 
observed bids. The distribution of 
recovered values was then used to set 
search query-specific reserve prices 
in the advertising auctions. The data 
shows a significant increase in the 
search engine’s revenue resulting from 
this switch.

As with other economic markets, 
advertising markets balance supply 
and demand. The webpage content 
attracts consumers and supplies their 
“attention.” Advertisers demand user 
attention since it converts advertised 
products and services to purchases. As 
in all economic markets, the equilib-
rium of demand and supply is driven 
by price. The dominant pricing model 
for advertising puts payment control 
on the side of advertisers and lets them 
determine their preferred prices. At the 
same time, consumers receive a “free” 
service. This feature has made adver-
tiser behavior of direct importance for 
monetization and, therefore, has been 
studied in detail in recent years.

We survey the work devoted to the 
analysis of advertiser behavior, start-
ing from market equilibrium models 
to more recent work where advertis-
ers must adopt learning strategies 
to set their bids. We then discuss the 
“supply” side of the market, which 
to a large extent remains model-free. 
Recent empirical work has focused 
on determining actual advertisers’ 
value extracted from users. This work 
turned out to be significantly more 
delicate since user behavior is highly 
correlated with user characteris-
tics, and thus, it is very difficult to 
distinguish the effect of advertising 
from the inherent propensity of par-
ticular users to purchase particular 
products. Finally, we describe recent 
changes in user behavior caused by 
the transformation of browsing and 
purchasing patterns generated by new 
devices, and new ways of accessing 
the Internet. We predict this trend will 
generate the need to do more in-depth 
consumer-side research of advertising 
markets.

The complexity of advertising mar-
kets highlights the importance of 
inference, as inference informs cus-
tomized market-specific design and 
optimization of advertising markets. 
Here, we review existing and emerging 
approaches to inference for advertising 
auctions both aimed at the diagnostic 
analysis of advertising marketplaces 
and as an input to decisions regarding 
marketplace changes.

Platform Design and Advertiser 
Behavior
Bidder value inference. While the general 
auction platform design can be based 
on pure economic theory, platform 
optimization requires the knowledge 
of the bidders’ underlying preferences 
and the prediction of user action. This 
knowledge is derived from the auc-
tion outcomes data. The general prob-
lem of data-driven auction design can 
be formulated as the counterfactual 
inference —from observations of agent 
behavior in the platform, we want to 
predict how they will behave if the 
platform design is changed. With the 
new design, participating agents will 
re-optimize their strategies, and, thus, 
this new design leads to the change in 
bids. Counterfactual inference, there-
fore, requires the platform to anticipate 
strategic responses of bidders to the 
mechanism change.

The counterfactual inference is based 
on the economic model that character-
izes agent behavior on the platform. 
Based on this model, one can use data 
to infer the “primitives” of the model 
(such as agent preferences) that are 
consistent with the observed behav-
ior. The prediction for the new design 
will be based on computing bidders’ 
responses to the new auction mecha-
nism, and the changed bids of the 
other bidders.

In an advertising auction model, 
the utility of a bidder (that character-
izes the expected gain of the bidder 
from participating in an auction) is 
typically set equal to the click prob-
ability multiplied the bidder’s value 
per-click less the cost. The click prob-
ability depends on both the identity of 
the bidder and the placement of the 
ad. Therefore, it ultimately depends on 
the bid that determines where the ad is 
placed. In this model, we characterize 
each bidder by a single parameter that 
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Nekipelov3 deviates from the standard 
model of a Bayesian auction game where 
the values of the players are drawn 
from the distribution. The main reason 
for this deviation is that in real-world 
advertising auctions the sets of bid-
ders are fixed and most bidders’ bids 
do not change over long time intervals. 
Athey and Nekipelov’s model rational-
izes this observation. In the rest of the  
survey we adhere to the model of Athey 
and Nekipelov and assume the values 
of the bidders are fixed.

Consider the model where there 
are I bidders whose ads are eligible 
to be displayed to a user alongside 
the search results and to be placed in 
J available advertising positions. The 
user clicks on the ad i shown in the 
position j with probability cij, where 
cij = aj × si is the product of the ad-spe-
cific click probabillity si (for i = 1, … , I) 
and the advertising slot-specific click 
probability aj (for j = 1, ... , J). The bid-
der-specific click probability si for the 
particular bidder i is a random vari-
able whose realizations vary across 
search queries of user. The random-
ness of the bidder-specific click proba-
bility reflects different propensities of 
different users to click on a given ad.a 
The bidder-specific click probability 
si is referred to as the bidder’s quality 
score (or, simply, the score).

This description shows how an ad 
platform conducts a score-weighted 
auction. In each user query, the plat-
form runs an auction where each adver-
tisement i is assigned the score si, and 
bids are ranked in order of the product  
bi × si. The per-click price pi that bidder 
i in position j pays is determined as the 
minimum price such that the bidder 
remains in her position,

 pi = min {bi : si bi ³ sk bk} = sk bk /si, (1)

where bidder k is in position j + 1. 
Note that advertiser i’s bid does not 
directly influence the final price she 
gets charged, except when it causes to 
change positions. In effect, an adver-
tiser’s choice of bid determines which 
position she attains, where the price 
per click for each position is exogenous 

a In practice, si is a prediction from a machine 
learning algorithm run by the search engine 
that uses a large set of user features which vary 
from query to query.

to the bid and rises with position. An 
auction with this type of pricing rule is 
called the (score-weighted) generalized 
second price auction.

Per-click values of bidders vi for  
i = 1, … , I are fixed for each bidder across 
user queries and are supported on [0, v̄]. 
The pay-off of bidder i in a query where 
this bidder receives a click is the surplus  
vi − pi, where pi is bidder i’s price per 
click defined by Equation (1).

While we assume all I bidders are 
eligible to be displayed in each user 
query, the actual sets of participating 
bidders in a real search query page 
will vary. For instance, some bidders 
may be excluded from certain queries 
based on the targeting settings (that 
is, advertisers may prefer to adver-
tise in specific geographic locations). 
Suppose each bidder knows the entire 
set of bidders I, but can not observe the 
set of competitors in a given query and 
can not observe neither her own nor 
her competitors’ scores. In this case, 
bidders form beliefs regarding the dis-
tribution of scores of all bidders (since 
they affect the prices in individual user 
queries), and beliefs regarding the dis-
tribution of realizations of sets of their 
competitors across user queries. The 
standard assumption in the sponsored 
search auction literature (for example, 
Edelman et al.16 and Varian41) is that 
bidders have full information regarding 
each other’s bids. This reflects the idea 
of a high frequency environment where 
bidders can quickly determine the bids 
of their opponents, even if the auction 
platform does not explicitly provide that 
information. Bidder i then maximizes 
the expected pay-off (with per click 
value) with the bidder’s beliefs regard-
ing the distribution of uncertainty of 
scores and sets of competitors. This 
pay-off (a.k.a. utility) can be expressed 
as,

 U(bi, b−i; vi) = E[cij(vi – pij
)], (2)

where the expectation E is taken over 
the distribution of scores s1, … , sI, and 
the distribution of sets of bidders par-
ticipating in the auction. We empha-
size that the pay-off depends on the bid 
of the bidder i (bi) as well as the bids 
of all competing bidders (b−i) that may 
determine the rank and the price that 
bidder i pays depending on a realiza-
tion of the set of scores.

Advertisers demand 
user attention 
since it converts 
advertised products 
and services  
to purchases.  
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by a small amount and then compute 
the change in the outcome of the auc-
tions where the original bid of the bid-
der was applied. The evaluated change 
in expenditure will serve as an estima-
tor for the derivative of TEi(×) function 
and the evaluated change in number of 
clicks will serve as an estimator for the 
derivative of Qi(×) function.

Evaluation of new auction mecha-
nisms using data. The approach 
adopted in the empirical economics 
literature (see Bajari et al.4,5) provides 
a simple recipe for platform optimi-
zation subject to the inferred bidder 
preferences, assuming the bids con-
stitute the Nash equilibrium (defined 
previously in terms of best responses 
and beliefs of bidders) under the new 
settings. To follow this recipe, first we 
estimate the components of the first-
order condition (Equation 3) using 
data from historical realizations of 
auctions. Value per click can then be 
reverse engineered from the bids for 
each bidder. Second, we plug in the 
new proposed auction parameters (or 
consider a new auction format). For 
each set of bids we can simulate the 
auction outcomes under the new auc-
tion parameters. These new auction 
outcomes (prices and allocations for 
hypothetical bids under the new auc-
tion rules) will generate counterfactual 
functions (bi, b−i) and (bi, b−i) for 
each bid profile. Finally, assuming 
the system converges to the long-term 
Nash equilibrium under new auction 
rules, and the values of the bidders do 
not change, we can predict the new 
bids. To do so, we find the set of bids for 
all participating bidders such that the 
bid of each bidder maximizes her util-
ity under the new auction rules given 
the bids of other bidders. Since the 
maximum utility will be attained at the 
point where its derivative with respect 
to the bid is equal to zero, finding the 
new equilibrium bids is reduced to 
solving the system of nonlinear equa-
tions for i = 1, … , I

  (4)

using values vi inferred from the data 
(using Equation (3)) and solve for 
the set of bids b1

*, …, bI
* that makes all 

I equalities hold. Unlike Equation (3) 
where we use actual bids bi to obtain the 
values, in Equation (4) bids bi

* are the 

Here, we consider the question of 
bidders’ per-click values that can be 
recovered from data that contains a 
large number of queries for a given set 
of potential bidders. For each query, 
the data available to the advertising 
platform contains the bids, a set of 
entrants, and the bidders’ scores relat-
ing to each user query.

In this case, we can define function 
Qi(×) to be equal to the probability of click 
on the ad of bidder i in a search query 
as a function of all bids. We also define 
function TEi(×) equal to the expected pay-
ment of bidder i in a search query as a 
function of all bids. The utility of bidder 
i can be written in terms of these func-
tions as,

U(bi, b−i; vi) = vi Qi(bi, b−i) – TEi (bi, b−i).

The best-responding bid maximizes 
the expected utility given the bids of 
opponent bidders (b−i). Athey and 
Nekipelov3 demonstrate that with suf-
ficient smoothness and support size 
of the distribution of scores, functions 
Qi(×) and TEi(×) are strictly increasing 
and differentiable with respect to bids. 
As a result, the value per click for each 
bidder can be recovered using the nec-
essary first order condition for opti-
mality of the bid.

  (3)

Functions Qi(×) and TEi(×) can be 
recovered directly from the datab (for 
example, using splines or any other 
appropriate method). Thus, the per-
click value can also be recovered from 
a data using Equation (3). Smoothness, 
and monotonicity of Qi(×) and TEi(×) can 
be directly tested in data and has been 
verified using the auction data by Athey 
and Nekipelov.3

Equation (3) provides a simple prac-
tical method for estimating value per 
click. For each bidder we change bid 

b Statistical properties of the corresponding 
estimators, such as the rate of convergence, 
are  determined by the either the complexity 
of the circuit that is used to compute the allo-
cations and payments from the bids or using 
their functional properties such as smooth-
ness or concavity directly. The methods that 
can be used to establish these statistical prop-
erties parallel those applied to derive sample 
complexity of mechanisms such as Cole and 
Roughgarden,14 Cummings,15 and Morgen-
stern and Roughgarden.28

An advertiser’s 
choice of bid 
determines which 
position she 
attains, where the 
price per click for 
each position is 
exogenous to the 
bid and rises with 
position. 
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outcome and the values are the input. 
We note that this strategy only works if 
functions TEi(×, b−i), Qi(×, b−i), (×, b*

−i) 
and (×, b*

−i) are strictly monotone and 
the equilibrium is unique.

Monotonicity of payment and alloca-
tion functions along with the uniqueness 
of the Nash equilibrium allow us to 
use numerical continuation methods to 
find the new equilibria. The numerical 
continuation approach to finding this 
new equilibrium is based on transform-
ing the set of conditions Equation (4) 
into system of ordinary differential equa-
tions. Athey and Nekipelov3 show that 
solving this system of differential equa-
tions is equivalent to finding the new 
equilibrium (that is, it will not diverge or 
generate new extraneous solutions). The 
solution of numerical approximation 
of ordinary differential equations will 
yield the new equilibrium.

Although formulating the equilib-
rium computation problem in terms 
of solving the system of differential 
equations is mathematically elegant, 
the process can be complicated since 
it requires many calls to functions 

(×, b*
−i) and (×, b*

−i), which need to 
be computed from the data for each 
evaluation. This problem is further 
accentuated in most advertising mar-
kets where the large number of eligible 
bidders participating in each auction 
leads to difficulties in computing the 
new equilibrium, even when sufficient 
conditions hold for existence and 
uniqueness of the Nash equilibrium.

A significant simplification in equi-
librium settings can be achieved when 
the object of interest is not the entire vec-
tor of bids, but a specific lower dimen-
sional auction outcome, such as revenue 
or welfare. When a simple outcome is 
defined, the entire vector of counter-
factual equilibrium bids is no longer of 
direct interest, which effectively reduces 
the scale of the computational problem. 
Next, we consider this approach in appli-
cation to social welfare in an auction.

The price of anarchy bounds. While 
equilibrium-based analysis can be 
widely applied, it is largely based on 
the idea that bidders use equilibrium 
strategies and the corresponding set 
of bids constitutes a Nash equilib-
rium. A common assumption used in 
the economics literature is the equi-
librium is unique in a given market. In 
practice, however, it is impossible to 

guarantee that sufficient conditions for 
Nash equilibrium uniqueness are sat-
isfied in a given auction mechanism. 
For instance, the non-monotonicity of 
either the payment or allocation func-
tion leads to several possible values 
for each click that are consistent with 
observed bids. Then the simple equilib-
rium-based analysis is no longer valid.

The economics literature has devel-
oped an approach to the analysis of 
data from outcomes of games with 
multiple equilibria and games in non-
equilibrium settings (for example, see 
Aradillas-Lopez et al.1 and Beresteanu 
et al.6). The approach is to directly con-
sider the optimality conditions for the 
players in these new settings. In auctions 
such optimality conditions lead to sets 
of possible values of bidders referred to 
as identified sets. This approach, how-
ever, has proven to be very difficult with 
reported computational time signifi-
cantly exceeding those in the equilib-
rium framework even for simple games 
(see Ciliberto and Tamer13).

Koutsoupias and Papadimitriou23 
have developed a theoretical frame-
work for analyzing simple auction out-
comes such as revenue and welfare. 
The framework produces bounds for 
these outcomes comparing them to the 
welfare-maximizing allocation over all 
feasible realizations of bidders’ values. 
This approach is referred to as the price 
of anarchy approach, which is defined 
as the ratio of the worst-case objective 
function value of the outcome of a game 
(such as Nash equilibrium outcome) and 
that of an optimal outcome. It turns out 
the price of anarchy can be established 
under minimal assumptions on the 
underlying preferences for many com-
monly used auction mechanisms (for 
instance, see Roughgarden36).

There are two difficulties with prac-
tical application of the price of anarchy 
bounds for a given game. First, these 
bounds can be quite conservative. Given 
they are derived taking the worst case 
equilibrium and the value profile, these 
bounds can be large. However, the val-
ues of players and the equilibria that 
generate the worst-case outcomes may 
not occur in reality. Even when the data 
from the mechanism is available, the 
price of anarchy bounds do not take it 
into account. Second, the price of anar-
chy is mechanism-specific and has so far 
been derived on the case-by-case basis.

Hoy et al.20 bridge the gap between 
the robust but coarse theoretical price 
of anarchy bounds and precise but 
difficult to compute identified sets. 
The idea is to integrate data directly 
into the price of anarchy style analy-
sis that can be applied to large classes 
of existing auction mechanisms. This 
new concept is called the empirical 
price of anarchy.

Here, we discuss the idea behind 
the empirical price of anarchy for 
auction settings where bidders 
adhere to playing full informa-
tion equilibrium best responses 
in the auction mechanism A,  
but where those best responses are 
not unique (for example, due to non-
monotonicity of allocations and 
prices in the auction). We assume, 
like in the model of Athey and 
Nekipelov,3 the auction param-
eters are random while the pro-
file of bidders’ values is fixed and 
we use V = (v1, … , vI) to denote that 
profile. For a given profile of val-
ues auction A can have multiple Nash 
 equilibria that constitute set S(A, V).  
Combined with the distribution 
of auction parameters across user 
search queries, an equilibrium 
(which is an element of S(A, V) ) gen-
erates the distribution of observable 
auction outcomes (allocations and 
payments of bidders) D(×) across 
those user queries.

If the set of all equilibria S(A, V) 
is not a singleton, then there will be 
many equilibrium distributions of 
outcomes D(×) that correspond to value 
profile V. Conversely, for each distri-
bution of auction outcomes D(×) there 
may be multiple value profiles of the 
bidders that could have generated that 
distribution of outcomes. Our next 
step is based on exploring this infor-
mation to make statements regarding 
the counterfactual welfare (the sum of 
bidder utilities and the revenue of the 
auctioneer) in auctions.

We define the Empirical Bayesian 
Price of Anarchy (EPoA) as the worst-
case ratio of welfare of the optimal allo-
cation to the welfare of an equilibrium 
in a given auction A, taken over all value 
profiles of the bidders V and Nash equi-
libria that could have generated the 
observed distribution of auction out-
comes D(×). The notion of EPoA allows us 
to provide bounds on the (unobserved) 
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recovered from the data. As a result, 
this approach allows one to establish 
the bounds for auction welfare bypass-
ing complex computations required in 
the approaches previously used in the 
economics literature by combining sta-
tistical inference and results from the 
algorithmic game theory. The Syrgkanis 
and Tardos37 approach may potentially 
be applied to other bounds, for example, 
comparing the welfare of a given auction 
mechanism to the welfare of another 
auction mechanism (instead of the 
welfare of the optimal allocation). We 
believe that such an analysis is an impor-
tant direction for future research.

Advertising markets with learning 
agents. Real-world advertising plat-
forms are complex systems with thou-
sands of bidders who compete in the 
same auction with bidders dynami-
cally changing their bids, entering and 
exiting auctions. In this case, infor-
mation requirements for bidders to 
derive their Bayes-Nash equilibrium 
profiles are truly impractical since 
they are required to form beliefs over 
the actions of all of their thousands 
of opponents, as well as the dynamic 
adjustment of auction parameters by 
the advertising platform.

In practice, most bidders in these 
large advertising platforms use algo-
rithmic tools that allow them to auto-
matically and dynamically update their 
bids for multiple ads and advertising 
campaigns. The algorithmic solu-
tions implemented in these tools take 
the advertisers goals (in terms of yield 
of auction outcomes) as inputs, and 
adjust bids using dynamic feedback 
from the auction outcomes. Such 
implementations can be associated 
with algorithmic learning, where the 
bidding strategy is treated as the goal of 
online statistical learning procedure.

Recent work by Blum et al.,8,9 Blum 
and Y. Mansour,10,11 Caragiannis et al.,12 
Hartline et al.,19 Kleinberg et al.,22  
Roughgarden,36 and Syrgkanis and 
Tardos37 shows that some of the worst 
case outcome properties of full infor-
mation pure Nash equilibria extend 
to outcomes when all players use no-
regret or low-regret learning strategies, 
assuming the game itself is stable. The 
assumption that players use low-regret 
learning to adjust their strategies is 
attractive for a number of reasons. 
First, low-regret learning outcome 

welfare of the optimal allocation (OPT) 
and the welfare of the auction A that is 
actually implemented,

WELFARE(OPT) £ EPoA(A; D) ×  
 WELFARE(A). (5)

Thus, the EPoA is the characteristic of 
an auction that allows us to measure 
the efficiency of the current auction 
mechanism without estimating (the 
set of) values of the bidders.

The empirical price of anarchy (and, 
subsequently, the bound for optimal 
welfare) is defined for the true dis-
tribution of auction outcomes D(×). 
Then, the idea is to replace the true 
distribution of auction outcomes with 
empirical distribution (×) of auction 
outcomes observed in the data. Given 
that the empirical distribution is a 
consistent estimator of the true distri-
butionc the bound for the welfare con-
structed using EPoA (A; ) will bound 
the actual auction welfare with proba-
bility approaching one (as we get more 
samples from the distribution of auc-
tion outcomes D(×) ). We call EPoA (A; )  
the estimator for EPoA.

We note that even the estimator for 
EPoA is defined as a potentially complex 
constrained optimization problem. It 
turns out that it is possible to avoid solv-
ing this problem by invoking the revenue 
covering approach. The revenue covering 
approach is based on establishing the 
ratio of the actual auction revenue and 
maximum payment that can be extracted 
from participating bidders in equilib-
rium. This ratio can be used to establish a 
simple bound for EPoA. We now describe 
this approach in more detail in applica-
tion to the sponsored search auction.

Consider the sponsored search 
auction model with uncertainty as we 
described in detail. We can define the 
average price per click for bidder i with 
bid bi as ppci(bi) = TEi(bi)/Qi(bi). The typi-
cal function that provides the expected 
number of clicks as a function of the 
bid Qi(bi) in the sponsored search auc-
tion is continuous and monotone. As 
a result, we can construct its inverse 

 that specifies the bid that is 
needed to get the expected number of 
clicks z. Then, the average price per click 

c Formally, the infinity norm  
converges to zero in probability under mild  
assumptions regarding D(×).

can be redefined in terms of expected 
clicks as , which 
is the average price per click that bid-
der i getting z clicks pays. Function 

 is called the threshold 
because it corresponds to the mini-
mum price per click that bidder i 
needs to pay to get z clicks in expec-
tation. The cumulative threshold for 
agent i who gets Qi expected clicks is 

 Ti(Qi) can be inter-
preted as the total payment that bidder 
i would have paid, had she purchased 
each additional click at the average 
price of previously purchased clicks 
when she purchases a total of Qi clicks.

Definition 1. Strategy profile s of auc-
tion A (defining the mapping from bid-
ders’ values into their bids) is m-revenue 
covered if for any feasible allocation 

 mRevenue (A, s) ³ SiTi(Qi). (6)

Auction A is m-revenue covered if for 
any strategy profile s, it is m-revenue 
covered.

The inequality Equation (6) can be 
defined in expectation over the realiza-
tions of possible equilibrium profiles 
and all thresholds corresponding to the 
realizations of bid profiles. Then, the 
expected revenue from the auction can 
be measured directly by the auction plat-
form (as a sum of payments of bidders per 
auction over the observed auction realiza-
tions). The thresholds can be computed 
via simulation from the observed auction 
realizations given that the allocation and 
pricing rule is controlled by the auction 
platform, and thus empirical equivalents 
of TEi(×) and Qi(×) can be computed for 
each bid bi. As a result, the platform can 
compute the revenue covering parameter 
for given auction mechanism A.

The next result, developed in 
Syrgkanis and Tardos,37 takes revenue 
covering parameter and provides the 
EPoA for the auction mechanism A.

Theorem 1. The welfare in any m-revenue 
covered strategy profile s of auction A  
is at least a  -approximation to the 
optimal welfare. In other words, EPoA  
(A; D) .

The estimator for the EPoA is then 
obtained by replacing the true revenue 
covering parameter m with its estimator 
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generalizes the Bayes-Nash equilibrium 
assumption. Rather than assuming 
that at any time players’ actions form 
a Bayes-Nash equilibrium, it is only 
necessary to assume that each player 
has no-regret for any fixed action 
over a longer time period. Thus, this 
assumption reduces the requirement 
to gather player aggregate behavior 
over multiple runs of the game rather 
than the constraint of optimality in 
each game. If behavior of all agents is 
stable over the time period, this exactly 
fits the Nash equilibrium assumption; 
however, this also allows evolving play. 
Second, there are many well-known 
learning strategies that guarantee 
players achieve no regret, including the 
weighted majority algorithm2 also known 
as Hedge,17,26 and regret matching18 just 
to name a few simple ones.

In the context of bidders using algorith-
mic strategies, we cannot directly esti-
mate their preferences from observed 
actions. While in Nash equilibrium, 
bid is the expression of bidder’s value 
per click, but with algorithmic strat-
egy, the bid is solely the outcome of the 
algorithm and thus the link between 
the bid and the value can be lost if the 
algorithm only approximately opti-
mizes the bidder’s objective function. 
In this case there may be a range of pos-
sible values that are compatible with 
the observed bids.

Nekipelov et al.33 use the concept of  
ε - regret learning to study online learn-
ing in sponsored search auctions. In 
online learning settings the regret of 
a given learning algorithm measures 
the difference between cumulative 
loss achieved by predictions given by 
the algorithm and loss of the best pre-
dictive function (a.k.a. “expert”) from 
a given reference set. This concept 
can be applied to learning in repeated 
sponsored search auctions. The loss 
function will be associated with the 
negative utility in the sponsored search 
auction described earlier (that is, the 
loss minimization will correspond to 
the utility maximization). Nekipelov 
et al.33 suggest set the strategies that 
adhere to a constant bid over the 
sequence of auctions. This idea is 
motivated by the empirical obser-
vation of Microsoft’s Bing advertis-
ing platform, where a large fraction 
of bidders do not change bids over 
the lifetime of their advertisements. 

Then, the average regret of bidder i 
over T periods against the expert that 
sets the constant bid b¢ can be evalu-
ated as,

where index t correspond to the time 
period. The sequence of bids  
achieves εi-average regret if for any 
expert b¢ (from the bid space) Regreti(b¢) 
£ εi. Based on this definition Nekipelov 
et al.33 introduce the notion of a ratio-
nalizable set. We note that if a given 
sequence of bids  has εi-average 
regret, then the value per click vi of bid-
der i and the average regret εi satisfy the 
set of inequalities

for each b¢. Since bid sequences are 
observed in data, and the components 
of bidder utility (expected clicks and 
expected payment) can be simulated, 
these inequalities impose restrictions 
on pairs (vi, εi). The set of these pairs 
is the rationalizable set is denoted as 
NR. The range of bidder values con-
tained in this set characterizes all pos-
sible values per click that rationalize the 
data from this bidder. Expected regret 
of a player reflects the properties of the 
learning algorithm used.

Under continuity and monoto-
nicity of expected payment TEi(×) 
and expected click Qi(×) functions, 
Nekipelov et al.33 establish basic geo-
metric properties of the rationaliz-
able set, such as its convexity and 
closeness. They also present an ele-
gant geometric characterization that 
suggests an efficient algorithm for 
computing the rationalizable set. Since 
closed convex bounded sets are fully char-
acterized by their boundaries, one can use 
the notion of the support function to repre-
sent the boundary of set NR. The support 
function of a closed convex set NR is 
h(NR, u) = supx∈NR

〈x, u〉. Geometrically, 
the support function is the distance 
and hyperplane that it is tangent to 
the set NR with normal vector u. Since 
NR is a two-dimensional set, then u is 
a two-dimensional vector of unit length. 
An important result from convex analy-
sis shows that support functions fully 
characterize closed convex sets.

Nekipelov at. al.33 derive the support 

Real-world 
advertising 
platforms are 
complex systems 
with thousands of 
bidders dynamically 
changing their bids, 
entering and exiting 
auctions.  
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on the demand side of the advertising 
market (that yields revenue to advertis-
ing platforms), the work on the analysis 
of user behavior is significantly more 
sparse. Here, we briefly discuss some 
recent empirical results on the analysis 
of user behavior. This aspect of the mar-
ket leaves a plethora of opportunities 
for future research.

The basic idea that explains the 
emergence of this problem is that user 
actions (such as the clicking on an 
ad) are correlated with observable and 
unobservable user characteristics. At 
the same time, ad delivery ensures ads 
are, by their very design, delivered to cus-
tomers or during time periods that have 
different purchasing probabilities as 
compared to the baseline population. As 
a result, the straightforward approach 
based on predicting user action by using 
user characteristics can lead to overes-
timating the impact of advertising as 
shown in Blake et al.7 and Lewis et al.35

To validate observational estimates 
of user behavior (such as the click-
through rates for different advertising 
slots), advertising platforms rely on 
fully randomized experiments. These 
experiments are used by advertising 
platforms to infer important quantities 
of interest. For example, search engines 
exogenously re-order ad ranking and 
limit the number of ads shown in order 
to produce training data for many algo-
rithms that govern ad delivery systems. 
These experiments are conducted on a 
small percentage of traffic so as to limit 
revenue risk, but nonetheless, still cap-
ture millions of searches. The experi-
ments provide ground truth estimates of 
user behavior such as the causal effect of 
an ad as well as the impact of “organic” 
results on ad effectiveness. However, 
given their size, these estimates often 
need to be aggregated over many adver-
tisers to obtain reasonable precision.

New directions for further work. 
Recently, advertising platforms have 
begun shifting toward advertiser goal-
based pricing. In other words, if an 
advertiser’s ultimate goal is sales to 
customers, then an advertiser may 
not be interested in the clicks per se. 
However, the noise in advertiser-spe-
cific estimates makes “reasonable size” 
experiments inadequate for support-
ing market design solutions that would 
have advertiser only pay for marginal 
clicks (i.e., the clicks that were actually 

function of the rationalizable set by 
defining the following functions that 
can be computed directly from the auc-
tion data via simulation

These functions characterize how an 
average outcome in T auctions changes 
when bidder i switches to a fixed alter-
nate bid b¢ from an actually applied bid 
sequence. The characterization of the 
rationalizable set is given in the following 
theorem.

Theorem 2. Under monotonicity and con-
tinuity of DP(×) and DC(×) the support func-
tion of NR with  u = (u1, u2)T and u = 1 is  

.

This theorem establishes that valua-
tions and algorithm parameters for 
ε-regret algorithms can be recovered 
from the data (by computing functions 
DC(×) and DP(×) ). If the bids constitute 
the Nash equilibrium, we can pinpoint 
the bidders’ value per click. As explained 
earlier, the initial stage of learning may 
not be a Nash equilibrium and there 
will be an entire range of values com-
patible with the data. At the same time, 
the characterization of this range of 
values and the entire rationalizable 
set for learning bidders are reduced 
to evaluation of two one-dimensional 
functions from the data. We can use 
efficient numerical approximation for 
such an evaluation. The corresponding 
error in the estimated rationalizable 
set will be determined by the estima-
tion error of functions DC(×) and DP(×).

Platform Design and User Behavior
Inference of user actions. As discussed, 
the clickthrough rate measuring the 
probability that a given user will click 
on a given ad is a crucial input in pric-
ing and allocation rules for advertis-
ing auctions. Advertising platforms 
use sophisticated machine learning 
tools to make such predictions on a 
user-by-user basis. However, despite a 
significant amount of effort and sophis-
ticated statistical approaches, measur-
ing the casual impact of advertising on 
the actions of users has been shown to 
be exceedingly difficult.25 In addition, 
since a larger emphasis has been placed 

Despite a significant 
amount of effort 
and sophisticated 
statistical 
approaches, 
measuring the 
causal impact of 
advertising on the 
actions of users 
has been shown 
to be exceedingly 
difficult. 
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caused by the ad). This is because search 
engines, quite naturally, do not want to 
rest a pricing solution on the estimates 
with a large amount of noise with mil-
lions, if not billions, of dollars at risk. 
The current practice is for advertisers to 
figure their true return to advertising for 
themselves. This approach is inefficient 
because the platform possesses far 
more information to conduct the infer-
ence, and thus is in a much better posi-
tion conduct price-to-value conversion. 
New generations of platform design 
will break through the bottleneck of 
the inefficiency leading to a decreased 
loss of social welfare and a potential 
increase in the platform revenue.

The detailed logging of digital adver-
tising, combined with scale achieved 
on major platforms, opens the poten-
tial for new observational methods 
that could fulfill the promise of rou-
tinely measuring advertising effective-
ness in an unbiased, precise manner. 
Inference of user intentions and pre-
diction of user actions are exceedingly 
difficult outside of search engines 
where advertisers explicitly specify 
queries as proxy of intention. In social-, 
entertainment-, or task-oriented con-
texts, rendering potential advertisers 
in front of a user via dynamic mecha-
nism is the most efficient, but not an 
easily implementable approach.38

While advertisers and advertising 
platforms clearly move to performance-
based pricing, the user behavior is 
becoming more complex. Current 
trends show that device usage will con-
tinue to change how users consume 
information, enjoy leisure time, and 
communicate with each other (see 
Fulgoni and Lipsman39 and Xu et al.40). 
In this context, the advertising ecosys-
tem is evolving. Brands have changed 
ad formats to engage and interact with 
users in-video, in-game, and in other 
dynamic content. The hyper-local 
nature of mobile applications provides 
a new type of a  signal about the user. 
This more refined user information, in 
turn, changes the composition of adver-
tisers. The typical persona an advertiser 
has shifted from large business entities 
like big-name brands or e-commerce 
platforms on Google and Facebook, to 
deep vertically integrated profession-
als. For example, on Yelp, Zillow, or 
Grubhub, advertisers are small busi-
ness owners or individual professionals 

like real estate agents or plumbers. 
These business users do not have the 
sophisticated business knowledge or 
technology skills to aid them in ad cam-
paign management. The user actions  
relevant for these new breeds of adver-
tisers shifted away from clicks to in-app 
text, direct call, or email communica-
tion. Ideally, new vertical marketplaces 
will provide users with better experi-
ences and advertisers with more accu-
rate user intent and direct access to 
relevant users. But, it requires adver-
tising platforms to adapt and evolve. 
Advanced machine learning technol-
ogy is essential for these new platforms 
to accurately account for user actions 
with a large volume of data points 
across devices. Another key necessity is 
the design of new auction mechanisms 
that encompass the need to provide the 
advertisers with simple and easy ways 
to manage work flows. The technologi-
cal change that has been occurring over 
the past decade creates the need for 
new platforms that are both grounded 
in the game theory but also account for 
complex behavioral responses of users 
and advertisers.
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