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Abstract

We consider algorithmic problems in a distributed setting where the participants cannot

be assumed to follow the algorithm but rather their own self�interest� As such participants�

termed agents� are capable of manipulating the algorithm� the algorithm designer should ensure

in advance that the agents� interests are best served by behaving correctly�

Following notions from the �eld of mechanism design� we suggest a framework for studying

such algorithms� In this model the algorithmic solution is adorned with payments to the partic�

ipants and is termed a mechanism� The payments should be carefully chosen as to motivate all

participants to act as the algorithm designer wishes� We apply the standard tools of mechanism

design to algorithmic problems and in particular to the shortest path problem�

Our main technical contribution concerns the study of a representative problem� task schedul�

ing� for which the standard tools do not su�ce� We present several theorems regarding this

problem including an approximation mechanism� lower bounds and a randomized mechanism�

We also suggest and motivate extensions to the basic model and prove improved upper bounds

in the extended model� Many open problems are suggested as well�
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� Introduction

��� Motivation

A large part of research in computer science is concerned with protocols and algorithms for inter	

connected collections of computers� The designer of such an algorithm or protocol always makes

an implicit assumption that the participating computers will act as instructed 
 except� perhaps�

for the faulty or malicious ones�

With the emergence of the Internet as the platform of computation� this assumption can no

longer be taken for granted� Computers on the Internet belong to di�erent persons or organizations

and will likely do what is most bene�cial to their owners� We cannot simply expect each computer

on the Internet to faithfully follow the designed protocols or algorithms� It is more reasonable to

expect that each computer will try to manipulate it for its owners
 bene�t� Such an algorithm or

protocol must therefore be designed in advance for this kind of behavior� Let us sketch two example

applications we have in mind�

Load balancing

The aggregate power of all computers on the Internet is huge� In a �dream world� this aggregate

power will be optimally allocated online among all connected processors� One could imagine CPU	

intensive jobs automatically migrating to CPU	servers� caching automatically done by computers

with free disk space� etc� Access to data� communication lines and even physical attachments

�such as printers� could all be allocated across the Internet� This is clearly a di�cult optimization

problem even within tightly linked systems� and is addressed� in various forms and with varying

degrees of success� by all distributed operating systems� The same type of allocation over the

Internet requires handling an additional problem� the resources belong to di�erent parties who may

not allow others to freely use them� The algorithms and protocols may� thus� need to provide some

motivation for these owners to �play along��

Routing

When one computer wishes to send information to another� the data usually gets routed through

various intermediate routers� So far this has been done voluntarily� probably due to the low

marginal cost of forwarding a packet� However� when communication of larger amounts of data

becomes common �e�g� video�� and bandwidth needs to be reserved under various quality of service

�QoS� protocols� this altruistic behavior of the routers may no longer hold� If so� we will have to

design protocols speci�cally taking the routers
 self	interest into account�
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��� This Work

In this paper we propose a formal model for studying algorithms that assume that the participants

all act according to their own self	interest� We adopt a rationality	based approach� using notions

from game theory and micro	economics� and in particular from the �eld of mechanism design� We

assume that each participant has a well de�ned utility function� that represents its preference

over the possible outputs of the algorithm� and we assume that participants act as to rationally

optimize their utility� We term such rational and sel�sh participants agents�� The solutions we

consider contain both an algorithmic ingredient �obtaining the intended results�� and a payment

ingredient that motivates the agents� We term such a solution a mechanism��

Our contributions in this work are as follows�

�� We present a formal model for studying optimization problems� The model is based on

the �eld of mechanism design�� A problem in this model has� in addition to the output

speci�cation� a description of the agents
 utilities� The mechanism has� in addition to the

algorithm producing the desired output� payments to the participating agents� An exposition

of applying several classic notions from mechanism design in our model appears in Nisan

�������

�� We observe that the known techniques from mechanism design provide solutions for several

basic optimization problems� and in particular for the shortest path problem� where each edge

may belong to a di�erent agent�

�� We study a basic problem� task scheduling� which requires new techniques and prove the

following�

� We design an n	approximation mechanism� where n is the number of agents�

� We prove a lower bound of � to the approximation ratio that can be achieved by any

mechanism� This bound is tight for the case of two agents� but leaves a gap for more

agents� We conjecture that the upper bound is tight in general and prove it for two

restricted classes of mechanisms�

�This notion from micro�economics is often used in mechanism design�
�The term is taken from the distributed AI community which have introduced the usage of mechanism design in

a computational setting� We use it� however� in a much more restricted and well�de�ned sense�
�This is the standard term used in mechanism design�
�We are not the �rst to use notions from mechanism design in a computational setting� See section ����
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� We design a randomized mechanism that beats the deterministic lower bound�

�� We extend the basic model� formalizing a model where the mechanism has more information�

We call this model a mechanism with veri�cation and argue that it is justi�ed in certain

applications�

�� We study the task scheduling problem in the extended model and obtain two main results�

� An optimal mechanism with veri�cation for task scheduling �that requires exponential

computation time��

� A polynomial time �� � ��	approximation mechanism with veri�cation for a sub	case of

the problem�

A preliminary version of this paper appeared at the thirty	�rst annual symposium on theory of

computing �Nisan and Ronen ��������

��� Extant Work

There have been many works that tried to introduce economic or game	theoretic aspects into

computational questions� �See e�g� Lamport� Shostak and Pease ������� Ferguson� Nikolaou and

Yemini ������� Huberman and Hogg ������� Papadimitriou and Yannakakis ������� Papadimitriou

and Yannakakis ������ and a survey by Lineal �������� Most of these were not aimed at the

problem of the cooperation of sel�sh entities� and those that were �Monderer and Tennenholtz

������� Papadimitriou ������� Korilis� Lazar and Orda ������ and Sandholm ������� did not pursue

our direction� Many sub�elds of game theory and economics are also related to our work� see� e�g�

Mas	Collel� Whinston and Green ������ chapters ��� �� and ��� We list below the research work

that is most relevant to our direction�

Mechanism Design

The �eld of mechanism design �also known as implementation theory� aims to study how pri	

vately known preferences of many people can be aggregated towards a �social choice�� The main

motivation of this �eld is micro	economic� and the tools are game	theoretic� Emphasis is put on

the implementation of various types of auctions� In the last few years this �eld has received much

interest� especially due to its in�uence on large privatizations and spectrum allocations �McMillan

�������� An introduction to this �eld can be found in Mas	Collel� Whinston and Green ������ chap	
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ter ��� Osborne and Rubistein ������ chapter �� and an in�uential web site in http���www�market	

design�com�

Distributed AI

In the last decade or so� researchers in AI have studied cooperation and competition among �soft	

ware agents�� The meaning of agents here is very broad� incorporating attributes of code	mobility�

arti�cial	intelligence� user	customization and self	interest� A sub�eld of this general direction of

research takes a game theoretic analysis of agents
 goals� and in particular uses notions from mech	

anism design �Rosenschein and Zlotkin ������� Sandholm ������� Ephrati and Rosenschein ������

and Shoham and Tanaka �������� A related sub�eld of Distributed AI� sometimes termed market	

based computation �Walsh� Wellman� Wurman and MacKie	Mason ������� Ferguson� Nikolaou and

Yemini ������ and Walsh and Wellman �������� aims to leverage the notions of free markets in

order to solve distributed problems� These sub�elds of DAI are related to our work�

Communication Networks

In recent years researchers in the �eld of network design adopted a game theoretic approach

�See e�g� Korilis� Lazar and Orda �������� In particular mechanism design was applied to var	

ious problems including resource allocation �Lazar and Semret �������� cost sharing and pricing

�Shenkar� Clark and Hertzog ��������

Scheduling

The speci�c problem we address is the minimization of the make	span of independent tasks on

unrelated parallel machines� which was extensively studied from an algorithmic point of view� It

is known that solving the problem or even approximating it within a factor of ���� � is NP 	hard�

but a polynomial	time �	approximation exists �Lenstra� Shmoys and Tardos �������� For a �xed

number of processors� a fully polynomial approximation scheme was presented by Horowitz and

Sahni ������� A survey of scheduling algorithms can be found in Hochbaum �������

� The Model

In this section we formally present our model� We attempt� as much as possible� to use the

standard notions from both mechanism design and algorithmics� We limit ourself to the discussion

of a dominant strategy implementation in quasi	linear environments�

Subsection ��� describes what a mechanism design problem is� In subsection ��� we de�ne what

a good solution is� an implementation with dominant strategies� Subsection ��� de�nes a special

�



class of good solutions� truthful implementations� and states the well	known fact that restricting

ourselves to such solutions loses no generality� For familiarization with our basic model and

notations we suggest viewing the shortest paths example given in section ����

��� Mechanism Design Problem Description

Intuitively� a mechanism design problem has two components� the usual algorithmic output speci	

�cation� and descriptions of what the participating agents want� formally given as utility functions

over the set of possible outputs�

De�nition � �Mechanism Design Problem� A mechanism design problem is given by an out�

put speci�cation and by a set of agents� utilities� Speci�cally�

�� There are n agents� each agent i has available to it some private input ti � T i 	termed its

type
� Everything else in this scenario is public knowledge�

�� The output speci�cation maps to each type vector t � t����tn a set of allowed outputs o � O�

�� Each agent i�s preferences are given by a real valued function� vi�ti� o�� called its valuation�

This is a quanti�cation of its value from the output o� when its type is ti� in terms of some

common currency� I�e� if the mechanism�s output is o and in addition the mechanism hands

this agent pi units of this currency� then its utility will be ui � pi � vi�o� ti��� This utility is

what the agent aims to optimize�

In this paper we only consider the important special case of optimization problems� In these

problems the output speci�cation is to optimize a given objective function� We present the de�nition

for minimization problems�

De�nition � �Mechanism Design Optimization Problem� This is a mechanism design prob�

lem where the output speci�cation is given by a positive real valued objective function g�o� t� and a

set of feasible outputs F � In the exact case we require an output o � F that minimizes g� and in

the approximate case we require any o � F that comes within a factor of c� i�e� such that for any

other output o� � F � g�o� t� � c � g�o�� t��

�This is termed �quasi�linear utility	� In this paper we limit ourselves to this type of utilities�
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��� The Mechanism

Intuitively� a mechanism solves a given problem by assuring that the required output occurs� when

agents choose their strategies as to maximize their own sel�sh utilities� A mechanism needs thus to

ensure that the agents
 utilities �which it can in�uence by handing out payments� are compatible

with the algorithm�

Notation� We will denote �a�� ���ai��� ai��� ���an� by a�i� �ai� a�i� will denote the tuple �a�� � � �an��

De�nition � �A Mechanism� A mechanism m � �o� p� is composed of two elements� An output

function o��� and an n�tuple of payments p������pn��� Speci�cally�

�� The mechanism de�nes for each agent i a family of strategies Ai� The agent can chose to

perform any ai � Ai�

�� The �rst thing a mechanism must provide is an output function o � o�a����an��

�� The second thing a mechanism provides is a payment pi � pi�a����an� to each of the agents�


� We say that a mechanism is an implementation with dominant strategies � 	or in short just

an implementation
 if

� For each agent i and each ti there exists a strategy ai � Ai� termed dominant� such

that for all possible strategies of the other agents a�i� ai maximizes agent i�s utility�

I�e� for every a�i � Ai� if we de�ne o � o�ai� a�i�� o� � o�a�i� a�i�� pi � pi�ai� a�i��

p�i � pi�a�i� a�i� � then vi�ti� o� � pi � vi�ti� o�� � p�i

� For each tuple of dominant strategies a � �a����an� the output o�a� satis�es the speci��

cation�

We say that a mechanism is poly	time computable if the output and payment functions are

computable in polynomial time� In this paper we purposefully do not consider the details of how

the mechanism is computed in a distributed system� We view this topic as an important direction

for further research�

�Several �solution concepts	 are discussed in the mechanism design literature� In this paper we discuss only
dominant strategy implementation�
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��� The Revelation Principle

The simplest types of mechanisms are those in which the agents
 strategies are to simply report

their types�

De�nition 	 �Truthful Implementation� We say that a mechanism is truthful if

�� For all i� and all ti� Ai � T i� i�e� the agents� strategies are to report their type� 	This is

called a direct revelation mechanism�


�� Truth�telling is a dominant strategy� i�e� ai � ti satis�es the de�nition of a dominant strategy

above�

De�nition 
 We say that a mechanism is strongly truthful if truth�telling is the only dominant

strategy�

A simple observation� known as the revelation principle� states that without loss of generality

one can concentrate on truthful implementations�

Proposition ��� 	Mas�Collel� Whinston and Green 	����
 page ���
 If there exists a mechanism

that implements a given problem with dominant strategies then there exists a truthful implementation

as well�

Proof� �sketch� We let the truthful implementation simulate the agents
 strategies� I�e� given a

mechanism �o� p�� ���pn�� with dominant strategies ai�ti�� we can de�ne a new one by o��t����tn� �

o�a��t�����an�tn�� and �p��i�t����tn� � pi�a��t�����an�tn��� �

� Vickrey�Groves�Clarke Mechanisms

Arguably the most important positive result in mechanism design is what is usually called the gen	

eralized Vickrey	Groves	Clarke �VGC� mechanism �Vickrey ������� Groves ������� Clarke ��������

We �rst describe these mechanisms in our notation and then demonstrate their usage in an algo	

rithmic setting� that of shortest paths�

��� Utilitarian Functions

The VGC mechanism applies to mechanism design maximization problems where the objective

function is simply the sum of all agents
 valuations� The set of possible outputs is assumed to be

�nite�
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De�nition � A maximization mechanism design problem is called utilitarian if its objective func�

tion satis�es g�o� t� �
P

i v
i�ti� o��

De�nition 
 We say that a direct revelation mechanism m � �o�t�� p�t�� belongs to the VGC

family if

�� o�t� � argmaxo�
Pn

i�� v
i�ti� o���

�� pi�t� �
P

j ��i v
j�tj � o�t�� � hi�t�i� where hi�� is an arbitrary function of t�i�

Theorem ��� 	Groves 	����

 A VGC mechanism is truthful�

�

Thus� a VGC mechanism essentially provides a solution for any utilitarian problem �except for the

possible problem that there might be dominant strategies other than truth	telling�� It is known that

�under mild assumptions� VGC mechanisms are the only truthful implementations for utilitarian

problems �Green and La�ont ��������

Similarly� a weighted version can be implemented as well�

De�nition � A maximization mechanism design problem is called weighted utilitarian if there

exist real numbers ��� � � � � �n � � such that the problem�s objective function satis�es g�o� t� �P
i �

i � vi�ti� o��

De�nition � We say that a direct revelation mechanism m � �o�t�� p�t�� belongs to the weighted

VGC family if

�� o�t� � argmaxo�g�o� t���

�� pi�t� � �
�i
�
P

j ��i �
j � vj�tj � o�t�� � hi�t�i� where hi�� is an arbitrary function of t�i�

Theorem ��� 	Roberts 	����

 A weighted VGC mechanism is truthful�

Proof� Let d�� � � � � dn denote the declarations of the agents and t�� � � � � tn denote their real types�

Suppose that truth telling is not a dominant strategy� then there exists d� i� t� d�i such that

vi�ti� o�d�i� ti�� � pi�ti� o�d�i� ti�� � hi�d�i� � vi�ti� o�d�i� d�
i
�� � pi�ti� o�d�i� d�

i
�� � hi�d�i�

thus
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vi�ti� o�d�i� ti�� �
�

�i
�
X
j ��i

�j � vj�tj � o�d�i� ti�� � vi�ti� o�d�i� d�
i
�� �

�

�i
�
X
j ��i

�j � vj�tj � o�d�i� d�
i
��

Multiplying both sides by �i we obtain

nX
j��

�j � vj�tj � o�d�i� ti�� �
nX

j��

�j � vj�tj � o�d�i� d�
i
��

In contradiction with the de�nition of o��� �

Comment� An output function of a VGC mechanism is required to maximize the objective func	

tion� In many cases �e�g� combinatorial auctions �Harstad� Rothkopf and Pekec ��������� this makes

the mechanism computationally intractable� Replacing the optimal algorithm with a non	optimal

approximation usually leads to untruthful mechanisms 
 see for example section ����

��� Example� Shortest Paths

Many algorithmic mechanism design problems can be solved using the VGC mechanism� Let us

give a natural example�

Problem de�nition� We have a communication network modeled by a directed graph G� and

two special nodes in it x and y� Each edge e of the graph is an agent� Each agent e has private

information �its type� te � � which is the agent
s cost for sending a single message along this edge�

The goal is to �nd the cheapest path from x to y �as to send a single message from x to y�� I�e the

set of feasible outputs are all paths from x to y� and the objective function is the path
s total cost�

Agent e
s valuation is � if its edge is not part of the chosen path� and �te if it is� We will assume

for simplicity that the graph is bi	connected�

A Truthful Implementation�

The following mechanism ensures that the dominant strategy for each agent is to report its true

type te to the mechanism� When all agents honestly report their costs� the cheapest path is chosen�

The output is obtained by a simple shortest path calculation� The payment pe given to agent e is

� if e is not in the shortest path and pe � dGje�� � dGje�	 if it is� Here dGje�� is the length of the

shortest path which does not contain e �according to the inputs reported�� and dGje�	 is the length

of the shortest path when the cost of e is assumed to be zero �again according to the reported

types��
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Notice that the shortest path is indeed a minimization of the total cost� Also notice that the given

mechanism is a VGC mechanism� dGje�� corresponds to hi�t�i� and dGje�	 to
P

j ��i v
j�tj � o�t���

Many other graph problems� where agents are edges� and their valuations proportional to the

edges
 weights� can be implemented by a VGC mechanism� In particular minimum spanning tree

and max	weight matching seem natural problems in this setting� A similar solution applies to the

more general case where each agent holds some subset of the edges�

Open Problem� How fast can the payment functions be computed� Can it be done faster than

computing n versions of the original problem� For the shortest paths problem we get the following

equivalent problem� given a directed graph G with non	negative weights� and two vertices in it

x� y� Find� for each edge e in the graph� the shortest path from x to y that does not use e� Using

Disjktra
s algorithm for each edge on the shortest path gives an O�nm logn� algorithm� Is anything

better possible� Maybe O�m logn�� For the similar problem with minimum spanning tree� it has

been pointed out to us by Valerie King that the known fully dynamic algorithms �or alternatively

the known sensitivity	analysis algorithms� for MST provide a nearly linear time solution�

� Task Scheduling

In this section we analyze the task allocation problem� Subsection ��� formally presents the problem�

subsection ��� gives a �weak� upper bound� subsection ��� provides our lower bounds� and �nally

in subsection ��� we exhibit a randomized solution that beats the lower bound�

��� The Problem

De�nition �� �Task Allocation Problem� There are k tasks that need to be allocated to n

agents� Each agent i�s type is� for each task j� the minimum amount of time tij it is capable of

performing this task in� The goal is to minimize the completion time of the last assignment 	the

make�span
� The valuation of an agent i is the negation of the total time it has spent on the tasks

allocated to it�

More formally�

� The feasible outputs of the mechanism are all partitions x � x� � � � xn of the tasks to the

agents� where xi is the set of tasks allocated to agent i�

� The objective function is g�x� t� � maxi
P

j�xi t
i
j �
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� Agent i�s valuation is vi�x� ti� � �
P

j�xi t
i
j �

We will consider both the exact and approximate versions�

Notation�We denote a direct revelation mechanism for the task scheduling problem bym � �x� p��

where x � x�t� is the allocation algorithm and p � p�t� the payment� �These are functions of the

declared types��

��� An Upper Bound

A simple� but not very good� approximation for the task scheduling problem is to minimize the

total work done� It turns out that this approximation can be used as a basis for an approximation

mechanism
�

De�nition �� �MinWork Mechanism�

� allocation� each task is allocated to the agent who is capable of doing it in a minimal amount

of time 	tasks with equal time declarations are allocated arbitrarily
�

� payment� the payment for each agent i is de�ned as pi�t� �
P

j�xi�t�mini� ��i�t
i�

j � 	i�e� for

each task allocated to it� the agent is given payment equal to the time of the second best agent

for this task
�

Theorem 	�� MinWork is a strongly truthful n�approximation mechanism for the task scheduling

problem�

Proof� We prove that the MinWork mechanism is strongly truthful and that it is an n	

approximation�

Claim 	�� MinWork is strongly truthful �

Proof� We will �rst show that MinWork belongs to the VGC family� and therefore� by theorem ���

it is truthful� The output is an allocation that maximizes the utilitarian function
Pn

i�� v
i�ti� x�� Let

h�i be
Pk

j��mini� ��i t
i�

j � then
P

i� ��i v
i��ti

�

� x� � h�i is exactly the mechanism
s payment function�

We now show that truth	telling is the only dominant strategy� We will show it for the case of

a single task� The argument for k � � is similar� We note that a similar proof can be found in

�The mechanism can be viewed as auctioning each task separately in a Vickrey auction 
Vickrey 
����

�
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Vickrey ������ for the analysis of the famous Vickrey auction� Let d denote the agents
 declarations

and t their real types� Consider the case where di �� ti �i � �� ��� If di � ti� then for d��i such

that di � d��i � ti�the utility for agent i is ti � di � �� instead of � in the case of truth	telling� A

similar argument holds for the case of di � ti� �

Claim 	�� MinWork is an n�approximation for the task scheduling problem�

Proof� Let opt�t� denote an optimal allocation� The proof follows immediately from the fact that

g�x�t�� t� �
Pk

j��mini t
i
j and g�opt�t�� t� �

�
n
�
Pk

j��mini t
i
j � �

The theorem is an immediate outcome of claims ��� and ���� �

��� Lower Bounds

Due to the revelation principle �proposition ���� it su�ces to prove the lower bound for truthful

implementations� Thus for the rest of this section� m � �x� p� is always assumed to be a truthful

mechanism for the task scheduling problem�

	���� Basic Properties of Truthful Implementations

We now formulate� in our settings� two basic observations from mechanism design� �Similar argu	

ments can be found in Mas	Collel� Whinston and Green ������ pp� ���	�����

Proposition 	�	 �Independence� Let t� and t� be type vectors� and i be an agent� If t�i� � t�i�

and xi�t�� � xi�t��� then pi�t�� � pi�t���

Proof� Without loss of generality assume that pi�t�� � pi�t��� Then� if i
s type is t
i
�� it is better

o� cheating� declaring ti�� A contradiction to the truthfulness� �

This proposition states that the payment o�ered to an agent does not depend on its type declaration

�as long as the other agents
 types and the allocation are �xed�� The payment can thus be

represented using the following well de�ned function�

De�nition �� Let t be a type vector� i an agent� For a set X of tasks� we de�ne the price o�ered

for X to agent i as�

pi�X� t�i� �

�
pi�t�i� t�i� if there exists t�i s�t� xi�t�i� t�i� � X

� otherwise

��



Usually it will be more convenient to describe a mechanism by its price rather than by its

payment function� Note that any function of the form hi�t�i� can be added to the payment of each

agent i without changing its considerations� We therefore assume w�l�o�g� that the payment given

to an agent is zero if no tasks are assigned to it�

Notation� Let i be an agent of type ti� and let X be a set of tasks� We denote the time needed

for i to perform all tasks of X � as ti�X� �
P

j�X tij �

Proposition 	�
 �Maximization� For each type vector t and agent i�

xi�t� � argmaxX�f������kg�p
i�X� t�i�� ti�X��

Proof��sketch� Since pi�xi� t�i�� ti�xi�� is agent i
s utility� the above statement simply states that

the mechanism has to maximize the agent
s bene�t� Otherwise the agent will do so itself� i�e� cheat

as to get the maximum bene�t� �

We can now prove the main theorem of this subsection�

	���� Basic Lower Bound

Theorem 	�� There does not exist a mechanism that implements a c�approximation for the task

scheduling problem for any c � ��

Proof� We start with a lemma�

Notation� Let i be an agent� t a type vector� and A and B two disjoint sets of tasks� We de�ne

the price di�erence  i�A�B� to be pi�A
S
B� t�i�� pi�A� t�i� �suppressing the type t��

Lemma 	�
 Let t be a type vector and let X � xi�t�� For each set D �� X of tasks the following

inequalities hold�

�� If D � X then  i�D�X �D� � ti�X �D��

�� If D 	 X then  i�X�D�X� � ti�D �X��

�� otherwise� let L � D
T
X� then  i�L�X � L�� ti�X � L� �  i�L�D� L�� ti�D � L�

Moreover� if a set Y of tasks satis�es these inequalities sharply for all D�s� then Y � X � xi�t��
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Proof� The fact that the above inequalities hold for xi�t� is an immediate consequence of proposi	

tion ��� �maximization� and the de�nition of the utility as ui � pi�xi�t�� t�i�� ti�xi�t��� When the

inequalities are strict� X is clearly the unique set of tasks that maximizes i
s utility� �

We prove the theorem for the case of two agents� For n � � we can reduce to this case by having

the other agents be much slower than agents � and ��

Notation� Let t be a type vector� i an agent and X a set of tasks� Let 	 � � be a real number�

We denote by !t � t�X
i

 	� the type obtained by

!ti
�

j �

�
	 if i� � i and j � X

ti
�

j otherwise

In the same manner we de�ne !t � t�X� i�
 	�� X
� i�
 	�� � � �� to be the result of a sequence of the

above transformations�

Let k � �� and t be the type vector de�ned by tij � � for each agent i and task j� Without loss of

generality we assume that jx��t�j � jx��t�j� Let x � x��t� and let "x denote its complement �x��t���

Claim 	�� Let � � � � �� !t � t�x
�

 �� "x

�

 � � ��� Then x�!t� � x�t��

Proof� Since n � �� it is enough to show that x��!t� � x��t�� As the type of agent � has not

changed� the prices o�ered to agent � remain the same� For type t� x��t� ful�lls the inequalities

of lemma ���� Thus� by inspection� they are strict when the type becomes !t� and therefore the

allocation remains the same� �

Assuming jx��t�j is even� the lower bound follows since g�x�!t�� !t� � jx��!t�j � jx��t�j� but

g�opt�!t�� !t� � �
� � jx

�j � k � � �for the allocation that gives agent �� in addition to the original

x��t�� half of agent �
s original allocation��

For the case of odd jx��t�j it must be that jx��t�j � �� We choose an arbitrary task j � x��t�

and consider the type !t�fjg
�

 ��� which still yields the same allocation� �

This lower bound is tight for the case of two agents� We conjecture that� in general� the upper

bound is tight�

Conjecture 	�� There does not exist a mechanism that implements a c�approximation for the task

scheduling problem with n agents for any c � n�

Although we have not been able to prove this conjecture� we can show that it is correct for two

natural special cases presented in the next subsection�
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	���� Tight Bounds for Special Cases

De�nition �� A mechanism is called additive if for each agent i� type vector t and set X of tasks�

pi�X� t�i� �
P

j�X pi�fjg� t�i��

Theorem 	��� There does not exist any additive mechanism that solves the c�approximation prob�

lem for any c � n�

Proof� Let k � n� and let tij � � for each agent i and task j� Without loss of generality we assume

that jx��t�j � n� Let x � x��t� and let "x denote its complement�

Claim 	��� Fix � � � � � and let !t � t�x�
�

 �� �� "x

�

 ��� Then x��!t� � x��t��

Proof� Since t� has not changed� the prices o�ered to agent � remain the same� Clearly the price

o�ered to agent � for x is strictly greater than the time !t��x� required for it to perform x� Since

the payment is additive� the set x��!t� which maximizes �
s utility must contain all the tasks in x�

�

It follows that g�x�!t�� !t� � jx�j � n� Like in theorem ���� we can assume w�l�o�g� that jx�j � n�

The lower bound is then obtained since an optimal allocation would split these tasks among the n

agents� �

De�nition �	 We say that a mechanism is local if for each agent i� type vector t and set X of

tasks� the price pi�X� t�i� depends only on the agents� values on the tasks in X 	i�e� ftl��ij jj � Xg
�

Theorem 	��� There does not exist a local mechanism that solves the c�approximation problem

for any c � n�

Proof� We start with a simple lemma that will enable us to turn the inequalities of lemma ��� into

sharp ones�

Lemma 	��� For each type vector t and � � �� there exists a type vector t� such that kt� t�k � �

and where the sets that maximize the agents� utility are unique for all agents�

Proof��sketch� The lemma is proved using a simple measure	theoretic argument� Let i be an agent�

A �� B two sets of tasks� Because of the independence property �proposition ����� the following set

has a zero measure on the type	space of agent i�

Ei�A�B� t�i� � ftijpi�A� t�i�� ti�A� � pi�B� t�i�� ti�B�g

��



From this we obtain that for almost every type vector t�� the inequalities in lemma ��� �for all

agents� are strict� �

Let k � n� and let tij � � for each agent i and task j� By lemma ����� we assume w�l�o�g� that

xi�t� uniquely maximizes i
s utility for all agents i� Without loss of generality we assume that

jx��t�j � n�

Claim 	��	 Let x � x��t� and !t � t�x
�

 �� for some � � � � �� Then x�!t� � x�t��

Proof� Clearly x��!t� � x��t�� Consider another agent i �� �� The mechanism must allocate to

agent i a set xi�!t� that maximizes i
s utility among all the sets X which are disjoint from x��t�� But

since the mechanism is local� these prices have not changed from t to !t� Therefore xi�t� remains

the unique set that maximizes i
s utility� �

By the same argument the allocation for the type !t � t�x��t�
�

 �� � � � � xn�t�

n

 �� remains x�t� �

Like in theorem ��� we can assume that jx��t�j � n and thus the lower bound is obtained since

an optimal allocation will split these tasks among the n agents� �

��� The Power of Randomization

In section ��� we showed that no mechanism can achieve a better than �	approximation for the

task scheduling problem� Here we show that randomized mechanisms can do better� The model of

randomization that we use does not weaken the demands of dominant strategies at all� Although

the agents choose their strategies without knowing the results of the random coin tosses� we require

the strategy to be dominant for all possible tosses�

De�nition �
 	A Randomized Mechanism� A randomized mechanism is a probability distri�

bution over a family fmrjr � Ig of mechanisms� all sharing the same sets of strategies and possible

outputs�

The outcome of such a mechanism is a probability distribution over outputs and payments� the

problem speci�cation must specify what output distributions are required� For the case of optimiza�

tion problems� the objective function on such a distribution is taken to be the expectation� i�e�

g�a� t� � Er�I�g�omr�a�� t���

De�nition �� 	Universally Dominant Strategy� A strategy ai is called universally dominant

	in short� dominant
 for agent i if it is a dominant strategy for every mechanism in the support
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of the randomized mechanism� A randomized mechanism is called universally truthful 	in short�

truthful
 if truth�telling is a dominant strategy� and strongly truthful if it is the only one�

We will design a strongly truthful randomized mechanism that achieves better performance

than the deterministic lower bound� The randomized mechanism will be a distribution over biased

min work mechanisms de�ned in �gure ��

Parameters� A real number � � � and a bit vector s � f�� �gk�

Input� The reported type vectors t � �t�� t���

Output� An allocation x � �x�� x��� and a payment p � �p�� p���

Mechanism�
x� � 
� x� � 
� p� � �� p� � ��
For each task j � ����k do

Let i � sj and i
� � �� i

If tij � � � ti
�

j

Then xi � xi
S
fjg� pi � pi � � � ti

�

j

Else xi
�

� xi
� S
fjg� pi

�

� pi
�

� ��� � tij

Figure �� the biased min work mechanism �for two agents�

Lemma 	��
 For all parameter values� the biased min work mechanism is strongly truthful �

Proof� Since the overall utility of each agent can be described as the sum of the utilities aggregated

in each step� it is enough to consider the case of k � �� In this case the mechanism is equivalent to

a weighted VGC �de�nition �� with weights f�� �g or f�� �g �depending on sj�� �

De�nition �
 �The Randomly Biased Min Work Mechanism � The randomly biased min

work mechanism is the distribution on biased min work mechanisms given by � � ���� and a

uniform distribution of s � f�� �gk�

Theorem 	��� The randomly biased min work mechanism is a 	polynomial time computable


strongly truthful implementation of a ����approximation for task scheduling with two agents�

The proof of the theorem is immediate from the following two lemmas�
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Lemma 	��
 The randomly biased min work mechanism is strongly truthful �

This is immediate from lemma �����

Lemma 	��� The allocation obtained by the randomly biased min work mechanism is a ����

approximation for the task scheduling problem�

Comment� Our original analysis yielded a bound of ������ Daniel Lehmann �Lehmann �������

provided us with a tighter case analysis� improving the bound to ���� With Daniel
s permission we

include his re�ned analysis in our proof�

Proof� Let opt�t� denote an optimal allocation algorithm� Let topt denote its make	span� and let

tbmw denote the �expected� make	span of the randomly biased min work mechanism�

We call a task j a k	task if one of the agents is considerably more e�cient than the other on

it �i�e� t�j�t
�
j � � or t�j�t

�
j � ��� otherwise we call it an l	task � Note that the mechanism allocates

each k	task to the agent which is e�cient on it� and randomly allocates the l	tasks�

Claim 	��� It is enough to consider the following case�

�� For each k�task� the e�ciency discrepancy between the agents is arbitrarily close to � 	therefore

we shall assume that it equals �
�

�� If opt allocates an l�task j to agent i� then t��ij �tij � ��

�� Under opt both agents have the same �nishing time�


� One of the agents is more e�cient than the other on all k�tasks 	w�l�o�g� let it be agent �
�

�� There are at most four tasks� where at most one k�task and at most one l�task is allocated by

opt to each agent�

Proof�

�� Since the mechanism always allocates each k	task j to the agent i which is more e�cient on

it� reducing t��ij down to � � tij can only help opt and leaves tbmw unchanged�

�� If opt allocates an l	task j to agent i� then increasing t��ij will not a�ect topt but will increase

tbmw �

��



�� Otherwise� w�l�o�g� assume that agent � �nishes 
	time before agent �� Adding an l	task j

such that t�j � 
 and t�j � � � 
 does not change topt but increases tbmw �

�� Assume that there are two k	tasks a and b such that t�a�t
�
a � t�b�t

�
b � �� W�l�o�g� t�a � t�b � If

a is replaced by two k	tasks a� and a�� such that tia � tia� � tia�� then tbmw remains the same

while topt can only decrease� In particular we can choose t
�
a� � t�b �

The mechanism allocates both tasks a� and b to the agent which is e�cient on them� If opt

is doing the same then clearly removing both a� and b can just increase the ratio tbmw�topt�

Obviously� opt cannot allocate a� to agent � and b to agent �� Therefore it is enough to

consider the case where opt allocates both tasks to one of the agents� One can verify that in

this case replacing both tasks with equivalent l	tasks �i�e� l	tasks with the same computational

times as the original ones� does not a�ect topt but will increase tbmw by at least
���
� � t�a� �

�� Let a and b be two k	tasks that opt allocates to the same agent i� Recall that t��ia �tia �

t��ib �tib � �� Clearly� replacing both tasks with a single task c such that tic � tia � tib� does

not a�ect opt nor the mechanism� We now consider the case where a and b are both l	tasks�

Again� topt does not change as a consequence of such a replacement� We will show that tbmw

can only increase� Let Y be an allocation of all the tasks except a and b� let tY�a�b denote

the expected make	span when all other tasks are allocated according to Y and a and b are

randomly allocated� let tY�c denote the expected make	span when a and b are replaced by c

which is allocated randomly� Clearly� it is enough to show that tY�a�b � tY�c�

Let T � and T � denote the �nishing times of both agents respectively when the allocation is

Y � If one of the agents i �nishes after the other regardless of how a and b are allocated� then

clearly tY�a�b � T i�
tia�t

i
b

� � tY�c� Otherwise� if agent i �nishes last i� both a and b are allocated

to it� then tY�a�b �
T i�tia�t

i
b

� � T ��i�t��ia

� �
T ��i�t��i

b

� �
T ��i�t��ia �t��i

b

� � Since T ��i � T i� tia� t
i
b�

we obtain that tY�a�b �
T i�tia�t

i
b

� �
T ��i�t��ia �t��i

b

� � tY�c� Finally w�l�o�g� assume that t
i
a � tib

�for i � �� �� and consider the case where the agent to which a is allocated �nishes last� In

this case tY�a�b �
T ��t�a�t

�

b

� � T ��t�a
� �

T ��t�a�t
�

b

� � T ��t�a
� �

T ��t�a�t
�

b

� �
T ��t�a�t

�

b

� � tY�c�

�

Following the above claim we prove the lemma for the case of four tasks k�� k�� l�� l�� such that

ki and li denote the k	task and l	task which are allocated to agent i by opt �cases in which there

are less than four tasks can be represented by zero times�� The reduced case is described in �gure

��
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t�j t�j opt	alloc bmw	alloc

k� a � � a � �

k� b � � b � �

l� c � � c � rnd

l� � � d d � rnd

Figure �� the reduced case

Since both agents have the same �nishing time in opt� topt � a � c � � � b� d� We show that

tbmw

topt
� ��� by considering three separate sub	cases�

Case �� a� b� � � d � � � c�

Considering all four possible allocations of the mechanism we obtain that tbmw � ��� ���a�b�c�� �

d���a�b�c���� �c���� �c�d��� Substituting � � ��� we get tbmw � ����a�����b�����c������d

and one can verify that tbmw � ��� � �a� c� � ��� � topt�

Case �� Otherwise� a� b� � � d � � � c� Consider the case where a� b � � � c� d�

In this case tbmw � ��� � ��a� b� c� � � d� � �a� b� c� � �a� b� � � d�� �� � c� d��� Substituting

� we get tbmw � ��� � a � ��� � b � ��� � c � ����� � d and it is not di�cult to verify that tbmw �

��� � �a� c� � ��� � topt�

Case �� Otherwise� a� b� � � d � � � c and a� b � � � c� d� In this case tbmw � ��� � ��a� b� c�

� � d� � �a� b� c� � �a� b� � � d� � �a� b��� Substituting � we get tbmw � a � b� c�� � ��� � d

and again it can be veri�ed that tbmw � ��� � ���� � b� d� � ��� � topt� �

This completes the proof of the theorem� �

� Mechanisms with Veri�cation

The basic mechanism design model assumes that each agent can follow any of its strategies� in	

dependently of its type� Thus the mechanism cannot use any �real	world� information about the

agents� This is the norm in mechanism design and it models well the negotiation stage in which

agents do nothing but communicate� In many settings in distributed computation though� one

could take advantage of the fact that computers actually act �execute a task� route a message� etc��

to gain extra information about the agents
 types and actions�

A simple type of modi�cation to the model suggests itself� a problem de�nition may limit the

set of strategies Ai available to each agent as a function of its type ti� Many variants are possible�
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with di�erent types of information available at di�erent stages of the mechanism� In this paper

we concentrate on what we feel is a very natural model� We distinguish between two stages of

the mechanism� a declaration phase in which agents �talk� and which results in a decision �e�g�

allocation�� and then an execution phase where the agents actually execute the agreed output� The

payments need only to be given after the execution� Intuitively we view the execution part as

allowing the mechanism to verify in some sense the agents
 declarations� and �punish� them for

lying�

For the task scheduling problem we assume that by the end of the execution the mechanism

knows the exact execution time of each task� A reformulation of the problems is introduced in

section ���� We then �in sections ��� and ���� present a family of optimal mechanisms
 for this

problem� In section ��� we show that versions of our mechanism can operate under a limited

budget and can guarantee that the pro�t for a truthful agent is always non	negative� Since these

mechanisms require optimal scheduling algorithms they are computationally intractable� In section

��� we discuss polynomial	time mechanisms� We de�ne a sub	case of the scheduling problem for

which we present a polynomial	time approximation schema� The existence of a �better than n�

polynomial time approximation mechanism for the general problem is left open�

��� Mechanisms with Veri�cation

De�nition �� �Mechanism with Veri�cation�

� An agent�s strategy ai is composed of two separate parts� a declaration di and an execution

ei�

� Each declaration di is chosen by the agent� based on its type ti� in an unrestricted manner�

� The decision k of the mechanism must be a function of just the declarations d�� � � � � dn�

� The agent�s execution ei may depend on ti as well as on k� The problem speci�cation speci�es�

for each ti� the possible ei���s an agent of type ti may choose�

� The output of the mechanism is the result of the decision k and the agents� executions

e��k�� � � � � en�k�� The output function o�k� e� is a part of the problem speci�cation�

� The output o� determines both the objective function g�o� t� and the agents� valuations vi�ti� o��

�Although these mechanisms are presented for the scheduling problem� they can be generalized for many situations�
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� The payment pi that the mechanism provides depends on both� the declarations d�� � � � � dn and

the executions e��k� � � �en�k��

De�nition �� A mechanism with veri�cation is called truthful if

�� The agents� declarations are simply to report their types�

�� For each agent i of type ti� there is a dominant strategy of the form ai � �ti� ei����

We say that the mechanism is strongly truthful if it is the only dominant strategy�

Note that by applying the revelation principle ��� to the declaration part� we can limit the

discussion to mechanisms where the agents are simply requested to reveal their types�

Notation� We denote a mechanism with veri�cation by a pair m � �k�d�� p�d� e��� where k�� is the

decision and p�� the payment function�

��� A Reformulation of Task Scheduling

De�nition �� �Task Scheduling with Veri�cation� The problem is the same as the task allo�

cation problem 	de�nition ��
� except that the mechanism is allowed to pay to the agents after the

tasks have been performed� We assume that the times which the tasks were actually performed in

are known to the mechanism�

More formally�

� A feasible output of the mechanism is denoted by a pair �x� #t�� where x � x�� � � � � xn denotes

the allocation of the tasks to the agents� and #t � #t�� � � � � #tk denotes the actual times that they

were performed in� If j � xi�t�� then it must be that #tj � tij �

� A strategy for an agent is composed of two parts� a declaration of its type and an execution

of the tasks allocated to it� An agent may lie or choose to perform any task j allocated to it�

in any time #tj � tij �

� The objective function is g�x� #t� � maxi
P

j�xi
#tj 	the make�span
�

� Agent i�s valuation is vi�x� #t� � �
P

j�xi
#tj �

� A mechanism is a pair �x� p� such that x�t� � x��t�� � � � � xn�t� is the allocation function� and

p�t� #t� � p��t� #t�� � � � � pn�t� #t� is the payment�
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��� The Compensation	and	Bonus Mechanism

The Compensation�and�Bonus Mechanism is composed of an optimal allocation algorithm� together

with a well chosen payment function� The payment function is the sum of two terms� one is called

the compensation� and the other the bonus�

De�nition �� �Compensation� The function

ci�t� #t� �
X

j�xi�t�

#tj

is called the compensation function for agent i�

The bonus function uses the following notion�

De�nition �� �Corrected Time Vector� Let i be an agent� x an allocation� Given the agents�

declarations t and the vector of actual times #t� we de�ne the corrected time vector for agent i as�

corri�x� t� #t�j �

�
#tj if j � xi

tlj if j � xl and l �� i

We de�ne corr��x� t� of x and t to be the 	unique
 vector that satis�es corr��x� t�j � tij for all i

and j � xi�

De�nition �� �Bonus� The function

bi�t� #t� � �g�x�t�� corri�x�t�� t� #t��

is called the bonus function for agent i�

The bonus is calculated according to the declarations of the other agents and the actual times

that the agent performed its assignments in�

De�nition �	

�Compensation�and�Bonus Mechanism� The Compensation�and�Bonus mechanism is given

by an optimal allocation algorithm with the payment functions pi�t� #t� � ci�t� #t� � bi�t� #t��

Theorem 
�� The Compensation�and�Bonus mechanism is a strongly truthful implementation of

the task scheduling problem�
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Proof� We show that the only dominant strategy for each agent is to reveal its true type and to

execute its tasks in minimal time�

Claim 
�� The Compensation�and�Bonus mechanism is strongly truthful�

Proof� Let i be an agent� ti its type and let d�i denote the declarations for the other agents �note

that the allocation and bonus given to i depend on d�i but not on the actual execution times of

the others�� Let t � �d�i� ti�� Observing that the utility of an agent equals its bonus� and that for

every allocation x the bonus for an agent i is maximized when executing its assignments in minimal

time� it is enough to show that �g�x�t�� corr��x�t�� t�� �� �g�x�t�i� d�i�� corr��x�t�i� d�i�� t�� for

each t�i� This is immediately implied by the optimality of the allocation algorithm�

Clearly� when an agent does not follow this strategy� there are circumstances where this will

increase the make	span and therefore decrease the agent
s bonus� Therefore� the above strategy is

the only dominant one� �

When all agents follow their dominant strategies� the best possible make	span is obtained due to

the optimality of the allocation algorithm� �

An Example

j� j� j�
A� �� �� 	


A� ��� �� ���

Figure �� a type matrix for two agents

Consider the type matrix in �gure �� Assume �rst that both agents are truthful� The optimal

allocation in this case is ffj�� j�gfj�gg and the make	span is ��� therefore the bonus given to each

agent is ���� Consider the case where agent � tries to �loose� j� declaring t�� as ���� The �optimal�

make	span therefore reduces to ��� and consequently the bonus for each agent reduces to �����

Similarly� when agent � tries to �gain� j� declaring for example t
�
� to be �� its bonus is reduced to

���� If agent one is �lazy� exceuting its tasks in ��� units of time instead of ��� then its bonus

reduces from ��� to �����

��� The Generalized Compensation	and	Bonus Mechanism

We now generalize the Compensation	and	Bonus mechanism�
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De�nition �
 �Generalized Compensation� The function ci�t� #t� is called a generalized com	

pensation for agent i if

� ci�t� #t� �
P

j�xi�t�
#tj for all t and #t�

� Equality exists in case that the agent is truthful�

De�nition �� �Generalized Bonus� Let mi�t�i� w� be any positive real�valued function� that is

strictly monotonically increasing in w� The function bi�t� #t� � mi�t�i��g�x�t�� corri�t� #t��� is called

a generalized bonus for agent i�

De�nition �
 �Generalized Compensation and Bonus Mechanism� A Generalized Com	

pensation and Bonus mechanism is a pair m � �o� p� where�

� o�� is an optimal allocation algorithm�

� pi�t� #t� � ci�t� #t�� bi�t� #t�� where ci�� and bi are generalized compensation and bonus functions

respectively�

Arguments� similar to ��� lead to the following theorem�

Theorem 
�� The Generalized Compensation and Bonus mechanism is a strongly truthful imple�

mentation of the task scheduling problem�

�

��� Budget Considerations

Theorem ��� allows a lot of freedom in the design of a generalized Compensation	and	Bonus mech	

anism� In this section we take advantage of this freedom in order to satisfy two additional require	

ments� participation constraints and budget limits �see Mas	Collel� Whinston and Green ������

chapter �� for a detailed discussion��

De�nition �� �Participation Constraints� We say that a mechanism satis�es participation

constraints if whenever an agent is truth�telling� its utility is non�negative� More formally� for

each t and #t and for each agent i� if #tj � tj for all j � xi�t�� then pi�t� #t� � vi�x�t�� #t� � ��

��



Note� If a truthful approximation mechanism satis�es the property that whenever an agent is not

allocated any tasks then its payment is non	negative� it needs to satisfy participation constraints

as well� �Because by declaring high enough values the agent can force the mechanism to allocate

no tasks to it��

Theorem 
�	 There exists a strongly truthful mechanism that satis�es participation constraints

for the task scheduling problem�

Proof� We de�ne g�i�t�i� to be the optimal make	span among the allocations which do not include

agent i� We de�ne the contribution of agent i as conti�t�i� #t� � g�i�t�i� � g�x�t�� corri�x�t�� t� #t���

A generalized Compensation	and	Bonus mechanism where the bonus of each agent equals its con	

tribution clearly satis�es participation constraints� �

So far we have not limited the amount of money that a mechanism can pay to the agents� When

considering mechanisms with limited budget one cannot ignore the fact that such a mechanism

may not be able to allocate the tasks at all� We therefore change the problem de�nition�

De�nition �� �Constrained Task Scheduling� The problem is the same as in de�nition ��

except that there is another possible output � 	indicating that the tasks are not allocated
� vi��� is

taken to be zero and g��� is taken to be ��

De�nition �� �Limited Budget� We say that a mechanism m � �o� p� has a limited budget

b if for any tuple of strategies s � s�� � � � � sn�
P

i p
i�s� � b� We call a revelation mechanism

b	constrained if it satis�es participation constraints and has a limited budget b�

Note that if Y �t� is the allocation of a b	constrained mechanism then it must be that
P

i

P
j�Y i tij �

b�

De�nition �� Let m � �o� p� and m� � �o�� p�� be two mechanisms for the same minimization

problem� We say that m is as good as m� if for any dominant strategies d � d�� � � � � dn for the

agents in m and s � s�� � � � � sn for the agents in m�� g�o�d��� g�o��s���

Theorem 
�
 Let b� h � �� Then there exists a truthful mechanism m for the constrained task

scheduling problem such that

�� m is �b� h��constrained�

��



�� If m� is b�constrained� then m is as good as m��

Proof� Consider the following mechanism m � �o� p��

� The output algorithm o�t� �nds an optimal allocation among the allocations y such thatP
i

P
j�yi t

i
j � b �or outputs � if none exists��

� Let m�� be a bounded strictly monotone increasing function such that � � m�� � h�n�

We de�ne the contribution conti of the agent as in ��� �except that the algorithm and the

objective function are di�erent�� We de�ne the bonus bi�� as m�conti��� and the payment to

be given by pi � ci�� � bi�� where c�� is a compensation function� The payment is de�ned to

be � if the output is ��

The total compensation is bounded by b and the total bonus by h� therefore the budget is

bounded by b � h� Arguments� similar to ��� show that the mechanism is truthful and that the

only dominant strategies for an agent i are to reveal the truth �when tij � b the agent may declare

on any dij � b� and to perform its tasks as e�cient as it can�

Recalling that any b	constrained mechanism m� needs to choose an allocation z such thatP
i

P
j�zi t

i
j � b� the theorem is proved� �

��
 Poly	Time Mechanisms

While the Compensation	and	Bonus mechanisms are optimal� note that they are intractable from

a computational point of view due to their use of the exponential	time optimal allocation algo	

rithm� One would be tempted to take a known polynomial	time approximation algorithm for the

problem and base a mechanism upon it� obtaining a polynomial	time approximation mechanism�

Unfortunately� this is not so simple and we do not know how to do this in general� In this section

we �rst show that replacing the optimal allocation algorithm with a non	optimal approximation

in the Compensation	and	Bonus mechanism does not preserve truthfulness� A similar argument

can be made for the important case of VGC mechanisms �section ����� We then de�ne a sub	case

of the scheduling problem� where the number of agents is �xed and there are known bounds for

the execution times tij � This problem is still NP 	hard and the lower bounds presented in sections

����� and ����� can be applied to it �with slightly weaker constants depending on the bounds��

Nevertheless� for any � � � we are able to present a � � � polynomial approximation mechanism

for this variant� Our approximation mechanism is based on a rounding technique developed by

Horowitz and Sahni �������

��



De�nition �� Let x�� be an allocation algorithm� The Compensation	and	Bonus mechanism based

on x is the same as ��� except that the optimal algorithm is replaced by x���

Theorem 
�� Let x�� be a non�optimal approximation algorithm for task scheduling� Let m �

�x� p� be the Compensation�and�Bonus mechanism based on x��� Then m is not truthful�

Proof� Assume by contradiction that it is truthful� For an allocation y and a type t� let g�y� t�

denote the make	span 
 maxi
P

j�yi t
i
j � let opt�t� denote an optimal allocation�

Let t be a type such that g�opt�t�� t� � g�x�t�� t�� and let t�� be a type for agent � such that

t�
�
j �

�
t�j if j � opt��t�

� otherwise

where � stands for an arbitrary high value�

Claim 
�
 Let t� � t��� t�� � � � � tn� Then g�x�t��� t�� � g�x�t�� t��

Proof� Otherwise� in the case where agent �
s type is t�� it would be more bene�cial for it to

�pretend� to be t�� �note that this cannot be veri�ed��� This contradicts the truthfulness of the

mechanism� �

Corollary 
�� Let s be a type such that

sij �

�
tij if j � opti�t�

� otherwise

Then g�x�s�� s� � g�x�t�� t��

�

Since g�x�s�� s� � g�x�t�� t� � g�opt�t�� t� � g�opt�s�� s�� we obtain that x�s� �� opt�s�� Thus there

exists an agent who is allocated an � job� in contradiction to the approximation ratio of x��� �

De�nition �� �Bounded Scheduling Problem� The problem is the same as in de�nition ���

except that the number of agents n is �xed to a constant and there exist �xed b � a � � such that

for all i� j a � tij � b�

The rounding algorithm presented in Horowitz and Sahni ������ provides a �����	approximation

for bounded scheduling and runs in polynomial time� It basically works as follows� The entries tij

��



are �rst rounded up to integer multiples of 
 �a parameter chosen as a function of a and ��� It

then exactly solves this rounded problem using dynamic programming �in polynomial time�� The

solution of the rounded problem is shown to be a � � � approximation to the original one�

We will attach to this algorithm a carefully chosen payment function as to obtain our mechanism�

The idea is to use the exact times for the compensation function� but the rounded ones for the

bonus function�

Notation� For a vector t� let !t denote the vector where all entries are rounded up to an integer

multiple of 
� Denote also !g�x� #t� � g�x�!#t�� where g is the make	span objective function�

De�nition �	 �Rounding Mechanism� The rounding mechanism is de�ned as follows�

� The allocation algorithm is the rounding algorithm of Horowitz and Sahni 	����
 sketched

above�

� The payment function is given by� pi�t� #t� � ci�t� #t� � bi�t� #t�� where

ci�t� #t� �
X

j�xi�t�

#tj

bi�t� #t� � �!g�x�!t�� !corri�x�t�� t� #t��

The rounding mechanism compensates the agents according to their actual work� but computes

the bonus according to the rounded declarations and execution times�

Theorem 
�� For every �xed � � � the rounding mechanism is a polynomial time mechanism

with veri�cation that truthfully implements a � � � approximation for the bounded task scheduling

problem�

Proof��sketch� When the types and the actual computation times are rounded� !g is exactly the

make	span� and the rounding algorithm is optimal� Arguments� similar to those in ���� therefore

show that the only dominant strategies for agent i are to declare on a type t�i such that t�i and ti have

the same rounded value� and to execute its tasks such that after rounding� !corri�x�t�� t� #t� equals

!corr��x�t�� t�� Clearly� when all agents follow such strategies� the result is a � � � approximation�

In particular� truth	telling is among the dominant strategies� �

��



� Conclusions and Further Research

In this paper we suggested a framework for studying optimization problems that involve sel�sh

participants� We studied a representative task scheduling problem under two main models� a

basic mechanism design based model and a model that allows more information to be incorporated

into the mechanism� Under the assumptions of the basic model we showed that the problem

cannot be approximated within a factor of �� �� Then� under the second model assumptions� we

introduced several novel mechanisms including optimal� constrained optimal and polynomial	time

approximation mechanisms� We have also shown that worst case behavior can be improved using

randomness without weakening the �game	theoretic� requirements of the mechanism�

We believe that our work is only a �rst step towards understanding the notion of algorithmic

cooperation among sel�sh agents� There are clearly many open problems and research directions�

and we are far from a situation where we could design� analyze� and implement protocols and

algorithms that directly take into account the participants
 di�ering goals�

We divide the basic issues for further research into three main categories� questions directly

coming out of our work� game	theoretic extensions to our model and distributed computation issues�

Several questions directly stem from our work� For example� there are large gaps between

the upper and lower bounds for both task scheduling without veri�cation and for poly	time task

scheduling with veri�cation�

Many game	theoretic extensions to our model are possible� For example one may consider

di�erent settings �e�g� repeated games�� di�erent solution concepts �e�g� Bayesian	Nash�� and

di�erent assumptions �e�g� partial veri�cation��

Finally� in this work we have treated the mechanism as a black box� and have not considered

how its function is actually carried out in a distributed manner� A whole set of open problems

comes from trying to �open up� this black box� and analyze the steps taken in implementing the

mechanism from a distributed point of view� For example when communication costs are considered�

even the revelation principle breaks up� non complete network topology may be exploited by the

agents to extract information about others and to cooperate� cryptography may be introduced and

distributed handling of the payments may be considered�
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