
Qubic: 4 × 4 × 4 Tic-Tac-Toe

Author(s): Oren Patashnik

Source: Mathematics Magazine , Sep., 1980, Vol. 53, No. 4 (Sep., 1980), pp. 202-216

Published by: Taylor & Francis, Ltd. on behalf of the Mathematical Association of
America

Stable URL: https://www.jstor.org/stable/2689613

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide
range of content in a trusted digital archive. We use information technology and tools to increase productivity and
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at
https://about.jstor.org/terms

Taylor & Francis, Ltd. and Mathematical Association of America are collaborating with JSTOR
to digitize, preserve and extend access to Mathematics Magazine

This content downloaded from
������������129.107.136.108 on Sat, 04 Dec 2021 15:43:31 UTC������������

All use subject to https://about.jstor.org/terms

https://www.jstor.org/stable/2689613

 Qubic: 4x4x4 Tic-Tac-Toe

 Pruning the game tree of three-dimensional

 tic-tac-toe makes possible a computer-aided

 proof that the first player can always win.

 OREN PATASHNIK

 Bell Laboratories

 Murray Hill, NJ 07974

 The computer is a powerful new tool for the mathematician. Its sheer size and speed make

 accessible many problems previously inaccessible (or at least unaccessed). The four-color

 theorem is a well-known example. In solving this problem Appel, Haken, and Koch [1], [2], [3]

 combined one hundred years of previous mathematical research with large high-speed com-
 puters to obtain a solution involving an intricate man-machine interaction. In this paper, we

 examine the problem of determining the outcome of 4 x 4 x 4 tic-tac-toe under optimal play. Not
 only is the problem itself interesting, but-as with the four-color theorem-so is the method of

 solution, which combines mathematics, human game-playing skill, and 1500 hours of computer
 time. We look first at the problem's mathematical background, then at the computer-aided
 solution, and finally at the solution's implications.

 Mathematical background

 The familiar two-dimensional 3 x 3 tic-tac-toe has been played for a long time; in fact, we

 don't know its origins. One needn't play very long, though, to see that each player can force a
 draw if he or she plays properly. A more interesting version of tic-tac-toe is played in three

 dimensions on a 4 x 4 x 4 cube. (This game is marketed by Parker Brothers as Qubic; henceforth
 we refer to it as such.) Before examining Qubic, we discuss q-player positional games in general,

 2-player kn tic-tac-toe games in particular.

 A q-player positional game consists of a set P of points (the board); a set L of lines (the
 winning combinations), each a subset of P; and q players who take turns choosing unchosen
 points from P (i.e., moving) until either: (a) a player has chosen all the points in any line (that
 player wins), or (b) all the points in P are chosen (the players draw). For example, regular

 tic-tac-toe for two players has nine points and eight lines, as shown in FIGURE 1. For a given

 THE WIZARD OF ID by Brant parker and Johnny hart

 _____ __ _ _ _ _ ,~/ 1D:X~~~~~~~~~~~~~~~~~~~~~~~~

 THE WIZARD OF ID, by permission of Johnny Hart and Field Enterprises, Inc.

 202 MATHEMATICS MAGAZINE

This content downloaded from
������������129.107.136.108 on Sat, 04 Dec 2021 15:43:31 UTC������������

All use subject to https://about.jstor.org/terms

 1 14 15J 1 61 1 1 =(P- P2 P}3)

 12 = {P4 P5 Pro

 iL> FDX FD2 FD 14=l (PI P4. P7}

 -i--> H4 F 5 H6 16 = '3 P6 pg)
 a F17FD8 F 9PI7 - P5- P9)

 _____7 X8 9_ 18 (3 P5 P7)

 The nine points and eight lines of 32 tic-tac-toe.

 FIGURE I

 q-player positional game, our main problem of interest, known as the strategy problem, is: under
 optimal play, is the game a draw, and if not, which player wins? We restrict the strategy
 problem, however. Positional games with one player are trivial (the one player can always win if
 L is nonempty, except in certain ethnic jokes), and positional games with three or more players

 are too complicated for analysis (it's not clear, for example, how the rules should handle
 coalitions). Accordingly, for the rest of this paper, we consider only 2-player positional games.

 From game theory [5] we know that for any finite 2-player perfect information game, either
 the first player can force a win, the second player can force a win, or each player can force a

 draw. Furthermore, for positional games the second player can't force a win, as the following
 argument shows. Suppose the second player can force a win; that is, suppose the second player
 has a strategy S that allows him to win no matter what the first player does. (Think of S as an
 oracle that tells the second player which point to choose, given the first player's choice.) The first
 player can then "steal" strategy S by choosing his first point at random and thereafter (a)

 following S, or (b) choosing another random point if S dictates he choose the already chosen
 random point. In a positional game, having an extra point can't possibly harm the first player,
 since it neither hinders the first player nor helps the second player in forming a line. (There is
 one apparent exception: having an extra point may leave no unchosen point to choose at the
 game's end-that is, it may prevent the first player from choosing the last point when the board
 is full. In this case, however, this last point must be the first player's random point; the first

 player must already have won, then.) Thus by following S the first player can always win,
 contradicting the assumption that the second player can always win. Therefore, the second

 player can't force a win in any positional game. Hence, for a given positional game, the strategy
 problem boils down to: can the first player force a win or can the second player force a draw?

 The kn tic-tac-toe games (henceforth referred to as the k'-games) form a subclass of the
 positional games (see Gardner [10] and Berlekamp, Conway, and Guy [4] for discussions of
 tic-tac-toe and related games). We can view a game in this subclass as an n-dimensional
 hypercube with k cells on an edge, whose points P are the centers of these cells and whose lines

 L are the sets of k collinear points. Regular tic-tac-toe (FIGURE 1) is the 32-game and Qubic is
 the 43-game.

 For any kn-game, the number iPi of points is kn, and the number ILi of lines is [(k+2)n-
 kn]/2. The expression for the number of points is obvious; the expression for the number of
 lines is elegantly proved by Moser [13] as follows. Consider a kn hypercube H whose lines we

 VOL. 53, NO. 4, SEPTEMBER 1980 203

This content downloaded from
������������129.107.136.108 on Sat, 04 Dec 2021 15:43:31 UTC������������

All use subject to https://about.jstor.org/terms

 x x
 x x~~~

 The points marked X are the strongest points in their respective games. In the 52-game there are (3"_-1)/2=4 lines
 containing the strongest point. In the 62-game there are 2r1 -=3 lines containig each strongest point.

 FIGURE 2

 want to count. Embed H in a (k +2)n hypercube H' so that H' has a layer of cells on each side

 of H and let S be the shell of points in H' surrounding H. The points in S are those in H' that

 are not in H, so there are (k + 2)n - k' points in S. For any line I in H, its unique extension 1' to
 H' (the only 1' in H' containing all the points of 1) contains exactly two points of S, one at
 either end of 1'. Furthermore, for any point in S, exactly one line of H extends to it (this requires

 a little thought). Hence, the lines of H must number half the points of S, or [(k + 2)' - k']/2, as
 claimed. (Technically this expression for the number of lines fails for the 1-games if n > 1. We
 can, however, revise our definition of a line to include a notion of direction, making the

 expression valid; we avoid the details of this revision since they aren't crucial.)
 Our last property, given Without proof, concerns a strongest-point-one contained in the most

 lines (see FIGURE 2). How many lines, denoted by SPL (strongest-point lines), contain such a

 point? If k is odd, there is a single strongest point; it is in the center of the hypercube. In this
 case

 SPL=(31-1)/2 ifkisodd.

 If k is even, each point in a main diagonal is a strongest point (a main diagonal is a line
 containing opposite corner points of the hypercube). There are 2n-1 main diagonals; they are
 pairwise disjoint, so there are k2'- I strongest points. For each

 SPL = 2' - 1 if k is even.

 We can now consider the strategy problem for the kn-games, summarized in TABLE 1. We
 divide the kn-games into three classes. Class 1 consists of those games for which draws are
 impossible even under nonoptimal play; that is, no draw position exists. This means that the first

 player can always force a win in these games, since, as we saw earlier, the second player can't.
 Class 2 consists of those games for which a draw position exists but for which the first player

 can nevertheless force a win. Class 3 consists of those games for which the second player can

 force a draw. Thus, under optimal play, games in classes 1 and 2 are first-player wins, and games
 in class 3 are draws.

 In a 1963 paper, Hales and Jewett [11] show, using Hall's well-known marriage theorem [12],

 that the second player can force a draw if k > 2 x SPL; that is, if

 k > 3n -1 if k is odd,

 or

 k>2n+'-2 ifkiseven.

 Thus, these kn-games belong to class 3 (draws). (Their argument uses the following pairing

 strategy: there exists a set of mutually exclusive pairs of points such that a player can't win

 204 MATHEMATICS MAGAZINE

This content downloaded from
������������129.107.136.108 on Sat, 04 Dec 2021 15:43:31 UTC������������

All use subject to https://about.jstor.org/terms

 Number Dimension n
 of points in
 a line

 k= 2k n= 1 n=2 n3 n4 n5

 1 2 1 4__31 1 40 1 2
 2 4 3 l ~ ~~~1 41 213 4 121651 4 __ 4111 ' 28 16 32

 3 tic 9 27 81 243
 3 8 1 3 tac 8 1 4 1 272 41 1

 __ _ _ _ _ _1 toe 4 13 40 121

 4 16 2 64 2 256 X 1024
 4 16 3 1 3 10 Qubic 76 520 2 3376

 _______ 3_____ 3_ 7 3 15 3 31

 5 32 5 3 25 2 125 2 625 2 3125 5 32 1 3 122 109 2 888 2 6841
 1 .4 3 13 a 40 :3 121
 -.-~ 6 36 2 216 2 1296 2 7776

 6 64 1 3 14 148 1400 12496

 1 3- ~73 153 3 1
 7 49 2 343 2 2401 2 16807

 7 128 1 16 193 2080 21121
 1 4 ~13 3 40 :3 121

 8 . 256 3 38 64 3 4512 2 4096 2 32768 8 256 , 1 i3 18 : 2443 2952 33616
 1 3 7 1 5~~~js 3 1

 9 81 729 2 6561 2 59049
 9 512 3 1 3 20 3 301 4040 51001

 1 4 13 3 40 3 121
 10 1024 _ 10 100 1000 2 10000 2 100000

 10 1024 3 3 22 3 3643 5368 74416
 _ _ _ _ _ _ _ 15 3 3 1

 1 1 121 1331 2 14641 2 161051
 1 1 2048 1 24436960 105121

 _________ 4______ 1 3 3 40 3a 121
 - -12 144 1728 2 20736 2 248832

 12 4096 3 26 3 508 3 8840 144496
 ____3___7_ 15 3 3 1

 13 169 2197 2 28561 2 371293
 13 8192 1 2 5911032 1940,41

 ________ 4_______ 13_____ 3 403 121
 1 4 196 2744 38416 2 537824

 14 16384 1 3 30 3 676 3 13560 255376

 15 225 3375 50625 2 7537
 15 32768 1 32 769 16448 330241

 1 41~ c _ 3 403 121

 A summary of the strategy problem for the kl-games, for small k and n. For each game, the table gives the classes of
 which the game is possibly a member (the games in the outlined area are unsolved-they are possibly members of
 both classes 2 and 3). The table also gives for each game, top to bottom, the number of points, the number of lines,
 and the unumber of strongest-point lines.

 TABLE 1

 unless he chooses both points of some pair; the second player prevents the first player from
 winning by choosing one point of a pair any time the first player chooses the other.)

 Erdos and Selfridge [8] improve the Hales and Jewett result by showing (but not with a
 pairing strategy) that the second player can force a draw if SPL + LI < 2k; that is, if

 (3n - 1)/2 + [(k + 2)n-kn]/2<2 k if k is odd,

 or

 2n- 1 + [(k+2)n-kn]/2<2k if k is even.

 Hales and Jewett also show that, given a k, there exists an nk such that whenever n > nk the
 ks-game has no draw position; these kO-games are thus in class 1 (wins). (They don't specify
 values for nk; however, we know that the minimum nk = k for k =1,2,3, but the minimum
 n4#74.)

 VOL. 53, NO. 4, SEPTEMBER 1980 205

This content downloaded from
������������129.107.136.108 on Sat, 04 Dec 2021 15:43:31 UTC������������

All use subject to https://about.jstor.org/terms

 Paul [18] adds to another Hales and Jewett result to show that whenever k > n + 1, a draw
 position exists; these ks-games, then, belong either to class 2 (wins) or class 3 (draws). Paul
 improves this result for n >4, showing that a draw position exists if k > n. (For a complete
 discussion of draw position existence and related issues, see [15], [16], [17], [18].)

 These results support several conjectures:

 1. Hales and Jewett [11] conjecture that the second player can force a draw, because a

 pairing strategy exists, whenever there are at least twice as many points as lines (i.e.,

 k > 2/(2'/n - 1)). (Proving this reduces to showing that a certain ratio, namely the number
 of lines in a subset of L divided by the number of points aggregately contained in this

 subset, is a maximum when this subset is L itself. Upon close inspection this ratio

 conjecture is very compelling, not only when a pairing strategy exists, but for any
 k%-game.)

 2. A modification of Gammill's conjecture [9] predicts that the second player can force a

 draw if and only if there are more points than lines (i.e., k > 2/(3/n - 1)).
 3. Citrenbaum [6] conjectures that the second player can force a draw if and only if there are

 more points in a line than there are dimensions (i.e., k > n).

 4. A modification of conjecture 3 predicts that the second player can force a draw if and only
 if a draw position exists (i.e., it predicts that class 2 is empty).

 These conjectures are consistent with all the information in TABLE 1, but differ on the strategy
 problem for the smallest unsolved member of the kn-games, the 43-game, Qubic: conjecture 2
 predicts the first player can force a win; conjectures 3 and 4 predict the second player can force
 a draw. (Conjecture 1 makes no prediction for Qubic.) The next section describes my solution to
 the strategy problem for Qubic.

 Computer-aided solution to Qubic

 The program I eventually used to solve the Qubic strategy problem evolved from an attempt
 to analytically prove Qubic a first-player win, which I "knew" was true from years of playing the
 game. Unable to find a purely analytic proof, I had to resort to a brute-force search, requiring a

 computer.

 A brute-force search is based on a game tree, discussion of which demands some terminology.

 An r-position (sometimes just position) is an enumeration of the points of P each player has

 w
 HI crm mx

 co M Im [El 9 n 1:n M El LI LInm

 IX iX uM LJMZ LJ M U oK m E m m E crU ON LI M

 The complete game tree for the 22-game.

 FIGURE 3

 206 MATHEMATICS MAGAZINE

This content downloaded from
������������129.107.136.108 on Sat, 04 Dec 2021 15:43:31 UTC������������

All use subject to https://about.jstor.org/terms

 chosen after r total moves. An r-position is at level r of the game tree. A terminal position is one
 for which the game has ended. A game tree is a representation of all positions reachable, subject

 to a given set of restrictions, from the 0-position (no points chosen). Thus, a path from the
 0-position to a terminal position in the game tree represents a single game. A brute-force search
 (sometimes just search) of a game tree, then, is an examination of every position of the game
 tree.

 This terminology applies to a general game tree. Next, we discuss three specific game trees: a
 complete game tree and two successive refinements of it.

 A complete game tree is a representation of all positions reachable from the 0-position,

 subject to no restrictions (except of course that points be chosen legally). FIGURE 3 shows the
 complete game tree for the 22-game. A naive brute-force search is specifically a brute-force
 search of a complete game tree. (Abstractly, this entails examining all legally possible games.)

 Using a naive brute-force search to determine the identity and location of the terminal
 positions in the complete game tree solves the strategy problem; that is, it tells us whether the
 first player can force a win or the second player can force a draw. A naive brute-force search for

 Qubic, however, becomes exponentially unreasonable. For example, after three total moves there
 are 64X63X62=249,984 3-positions in the complete game tree. Thus, I needed to refine the

 complete game tree, making the resulting search reasonable.

 Although it's not clear that I made the brute-force search of Qubic reasonable (ten and a half

 months of brute forcing hardly seems reasonable), I did substantially reduce the size of the game
 tree. For example, instead of a quarter million 3-positions, my new game tree had only seven. I
 employed two processes to accomplish this reduction, corresponding to our two refinements of
 the complete game tree:

 1. I restricted the set of first-player moves that the search examined (for a given position) to a

 single "winning" move (henceforth referred to as a first-player move).
 2. I eliminated any position equivalent to one previously examined.

 FIGURE 4 shows a first player game

 tree for the 22-game. There are only

 level 0 three terminal positions instead of the
 El] 24 for the complete game tree in FIG-

 URE 3. Switching any two points leaves

 the set of lines unchanged in the

 22-game; thus, any such switch can't
 change the outcome of any game. FIG-

 URE 5 shows the result of switching P2

 level 1 andp4. FiGURE 6 shows a distinct-posi- X
 tion tree for the 22-game. Compare it
 to the trees in IFIGURES 3 and 4.

 P 1 P2K P P1 K

 level 2 C3 4

 (1-{p. P2) - 5- {pI P2)

 l2-{p33p4) - 16-{p4 p3)

 3-{p. P3) - 13- {p p3)

 E level 3 T l4 p (P2 P4 4-(p4 P2) x o x 0 levl 3 x x x >< 5{ (PI 4) 1-{1 .(PI4)
 x ~~~~~I.IIII 1(6.P2. P3) 12-(3 2

 FIGuRE 4 FIGURE 5 FIGURE 6

 VOL. 53, NO. 4, SEPTEMBER 1980 207

This content downloaded from
������������129.107.136.108 on Sat, 04 Dec 2021 15:43:31 UTC������������

All use subject to https://about.jstor.org/terms

 Process 1 followed from my belief that Qubic was a first-player win. I didn't need to search
 the complete game tree- I wasn't interested in how poorly the first player could play; I was
 interested only in his optimal play. Hence, to prove Qubic a first-player win, I needed only find
 a game tree, all of whose terminal positions were first-player wins, that placed no restrictions on
 the second-player moves. Thus, no matter what the second player did, the first player would win.
 This game tree, henceforth referred to as a first-player game tree, is our first refinement of the
 complete game tree. FIGuRE 4 shows a first-player game tree for the 22-game. Process 1 reduced
 the number of 3-positions from 24 in the complete game tree to three in the first-player game
 tree. For Qubic this reduction was from 249,984 3-positions in the complete game tree to
 1 x 63 x 1 = 63 in the first-player game tree.

 Process 2 involved recognizing equivalent positions. Intuitively, the first two positions on
 level 2 in FIGuRE 4 are equivalent-they are mere reflections of each other. Further reflection
 reveals that these positions are equivalent to the third position on level 2. To see this, consider
 the following. Since any two points constitute a line in the 22-game, switching two points (or in
 fact any permutation of the points) leaves the set of lines unchanged (FIGURE 5 illustrates this,
 switching points P2 andp4). Thus, such a switch can't change the outcome of any game. Since the
 third position on level 2 is just a P2-P4 switch of the first position, it must be equivalent to the
 first (and therefore to the second). In fact, any one-to-one mapping of the set of four points onto

 FIGURE 7 shows two unintuitive automorphisms for
 Qubic. Identify the points by ordered triples: X1 in the
 top position is (1,1,1); 03 is (2,3,4). The left automor-

 z / / -/ t phism switches coordinate-value 2 with coordinate-value
 3. The right automorphism switches 1 with 2, and 3 with

 4. Thus the automorphisms map X1 from (1,1,1) to
 (1,1,1) and (2,2,2) respectively. They map 03 from

 / j w 7 ; / /0 (2,3,4) to (3,2,4) and (1,4,3) respectively.
 FIGURE 8 shows the two distinct 1-positions for Qubic.
 On the first player's first move, the 16 points marked X
 are equivalent to each other-these are the strongest
 points for Qubic (compare this to FIGURE 2). The
 remaining 48 points are equivalent to each other. Thus,

 / / / / / ~~~~~~the fhrst player has a choice of just two distinct moves,
 - / / , , ~~~yielding only two distinct 1-positions for Qubic. (Of

 / f ,/ , ,/ ~~~~course, Qubic's distinct-position tree contains only the

 / / / / // ~~~~~strong one.)

 2- / - -2 & 3-4

 ,/Z711717,K17117Z1

 FIGu1U3 7 FIGURE 8

 208MATHEMAT/ICS / / MAAZ

 FIGURE 7 FIGURE 8

This content downloaded from
������������129.107.136.108 on Sat, 04 Dec 2021 15:43:31 UTC������������

All use subject to https://about.jstor.org/terms

 itself preserves the set of six lines, so there are 4! =24 transformations, or automorphisms, for

 the 22-game.
 An automorphism, then, is a one-to-one mapping of the set of points onto itself that preserves

 the set of lines. Two positions are equivalent if they are automorphic images of each other; one
 of these positions is redundant. We call a first-player game tree with redundant positions
 removed a first-player distinct-position game tree, distinct-position tree for short. This game tree

 is our second refinement of the complete game tree. FIGURE 6 shows a distinct-position tree for
 the 22-game.

 For Qubic, it turns out, there are 192 automorphisms, proved by Silver [20]. Just as some of
 the 24 automorphisms for the 22-game are unintuitive, so are most of Qubic's 192 automor-
 phisms. In fact, only 48 are ordinary rotations or reflections of the cube; the remaining 144 are
 combinations of these 48 with at least one of the two automorphisms shown in FIGURE 7. These
 192 automorphisms yield only two distinct 1-positions, as indicated in FIGURE 8.

 These automorphisms also yield only 1 x 12=12 2-positions in the distinct-position tree for
 Qubic. Thus, I reduced the number of 2-positions in Qubic's three specific game trees from
 64 x 63 = 4032 in the complete game tree, to 1 x 63 = 63 in the first-player game tree, to
 1 x 12 = 12 in the distinct-position tree. It seems, then, there should be 1 x 12 x 1 = 12 3-positions
 in Qubic's distinct-position tree. However, by judiciously choosing the first-player moves for the
 twelve 2-positions, combining processes 1 and 2, I rendered five of these twelve redundant; this
 completed the reduction of the 249,984 3-positions in the complete game tree to the seven
 3-positions in the distinct-position tree. FIGURE 9 shows the top four levels of my distinct-posi-
 tion tree for Qubic.

 Levels 0, 1, 2, and 3 of Qicsdistinct-position tree. There are only seven distinct 3-positions, reduced from twelve
 2-positions by judiciously choosing first-player moves for these twelve positions.

 FIGURE 9

 VOL 53, 3n 4 SE25PTEMBER 1980 296

This content downloaded from
������������129.107.136.108 on Sat, 04 Dec 2021 15:43:31 UTC������������

All use subject to https://about.jstor.org/terms

 My problem, then, was reduced to finding a distinct-position tree for Qubic-a game tree, all
 of whose terminal positions were first-player wins, that made no restrictions on second-player

 moves, that restricted the first player to a single move for each position, and that contained no

 redundant positions. The only nonalgorithmic step in constructing such a tree was in finding the

 first-player moves. The rest-generating all possible second-player moves, removing redundant

 positions, and bookkeeping-was purely mechanical.

 Initially I had planned to use a set of programmed heuristics to generate these first-player

 moves. ("Heuristics" comes from the Greek, eVpiKEtV, to find [14].) For several weeks I
 experimented with heuristics based on, for example, the number of lines and planes each player

 controlled. Unfortunately, the best set of heuristics I could find generated some moves worse

 than those I, as an experienced human player, could generate. Although finding a good set of
 heuristics would have been an interesting Artificial Intelligence problem, it didn't seem fruitful

 for proving Qubic a first-player win. I therefore had to abandon having my program make all
 the first-player moves-I had to make some of the first-player moves myself. We call these

 strategic moves.

 My program was very good (perfect), however, at making certain first-player moves: at
 blocking a second-player three-in-a-row, and at finding a forced sequence (explained shortly) if
 one existed. These two types of moves, called tactical moves, comprised all but 2929 (the
 strategic moves) of the more than one million first-player moves made in the search. Thus, the
 most promising approach to proving Qubic a first-player win had my program making the

 tactical first-player moves, at which programs tend to be good, and had me making the strategic

 first-player moves, at which experienced humans tend to be good. (Incidentally, chess too shows

 these differing strengths of humans and computer programs. The human advantage in strategy is

 currently great enough to overcome the computer advantage in tactics: experts and masters,

 strategists, still beat the best programs, tacticians. Though the day of computer supremacy (in

 chess) is approaching, it seems this supremacy will arise not through strategic ("smart")

 programs, but through "smart" programmers using brute-force tactics.)

 The two processes (choosing a single first-player move and eliminating redundant positions)
 kept the distinct-position tree small at the top levels (through level 5); they did not, howevei,

 change Qubic's exponential nature. In fact, the 192 automorphisms were virtually useless in
 reducing the tree size below level 5. Hence, to prevent this approach, too, from blowing up, I

 needed a third process-one to limit the search at lower levels of the tree.
 Employing the forced-sequence search, alluded to above, was that process. A forced sequence

 is a sequence of moves from a given position, in which Player 0 must continually block Player
 X's three-in-a-row until at some move he or she must simultaneously block two such threes-in-a-

 Z" V/2/.747/ ~47

 Lt tW ~~~~~~~~Z zz z t//t/ zZ /ZZ tS t7

 1 2 3 4 5 6

 A typical Qubic forced sequence. Player X's moves at F from each position continually force Player 0 to block at B,

 until Player 0 must block two threes-in-a-row in position 6; since this Is Impossible, Player 0 loses.

 FIGURE 10

 210 MATHEMATICS MAGAZINE

This content downloaded from
������������129.107.136.108 on Sat, 04 Dec 2021 15:43:31 UTC������������

All use subject to https://about.jstor.org/terms

 row; this is impossible, so Player X wins. FIGURE 10 gives a typical example. (Note that a
 forced-sequence search is part of the overall search of the distinct-position tree.) A complication
 in finding a forced sequence may arise, however: Player O's block (of Player X's three-in-a-row)
 may give Player 0 a three-in-a-row, forcing Player X to block, typically ending the potential
 forced sequence. FIGURE 11 shows one such complication and its solution by reordering moves.

 A forced-sequence search such as one shown in FIGURE 10 or 11 was very quick-such a
 search took a second or two of computer time. Some forced-sequence searches, however, took
 much longer, especially those for positions from which a forced sequence didn't exist. In fact,
 since the forced-sequence search had to find a forced sequence from a given position if one
 existed, to show that one did not exist from a given position, it had to examine all possible
 forced sequences. We saw that a naive brute-force search for Qubic (which examined the
 complete game tree) blew up because it had to examine all possible positions. Why, then, didn't
 the forced-sequence search blow up for some positions?

 The answer has two parts. (Keep in mind that the forced-sequence search was at times
 precariously close to blowing up.) First: we saw that the naive brute-force search became a
 reasonable search when we refined the complete game tree to a first-player game tree; that is, we
 restricted one of the players (the first player in that case) to a single move for each position. For

 the forced-sequence search, the corresponding restriction was implicit; Player 0 being forced
 was implicitly restricted to a single move-to block the three-in-a-row or lose immediately. Thus
 the forced-sequence search, too, was reasonable. Second: the forced-sequence search was
 reasonable only if it was given a reasonable position from which to search; the positions from
 which it searched were reasonable because my strategic moves were good. The forced-sequence
 search, we saw, typically took only a second or two; however, for a few positions, it searched as
 long as half an hour. Hence, had my strategic moves been even slightly worse, the forced-
 sequence search would have blown up for a few positions.

 z 7A7 z//

 / z 77 7%

 ~~~~~~ ~~~~~~~~Z

 z 40S0S <7080 Zy

 complications arise in some forced sequences. in the top sequence, if Player X tries to win as in FiGuRE 10, Player
 0's first block at B produces three-in-a-row, forcing Player X to block at C, ending the potential forced sequence.
 Player X can avoid this by reordering moves as in the bottom sequence.

 FiGREIU 11

 VOL. 53,2 KinOA 4, ETEBRA1980 211n

This content downloaded from 
������������129.107.136.108 on Sat, 04 Dec 2021 15:43:31 UTC������������ 

All use subject to https://about.jstor.org/terms



 1500 '148

 0

 .@ 1200
 0)
 0

 EL

 2O 900_V
 0

 90

 L

 0) 600

 (4-
 0

 L
 0 309
 .f 300 1

 E

 z
 110

 ' / ' t~~~~~~~~51
 0 12 I ' 15 s l |
 0 2 4 6 8 10 12 14 16 18

 Leve 1 r

 The distribution of the 2929 strategic r-positions in Qubic's distinct-position tree. (A strategic r-position is one from
 which I made a strategic move.) Level 6 contained almost half; there were no strategic positions below level 16, eight

 moves by each player. The forced-sequence search took effect after the dotted line.

 FIGURE 12

 This explains why the forced-sequence search itself didn't blow up. It does not explain why
 the forced-sequence search kept the overall search of the distinct-position tree from blowing up
 below level 5. Very simply, the overall search didn't blow up below level 5 because most
 positions (roughly 98% of them) from which it was the first player's turn to move yielded a
 forced sequence (rendering further search from those positions unnecessary). To see this,
 consider an arbitrary r-position from which it was the first player's turn to move (that is, r was
 even). It consisted of r/2 first-player points, which were chosen to be good, and r/2 second-
 player points, which were arbitrary and therefore likely to be lousy. Such an arbitrary r-position
 was therefore likely to yield a first-player forced sequence. Thus, positions terminated rapidly at
 lower levels of the distinct-position tree, keeping its search from blowing up.

 FIGURE 12 shows Qubic's exponential nature. Since a forced sequence could exist after three
 moves by each player (as was the case in FIGURE 10), the forced-sequence search took effect
 after the dotted line (level 5). The jump between level 4 and level 6 would have been
 astronomical (instead of just enormous) had I not used the forced-sequence search.

 My program, then, used the following algorithm (outlined in FIGURE 13) to construct and
 search the distinct-position tree for Qubic:

 Step 1. Initialize: put the 0-position into the tree and onto the stack of unexamined positions.
 Go to step 2.

 Step 2. Get the next unexamined position from the stack. If none, terminate the algorithm,
 the game is solved; otherwise go to step 3 (start examining).

 212 MATHEMATICS MAGAZINE

This content downloaded from 
������������129.107.136.108 on Sat, 04 Dec 2021 15:43:31 UTC������������ 

All use subject to https://about.jstor.org/terms



 A flowchart for the Qubic algorthm.

 FIGURE~ 13

 Step 3. Check for a second-player three-in-a-row (step 6 insures at most one). If one exists, go

 to step 7; otherwise go to step 4.

 Step 4. Check for a first-player forced sequence. If one exists, add its positions to the tree and

 go back to step 2; otherwise go to step 5.

 Step 5. Get a strategic move and go to step 6.

 Step 6. Check for a second-player forced sequence. If one exists, complain and go back to
 step 5; otherwise go to step 7.

 Step 7. Block a second-player three-in-a-row if one exists. Generate all possible second player
 moves and resulting positions. Remove redundant positions. Put the distinct positions

 into the tree and onto the unexamined-position stack. Go back to step 2.

 To show the algorithm's simplicity, we use it to prove the trivial 33-game a first-player win.

 (Of course, we must change "three-in-a-row"~ to "two-in-a-row" for the 33-game.) FIGuURE 14
 gives the first three levels of the distinct-position tree we construct for this game.

 VOL. 53, NO. 4, SEPTEMBER 1980 213

This content downloaded from 
������������129.107.136.108 on Sat, 04 Dec 2021 15:43:31 UTC������������ 

All use subject to https://about.jstor.org/terms



 zi
 t/42

 17Z7" V j z z

 Levels 0, 1, and 2 of the distinct-position tree for the

 33-game. Each position at level 2 yields a first-player

 forced sequence, so the 33-game is a first-player win.

 FIGURE 14

 1. Step 1 Put the 0-position into the tree and onto the unexamined-position stack.
 2. Step 2-Get it from the stack.

 3. Step 3-No second-player two-in-a-row.
 4. Step 4-No first-player forced sequence.

 5. Step 5-Get a strategic move. We know from the mathematical background section of
 the paper that the only strongest point for this game is the center point, so we

 choose it as our first (and only) strategic move.

 6. Step 6-No second-player forced sequence.

 7. Step 7-No second-player two-in-a-row. Generate all possible second-player moves and
 resulting positions. Remove redundant positions. Only three are distinct; put
 them into the tree and onto the stack.

 8. Step 2-Get the first of these three from the stack.

 9. Step 3-No second-player two-in-a-row exists.
 10. Step 4-A first-player forced sequence exists (see FIGuRE 15). Put its positions into the

 tree.

 11. Step 2-Get the second of three from the stack.
 12. Step 3-No second-player two-in-a-row exists.
 13. Step 4-A first-player forced sequence exists, as before. Put its positions into the tree.
 14. Step 2-Get the last of three from the stack.
 15. Step 3-No second-player two-in-a-row exists.
 16. Step 4-The same first-player forced sequence exists. Put its positions into the tree.
 17. Step 2-The stack is empty; we have proved the 33-game a first-player win.

 Proving the 33-game a first-player win, as above, would have taken a few seconds of
 computer time. Proving Qubic took a bit longer, about 1500 computer hours on the Yale

 214 MATHEMATICS MAGAZINE

This content downloaded from 
������������129.107.136.108 on Sat, 04 Dec 2021 15:43:31 UTC������������ 

All use subject to https://about.jstor.org/terms



 ~ -~ -~ z

 X ZL 7 Zz

 A first-player forced sequence for the first 2-position in the distinct-position tree for the 33-game; the other two

 2-positions yield the same forced sequence.

 FIGURE 15

 Computer Science Department PDP1O, about half of which were wasted-occasionally I chose a

 bad strategic move and had to backtrack; more frequent mishaps ranged from memory parity

 errors (hardware problems) to tape-drive malfunctions (hardware problems). Even 750 unwasted

 computer hours, however, overestimates the time required to solve the problem by more than an

 order of magnitude. Had I known in advance it would have taken so long, I would have made
 my program faster by, for example, writing it in a lower level language instead of in Algol.

 Furthermore, the set of 2929 strategic moves I produced was not minimal. Given the hours I was
 generally allowed to use the machine (midnight to 8 A.M.-but far from complaining, I
 thoroughly appreciate the access to the machine at all), and my usual physical state (tired-I
 had to write an alarm into my program to wake me up for the strategic moves), I know that a

 better choice of strategic moves would slightly reduce 2929. Of my solution:

 'twas much deeper than a well, and wider than a church door;
 'twas more than enough, but it served. [19]

 Implications

 The Qubic solution completes one more cell of TABLE 1: Qubic is the first known member of

 class 2, a k"-game for which a draw position exists but for which the first player can nevertheless
 force a win; this disproves conjecture 4. This result also disproves conjecture 3-it shows that
 there exist first-player win ku-games with k >n. The Qubic solution doesn't settle conjectures 1
 or 2, although it supports conjecture 2. The strategy problem for the general ks-game is still
 unsolved.

 These are the solved problem's implications. The implications of the method of solution also

 merit discussion.

 Why believe such a computer-aided result? After all, no one can possibly hand-check ten

 magnetic tapes of positions (body-check, maybe); no one can possibly prove that the 23 pages of
 Algol were correct, that the entire operating system was correct, and that the hardware
 functioned properly.

 In an interesting, very readable, and highly recommended paper, DeMillo, Lipton, and Perlis
 [7] argue that a mathematical proof withstands a social process. The proof is believed, in
 successive stages, by the mathematician who discovered it, by colleagues, by journal reviewers,
 and finally by the general mathematical community. At each stage, the proof passes a test,
 gradually gaining acceptance.

 The corresponding test for a computer proof such as mine (or Appel, Haken, and Koch's
 four-color theorem proof) is independent verification. For my proof, I gave Ken Thompson of
 Bell Laboratories a file of my 2929 strategic positions and moves. His C language program took
 "only" 50 hours on an Interdata 8/32 to verify the first-player win. In theory, his program did

 VOL. 53, NO. 4, SEPTEMBER 1980 215

This content downloaded from 
������������129.107.136.108 on Sat, 04 Dec 2021 15:43:31 UTC������������ 

All use subject to https://about.jstor.org/terms



 exactly what mine did, except that his program took the strategic moves from a file rather than
 from a human. In practice, his program was very different; it did, however, prove the same

 result.

 Such verifications, in fact, may have advantages over verifications of some mathematical
 proofs. If a mathematician makes a subtle error in constructing a proof, a second mathematician
 is likely to miss the subtlety in inspecting the proof-the second mathematician's line of

 thinking is partly constrained by the first mathematician's line of thinking. However, two
 programmers working independently will be less likely to make identical errors in writing their

 programs. That is, one proof construction together with its dependent inspection is more error
 prone than two independent proof constructions.

 Furthermore, certain mathematical proofs are inherently more error prone than their com-
 puter counterparts, regardless of verification. A 100-page existence proof for a certain group will
 much likelier contain an error than will an instance of the group, which the program finds after
 hours of searching. Thus, there are problems for which a computer proof seems preferred.

 Finally, combining the respective strengths of humans and computers, fully exploiting the

 resources of both, may be the most (perhaps the only) feasible approach for solving certain
 problems; respective human and computer limitations may render approaches relying on either
 alone insufficient. The four-color theorem and the strategy problem for Qubic were two such
 problems. There will likely be others. The computer will remain an important mathematical tool.

 Acknowledgements

 I am deeply indebted to S. C. Eisenstat and the Yale Computer Science Department for allowing me to

 complete this project. At commercial rates, ten cents per kilo-core-second, the project would have cost me about

 fifty million dollars. I am also very grateful to K. Thompson for verifying my proof, and to E. R. Berlekamp, M.

 Gardner, R. L. Graham, J. B. Kruskal, and A. M. Odlyzko for their assistance and general encouragement in

 making the result known. Finally, I thank all those whose comments on earlier drafts greatly improved this paper.

 References

 [1] K. Appel and W. Haken, The solution of the four-color-map problem, Sci. Amer., 237, 4(Oct.

 1977)108-121.

 [2] , Every planar map is four colorable, Part I: Discharging, Illinois J. Math., 21(1977)429-490.
 [3] K. Appel, W. Haken, and J. Koch, Every planar map is four colorable, Part II: Reducibility, Illinois J.

 Math., 21(1977)491-567.

 [4] E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways, Academic Press, Chapter 22 (to appear).

 [5] D. Blackwell and M. A. Girshick, Theory of Games and Statistical Decisions, Wiley, New York, 1954, p.

 21.

 [6] R. L. Citrenbaum, Efficient Representations of Optimal Solutions for a Class of Games, Doctoral

 Dissertation, Case Western Reserve University, Univ. Microfilms International, 1970, pp. 116-7.

 [7] R. A. DeMillo, R. J. Lipton, and A. J. Peris, Social processes and proofs of theorems and programs,

 Comm. ACM., 22(1979)271-280.

 [8] P. Erdos and J. L. Selfridge, On a combinatorial game, J. Combin. Theory Ser. A, 14(1973)298-301.
 [9] R. C. Gammill, An examination of tic-tac-toe like games, AFIPS Confer. Proc., 43(1974)349-355.

 [10] M. Gardner, The Scientific American Book of Mathematical Puzzles and Diversions, Simon & Schuster,
 New York, 1959, pp. 37-46.

 [11] A. W. Hales and R. I. Jewett, On regularity and positional games, Trans. Amer. Math. Soc.,

 106(1963)222-229.

 [12] P. Hall, On representatives of subsets, J. London Math. Soc., 10(1935)26-30.

 [13] L. Moser, Solution to problem E 773 [1947, 281], Amer. Math. Monthly, 55(1948)99.

 [14] Oxford English Dictionary, Oxford Univ. Press, New York, 1971.

 [15] J. L. Paul, The q-regularity of lattice points in R', Bull. Amer. Math. Soc., 81(1975)492-494.

 [16] ' Addendum, The q-regularity of lattice points in R', Bull. Amer. Math. Soc., 81(1975)1136.

 [17] ' Tic-tac-toe in n-dimensions, this MAGAZINE, 51(1978)45-49.

 [18] ' Partitioning the lattice points in R', J. Combin. Th. Ser. A, 26(1979)238-248.

 [19] W. Shakespeare, Romeo and Juliet, III. i. 97-98.
 [20] R. Silver, The group of automorphisms of the game of 3-dimensional ticktacktoe, Amer. Math. Monthly,

 74(1967)247-254.

 216 MATHEMATICS MAGAZINE

This content downloaded from 
������������129.107.136.108 on Sat, 04 Dec 2021 15:43:31 UTC������������ 

All use subject to https://about.jstor.org/terms


	Contents
	p. 202
	p. 203
	p. 204
	p. 205
	p. 206
	p. 207
	p. 208
	p. 209
	p. 210
	p. 211
	p. 212
	p. 213
	p. 214
	p. 215
	p. 216

	Issue Table of Contents
	Mathematics Magazine, Vol. 53, No. 4 (Sep., 1980) pp. i+194-256
	Front Matter [pp. ]
	Integration in Finite Terms: The Liouville Theory [pp. 195-201]
	Qubic: 4 × 4 × 4 Tic-Tac-Toe [pp. 202-216]
	Notes
	Fourier's Seventeen Lines Problem [pp. 217-219]
	On the Enumeration of Cryptograms [pp. 219-221]
	The Square Root of a 2 × 2 Matrix [pp. 222-224]
	Will It Tile? Try the Conway Criterion! [pp. 224-233]
	Nice Cubic Polynomials for Curve Sketching [pp. 233-234]
	The Tree Planting Problem on a Sphere [pp. 235-237]
	Cooking a Turkey [pp. 237-239]
	A Coin Tossing Game [pp. 239-243]

	Problems [pp. 244-251]
	Reviews [pp. 252-254]
	News and Letters [pp. 255-256]
	Back Matter [pp. ]



