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Addressing some of the great challenges of the 
21st century involves a thorough understanding of 
fairness considerations. Fairly dividing limited natural 
resources (such as fossil fuels, clean water, and the 
environment’s capacity to absorb greenhouse gases) 
is of utmost importance; for example, fairness plays 
a key role in the evolution of the United Nations 
Framework Convention on Climate Change, a 
global treaty for combating climate change, and 
its implementation; indeed, its language demands 
fairness. It seems intuitive that countries with 
developing economies would bear less of the burden, 
and developed countries, which share historical 
responsibility for pollution, bear more. However, only 
a concerted effort involving developing countries 
would yield a meaningful result. Moreover, some 
countries (such as small islands) are more susceptible 
to the adverse effects of climate change and call for 
global solidarity. With so many competing needs and 
demands, what would be a fair solution to dividing up 
the costs of pollution? 

Similar (though simpler) questions 
about fairness have tantalized thinkers 
for millennia and can be traced back 
to the Bible and to ancient Greece. In-
deed, the Bible famously recounts the 
tale of King Solomon’s role in a mater-
nity dispute. In response to two wom-
en both claiming to be the true mother 
of the same baby, Solomon suggested 
his guards cut the baby in two and give 
each woman half. When one of the 
women protested, begging Solomon to 
give the baby to the other woman, he 
declared she must be the true mother 
(1 Kings 3:16–27). 

The 20th century experienced a shift 
toward mathematically rigorous ap-
proaches to fairness. In mathematics, 
the formal notion of “envy-freeness,” 
with participants preferring to keep 
their own allocation to swapping with 
other participants, appeared in Puzzle-
Math, a 1958 book of mathematical 
puzzles by Gamow and Stern.23 In the 
economics literature, Foley21 initiated 
the formal study of envy-freeness. The 
notion of proportionality, with each of 
n participants receiving at least 1/n of 
each participant’s own value for get-
ting everything, was considered by 
Steinhaus39 as early as the 1940s. 

In economics today, fair division is 
considered a significant subfield of mi-
croeconomic theory. Unlike Solomon, 
the literature usually distinguishes 
between allocation of divisible goods 
such as land (see Figure 1), time, and 
memory on a computer, and indivis-
ible goods (such as a house or the com-
puter itself, or a baby). Each variation 
has attracted ample attention, as in 
the book by Moulin.31 However, com-
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 � �A cake-cutting algorithm divides a 
heterogeneous divisible good in a way 
that achieves formal fairness guarantees. 

 � �Designing cake-cutting algorithms  
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puter scientists have focused mainly 
on the (not necessarily fair) allocation 
of indivisible goods; see, for example, 
Conitzer15 and Roughgarden.36 Never-
theless, I hope to convince the reader 
that the study of the fair allocation of 
divisible goods, particularly cake cut-
ting, gives rise to natural challenges 
and exciting opportunities for com-

puter scientists, theoreticians and 
practitioners alike. 

Although recent work on cake cut-
ting spans multiple disciplines, my 
discussion here is geared toward 
computer science, as well as a general 
readership. For a more rigorous intro-
duction to fair-division schemes from 
a mathematical-economics point of 

view, see the survey by Thomson.42 

Cake-Cutting Classics 
To explore the abstract setting, imag-
ine dividing a birthday cake among 
several children. The cake has differ-
ent toppings, and the children have 
different tastes, one desiring, say, 
toasted nuts, and another craving 
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chocolate curls. Cake cutting is in-
deed a useful metaphor for the more 
formal-sounding task of allocating a 
heterogeneous divisible good among 
multiple players with different prefer-
ences. The study of fair cake-cutting 
algorithms originated with Steinhaus, 
Knaster, and Banach in Poland dur-
ing World War II,39 and over the years 
has attracted mathematicians, econo-
mists, and political scientists. 

Research on cake cutting includes 
two complementary strands: One es-
tablishes the existence of cake divi-
sions with desirable properties (such 
as envy-freeness40), typically via proofs 
that are non-constructive. The other 
aims to help players achieve fair allo-
cations by designing cake-cutting al-
gorithms; see the books by Brams and 
Taylor11 and Robertson and Webb.35 I 
focus on the second, but keep in mind 
that many deep existence results allow 
us to assume the cake divisions we are 
trying to compute do in fact exist. 

Although cake-cutting algorithms 
were the object of pure academic curi-
osity for most of the second half of the 
20th century, in the past two decades it 
has become apparent that this line of 
research can be successfully applied 
to important real-world problems. In 
their 1996 book, Brams and Taylor11 

discussed at length how cake-cutting 
algorithms can be applied to high-
stakes negotiations (they analyzed 
the 1974 Panama Canal treaty nego-
tiations) and to divorce settlements 
(they analyzed a real case, Jolis v. Jolis, 
decided in 1981). Cake-cutting algo-
rithms have also been commercialized 
by companies like Fair Outcomes, Inc. 
(http://www.fairoutcomes.com/). 

Cut and choose. The first cake-
cutting algorithm, which has been in-
dependently rediscovered by parents 
for millennia, is the famous cut-and-
choose algorithm for dividing a cake 
between two players, or children. The 
first player starts by dividing the cake 
into two pieces he values equally. The 
second player then chooses the piece 
he prefers, and the first player receives 
the remaining piece.a 

As children with sweet teeth, my 
brother and I would often use cut and 
choose to avoid disputes regarding 
the size of homogeneous pieces of 
cake (or mousse portions). However, 
cut and choose is fair even in a more 
general setting where the divided 
good is heterogeneous. Indeed, cut 

a	 Here, I assume the players truthfully follow the 
algorithm, an assumption reconsidered in the 
section on the game-theoretic viewpoint. 

and choose is guaranteed to produce 
a proportional allocation; that is, 
each player receives a piece he values 
at 1/2 the value of the whole cake. To 
see how this works, note that the first 
player values each piece at exactly 1/2, 
while the second player receives his 
preferred piece, which must be worth 
at least 1/2. Moreover, the algorithm 
produces an envy-free allocation, with 
each player liking his own piece at 
least as much as the other piece. In 
fact, in the case of two players the con-
cepts of envy-freeness and proportion-
ality coincide; one of the two pieces 
must be worth at least 1/2 to a player, 
and if the player likes his piece better, 
we can conclude that the player’s own 
piece is worth 1/2, so envy-freeness 
implies proportionality. Conversely, 
if a player’s piece is worth at least 1/2, 
the other piece must be worth at most 
1/2, or (weakly) less than the player’s 
own piece, hence proportionality im-
plies envy-freeness. Here, I implicitly 
assume that players’ valuations are ad-
ditive; that is, a player’s sum of values 
for two disjoint pieces of cake is equal 
to the player’s value for their union—a 
standard assumption also made in the 
following sections. 

Dubins-Spanier. As we move from 
the two-player setting to the n-player 
setting, achieving fairness becomes 
more difficult. Nevertheless, several 
elegant algorithms guarantee propor-
tional allocations, including an espe-
cially intuitive one proposed in 1961 
by Dubins and Spanier18 that works 
like this: In each stage, a referee slowly 
moves a knife over the cake (imagine 
a rectangular cake) from left to right. 
When the knife reaches a point such 
that the piece of cake to the left of that 
point is worth 1/n to one of the players, 
this player shouts “stop!,” the referee 
makes a cut, and the piece of cake to 
the left of the cut is given to that play-
er. The satisfied player and allocated 
piece are then removed, and the pro-
cess is repeated with the remaining 
players and the leftover cake until only 
one player is left; the last player re-
ceives the unclaimed piece. 

This algorithm produces proportion-
al allocations. Indeed, each player other 
than the last receives a piece of cake 
he values at 1/n. The value of the last 
player for each of the allocated pieces 
is at most 1/n; therefore, (using additiv-

Figure 1. Berlin divided among the four victorious allies following World War II. 
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While 
proportionality  
is well understood, 
envy-freeness  
is a far more  
elusive property. 

ity) the player’s value for the unclaimed 
piece is at least 1 – (n – 1)(1/n) = 1/n. 

The Dubins-Spanier algorithm can 
be implemented through a discrete 
procedure, without the impartial ref-
eree, though imagining the referee in-
terpretation is more fun. At each stage, 
each player can simply make a mark 
so the piece of cake to the left of the 
mark is worth 1/n; simulating the algo-
rithm, this is where the player would 
stop the referee. We then allocate the 
piece of cake to the left of the left-
most mark to the player who made the 
mark. The discrete version resembles 
an algorithm suggested by Banach and 
Knaster around 1944; see, for example, 
Brams and Taylor.10 

Unfortunately, the Dubins-Spanier 
algorithm does not necessarily yield 
envy-free allocations. While players do 
not envy other players allocated earli-
er, they could easily envy players allo-
cated later; for example, assume there 
are three players and that player 1 said 
to stop first and player 2 second, and 
player 3 received the remaining piece. 
Player 2 has value of at most 1/3 for the 
piece of player 1 (because player 2 did 
not stop the referee), values his own 
piece at exactly 1/3 but may have value 
as great as 2/3 for the piece of player 
3. Before addressing the issue of envy-
freeness, though, I present an elegant 
algorithm that also aims for propor-
tionality but achieves its goal more ef-
ficiently. 

Even-Paz. The algorithm designed 
by Even and Paz20 in 1984 takes the 
ideas of Dubins and Spanier one step 
further. Assume the number of players 
is a power of 2. Like the discretized ver-
sion of the Dubins-Spanier algorithm, 
each time the procedure is executed, 
the players make marks where the 
cake to the left of the mark is valued 
at 1/2 (rather than 1/n as before). The 
twist is that rather than remove a sin-
gle player the algorithm separates the 
players into two subsets of equal size, 
such that all marks made by the play-
ers of the first subset lie to the left of 
the marks made by the players of the 
second subset. The players in the first 
subset then receive the piece of cake 
to the left of their rightmost mark, 
while the players in the second subset 
receive the remaining cake. The proce-
dure is applied recursively to the two 
subsets of players and two pieces of 

cake, until each piece is claimed by a 
single player. 

Each time the procedure is called, 
half of the players receive at least half 
of the cake (by value). A single player 
participates in exactly lg n calls to the 
procedure; each player therefore re-
ceives a piece of cake worth at least 
(1/2)lg n = 1/n. We conclude that pro-
portionality is guaranteed, though 
envy-freeness is not. Intuitively, the 
Even-Paz algorithm requires making 
significantly fewer marks than the Du-
bins-Spanier algorithm; I show how to 
make this intuition more precise later 
when discussing the complexity of 
cake cutting. 

Selfridge-Conway. While propor-
tionality is well understood, envy-
freeness is a far more elusive property. 
Selfridge and Conway in around 1960 
designed a delightful algorithm (see 
the survey by Brams and Taylor10) that 
guarantees envy-free allocations for 
three players: 

Stage 0. Player 1 divides the cake 
into three equal pieces according to 
his valuation. Player 2 trims the larg-
est piece, or cuts off a slice, such that 
there is a tie between the two largest 
pieces in his view. We call the original 
cake without the trimmings Cake 1 
and the trimmings Cake 2; 

Stage 1 (division of Cake 1). Player 
3 chooses one of the three pieces of 
Cake 1, the largest according to his val-
uation. If player 3 did not choose the 
trimmed piece, player 2 is allocated 
the trimmed piece. Otherwise, player 
2 chooses one of the two remaining 
pieces. Either player 2 or player 3 re-
ceives the trimmed piece; we denote 
that player by T and the other player by 
T′. Player 1 is allocated the remaining 
(untrimmed) piece; and 

Stage 2 (division of Cake 2). T′ divides 
Cake 2 into three equal pieces accord-
ing to his valuation. Players T, 1, and 
T′ choose the pieces of Cake 2, in that 
order. 

The division of Cake 1 is envy-free: 
Player 3 chooses first; player 2 likes 
the trimmed piece and another piece 
equally and is guaranteed to receive 
one of these two pieces; and player 
1 is indifferent judging the two un-
trimmed pieces and indeed receives 
an untrimmed piece. 

Dividing Cake 2 is more subtle. 
Player T goes first and hence does 
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not envy the others; and T′ is indiffer-
ent weighing the three pieces of Cake 
2. Player 1 does not envy T′ but may 
prefer the piece of Cake 2 allocated 
to T to his own piece of Cake 2. How-
ever, at the end of stage 1, player 1 has 
what Brams and Taylor10 called an “ir-
revocable advantage” over T. Indeed, 
even if we allocated all of Cake 2 to T, 
we would reconstruct just one of the 
original three pieces cut by player 1 
(worth 1/3 to him); but player 1 already 
received a piece worth 1/3 at the end of 
stage 1. 

Fortunately, we do not have to 
verify proportionality separately. Pro-
portionality is always implied by envy-
freeness, using the same argument 
employed for two players; in the case 
of n players, any partition of the cake 
into n pieces must include a piece 
worth at least 1/n to a given player; 
envy-freeness then implies the value 
of the player’s own piece is at least 
1/n. The Selfridge-Conway algorithm 
is therefore an excellent solution for 
the three-player case, though an ex-
tension of their ideas to the n-player 
case would have to wait another three 
decades. 

Brams-Taylor. In 1992, Brams and 
Taylor announced a breakthrough—
the first envy-free cake-cutting al-
gorithm for an arbitrary number of 
players.10 To understand some of its 
principles, consider the case of four 
players: Player 1 cuts the cake into 
four pieces he values equally. If all four 
players agree that the four pieces are 
of equal value, the pieces are handed 
out arbitrarily, and we are done. Other-
wise, the players play the “irrevocable 
advantage sub-game,” achieving an 
envy-free partial allocation of the cake. 
There is an unallocated leftover piece, 
but two of the players now have an ir-
revocable advantage over each other; 
that is, each player does not envy the 
other no matter how the leftover piece 
is allocated. 

A similar procedure is then applied 
recursively to the leftover piece. With 
each step, the number of pairs of play-
ers with an irrevocable advantage over 
each other increases. Ultimately, all 
players who disagree about the divi-
sion of the leftover piece being equal 
will have an irrevocable advantage over 
players who agree, and allocating the 
leftover cake between the latter group 

of players would yield a complete envy-
free allocation. 

Like the Selfridge-Conway algo-
rithm, players in the irrevocable-ad-
vantage sub-game trim pieces to cre-
ate ties, though the approach calls for 
more pieces than players. Crucially, 
the irrevocable advantage sub-game is 
invoked only when there is minimum 
disagreement among players. The idea 
is to leverage this disagreement by let-
ting players iteratively trim and choose 
pieces until the value of the leftover 
crumb is, intuitively, smaller than the 
level of disagreement. Specifying these 
ideas formally is a technical challenge; 
a description of the four-player special 
case of the algorithm10 includes 20 
steps. 

Unfortunately, the celebrated result 
of Brams and Taylor suffers from a ma-
jor flaw, especially when seen through 
a computational lens. Although the 
algorithm is guaranteed to terminate 
with a complete, envy-free allocation, 
its running time is unbounded. Spe-
cifically, the number of operations 
performed by the algorithm in the ir-
revocable advantage sub-game (until a 
sufficiently small crumb is obtained) 
can be made arbitrarily large by choos-
ing appropriate valuations for the 
players. Saberi and Wang37 proposed 
a bounded envy-free algorithm for the 
five-player case, but it requires moving 
knives, and the n-player case remains 
open. Is envy-free cake cutting inher-
ently complex? I explore this question 
in the next section. 

Complexity of Cake Cutting 
Reasoning about the complexity of 
cake-cutting algorithms requires a 
model specifying what such an algo-
rithm can do. The one Robertson and 
Webb35 proposed in their 1998 book is 
described here. 

I refer to the left boundary of the 
rectangular cake as 0 and to the right 
boundary as 1, so the cake itself is rep-
resented by the interval [0, 1] of real 
numbers between 0 and 1. For a piece 
of cake X (which is just a subset of [0, 
1]), I write Vi(X) to denote the value of 
player i for the piece X. The elegant 
model of Robertson and Webb limits 
cake-cutting algorithms to two types 
of queries: 

Evaluation. Asks a player i for his 
value for the subinterval between two 
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given points x and y: evali(x, y) = Vi([x, 
y]); and 

Cut. Asks a player i to mark a subin-
terval worth a given value α starting at 
a given point x: cuti(x, α) = y such that 
Vi([x, y]) = α. 

At first blush this model may seem 
restricted, but all the algorithms de-
scribed earlier can be simulated us-
ing evaluation and cut queries. Cut 
and choose requires only two queries, 
cut1(0, 1/2), which returns a point y 
such that V1([0, y]) = 1/2, and eval2(0, y). 
If the answer to the second query is at 
least 1/2, player 2 is allocated [0, y] and 
player 1 the other piece, [y, 1]. If the 
answer is less than 1/2, the allocation 
is flipped. 

Now consider the Selfridge-Conway 
algorithm. Let us verify that we can 
simulate stage 0 using evaluation and 
cut queries. We first ask a cut1(0, 1/3) 
query, and, using the point y that is re-
turned, we ask another cut1(y, 1/3) que-
ry. This cuts the cake into three subin-
tervals [0, y], [y, z], [z, 1] each worth 1/3 
to player 1. We next ask player 2 to eval-
uate the three subintervals. Say [0, y] is 
the most valuable and [y, z] is the sec-
ond most valuable; we then ask player 
2 a cut2(0, V2([0, y]) – V2([y, z])) query to 
trim the most valuable piece. 

I informally claimed earlier that the 
Even-Paz algorithm is more efficient 
than the (discrete version of the) Du-
bins-Spanier algorithm. We are now 
positioned to make this intuition pre-
cise. Both algorithms employ one cut 
query per player, using the left bound-
ary of the remaining cake as the value 
of x, in each iteration or recursive call. 
Under the Dubins-Spanier algorithm 
the number of players decreases by 
one per iteration; the number of re-
quired cut queries is therefore 

n + (n – 1) + (n – 2) + ··· + 2 = (n + 2)(n – 1)/2,

that is, the number of queries is on the 
order of n2. Assuming again for sim-
plicity that n is a power of 2, the Even-
Paz procedure is called once with a set 
of n players as input, twice with sets of 
n/2 players, four times with sets of n/4 
players, and so on. Overall, the algo-
rithm employs 

1 · n + 2 · (n/2) + 4 · (n/4) + ··· + (n/2) ·2 

cut queries. This sum equals n lg n be-

cause the value of each term is n and 
the number of terms is lg n. If there are 
1,000 players, the recursive Even-Paz 
algorithm would reduce the required 
number of cut queries from roughly 
500,000 to around 10,000. 

In light of this huge improvement, 
it is natural to ask whether further 
improvement is possible; that is, are 
there proportional cake-cutting al-
gorithms that require significantly 
fewer than n lg n queries? A partial 
answer was given by Woeginger and 
Sgall,43 who focused on cake-cutting 
algorithms that allocate connected 
pieces of cake to players; that is, each 
player is allocated a subinterval [x, y] 
of [0, 1]. Woeginger and Sgall showed 
that indeed any cake-cutting algo-
rithm that allocates connected pieces 
requires at least c · n lg n queries in 
the Robertson-Webb model, where 
c is a constant that does not depend 
on the number of players n. Interest-
ingly, the Even-Paz algorithm does 
allocate connected pieces of cake; 
in contrast, the Selfridge-Conway al-
gorithm does not have this property 
because a player’s piece of Cake 1 
may not be connected to the player’s 
piece of Cake 2. Is it still possible to 
do better by allocating disconnected 
pieces? Even this question was settled 
in the negative in a beautiful paper by 
Edmonds and Pruhs,19 who extended 
the result of Woeginger and Sgall to 
all (discrete) cake-cutting algorithms, 
crowning the algorithm of Even and 
Paz as the provably ultimate propor-
tional cake-cutting algorithm (at least 
in the sense of complexity). 

The complexity of envy-free cake 
cutting is more enigmatic. As men-
tioned earlier, the Brams-Taylor algo-
rithm, which eventually terminates 
with an envy-free allocation, is not 
bounded in terms of the number of 
queries it can make. Ideally, in the ab-
sence of positive guarantees, we would 
like to be able to establish that bound-
ed envy-free cake-cutting algorithms 
do not exist. 

Stromquist41 took a first step in this 
direction, establishing such a nonex-
istence result under the (by now fa-
miliar) assumption that the algorithm 
must allocate connected pieces, a re-
sult that was strengthened by Deng 
et al.17 These results hold even for the 
case of three players. This is surprising 

because the Selfridge-Conway algo-
rithm yields envy-free allocations for 
three players with a bounded number 
of queries (fewer than 20) albeit with 
possibly disconnected pieces. The re-
sult highlights the fundamental differ-
ence between connected and possibly 
disconnected cases. 

When connected pieces are not as-
sumed, the only existing result34 says 
that the number of queries, in the 
Robertson-Webb model, required to 
compute an envy-free allocation is 
at least on the order of n2. Although 
this bound presumably gives only an 
inkling of how difficult computing 
envy-free allocations actually is, it is 
conceptually interesting in that it sep-
arates the complexity of proportional 
and envy-free cake cutting; while 
proportional cake cutting requires 
at most n lg n queries, envy-freeness 
requires at least n2; that is, achieving 
envy-freeness is provably harder than 
achieving proportionality. 

The difficulty of envy-free cake cut-
ting would seem to draw on the rich-
ness of player valuations, but this turns 
out not to be the case. Indeed, Kuro-
kawa et al.27 showed earlier this year, 
inter alia, that the general envy-free 
cake-cutting problem is equally hard 
when each player’s value for the cake is 
restricted to be uniformly distributed 
on a (not necessarily connected) piece 
of cake; that is, a bounded algorithm 
exists for these severely restricted valu-
ations—known as “piecewise uniform 
valuations”—if and only if a bounded 
algorithm exists for the general case. 
This insight further narrows the search 
for an impossibility result. 

Since the 1940s, the computation 
of envy-free cake divisions has baffled 
many great minds across multiple dis-
ciplines.b Settling this problem once 
and for all is an important challenge 
for theoretical computer science. 

A Game-Theoretic Viewpoint 
So far we have assumed that players 
honestly follow an algorithm’s instruc-
tions. In sharp contrast, game theory 
views people and software agents 
alike as rational, yet scheming, self-
ish creatures who will stop at nothing 

b	 However, computation of approximately envy-
free divisions can be done through the tech-
niques of, say, Lipton et al.28



84    communications of the acm    |   july 2013  |   vol.  56  |   no.  7

contributed articles

to maximize their own utility. Taking 
this point of view inspires us to rethink 
how we cut cake. 

To illustrate game-theoretic ideas, 
we revisit the simple cut-and-choose 
algorithm. If player 1 honestly does 
as instructed, he is guaranteed to get 
a piece of cake worth 1/2. However, 
suppose player 1 manipulates the al-
gorithm by cutting the cake into two 
unequal pieces. In this case, player 2 
might choose the more valuable piece, 
leaving player 1 with value less than 
1/2. Brams et al.8 assumed that play-
ers never lie about their valuations 
unless it guarantees them more valu-
able pieces, regardless of the actions 
of the other players. According to this 
notion, the cut-and-choose algorithm 
encourages honesty. 

However, the typical game-theoret-
ic approach advocates a more strin-
gent notion of truthfulness; the algo-
rithm must reward truth telling even 
if players have full information about 
one another; that is, players must not 
be able to gain from manipulating the 
algorithm, regardless of the actions 
of others (contrast this with the pre-
vious notion). This strong notion of 
truthfulness is called “strategyproof-
ness.” Unfortunately, it is easy to see 

and suppose the manipulation gave 
rise to a different partition X′1, … ,X′n. 
The crux of the argument is that for 
any partition, the expected value of a 
random piece is exactly 1/n because 

(1/n)Vi(X′1) + ··· + (1/n)Vi(X′n) = (1/n)
(Vi(X′1) + ··· + Vi(X′n)) = (1/n) 1= 1/n. 

Every possible manipulation would 
therefore yield an expected value of 
1/n for player i, exactly the value he re-
ceives for playing along.c 

However, before rejoicing, recall 
that we must still find a way to com-
pute a perfect partition. Alon1 showed 
that perfect partitions always exist in 
a general setting (and bounded the 
number of cuts required to achieve 
them), but his proof is non-construc-
tive, establishing existence without 
explicitly constructing a partition 
with the desired properties. However, 
Chen et al.13 showed that perfect par-
titions can be computed efficiently 
when valuations have a piecewise con-
stant structure,d meaning each player 
desires only certain pieces of cake and 
values each piece uniformly. To moti-
vate this (rather restrictive) assump-
tion, imagine the cake represents 
time for TV advertising. A toy compa-
ny might be interested in time inter-
vals associated only with children’s TV 
shows. It could be indifferent between 
equal slots within the same subin-
terval but would presumably prefer a 
30-second slot during the latest epi-
sode of “SpongeBob SquarePants” to 
a 30-second slot following a rerun of 
“Teenage Mutant Ninja Turtles.” 

Randomization requires some-
what stronger assumptions (such as 
assuming players wish to maximize 
their expected utility), so it is natural 
to ask whether fairness and truthful-
ness can be guaranteed without re-
sorting to randomization. Chen et al.13 
established such a result, albeit only 
under the extremely restrictive class 
of piecewise uniform valuations (men-
tioned in the previous section). Recall 
that a player’s valuation satisfies this 
property if the player has a single de-

c	 An underlying assumption is that players are 
risk neutral; that is, they care only about their 
own expected value.

d	 They establish a more general but less intui-
tive result.

that the cut-and-choose algorithm is 
not strategyproof. To show this, I offer 
an example where honesty fails. Rep-
resenting the cake again as the inter-
val [0, 1], suppose player 1 desires only 
the subinterval [0, 1/4] and values this 
interval uniformly; that is, he wants to 
receive a piece containing as much of 
[0, 1/4] as possible. Player 2 values the 
entire cake uniformly, and so wants 
a piece as large as possible. If player 
1 followed the algorithm, he would 
produce the equally valued pieces [0, 
1/8] and [1/8, 1] (see Figure 2). Player 
2 would then choose the piece [1/8, 
1], leaving player 1 a piece worth 1/2. 
If, however, player 1 divided the cake 
into the pieces [0, 1/4] and [1/4, 1], 
then player 2 would again choose 
the larger piece, leaving player 1 with 
the piece of cake [0, 1/4] he values as 
much as the entire cake. Likewise, all 
the cake-cutting algorithms discussed 
earlier are not strategyproof. 

In 2010, a simple strategyproof 
cake-cutting algorithm was discovered 
independently by Chen et al.13 and by 
Mossel and Tamuz.30 Now suppose we 
have a magical method for partition-
ing the cake into n pieces X1,…,Xn such 
that each player i has value exactly 1/n 
for each of these pieces (not just the 
player’s own); that is, Vi(Xj) = 1/n for 
every j. Following Chen et al., I refer to 
such a partition as “perfect.” The algo-
rithm first computes a perfect parti-
tion, then gives each player a random 
piece. Envy-freeness is clearly guaran-
teed ex post, or even after the alloca-
tion is made, because each player is 
indifferent as to all possible pieces. 

To understand why the algorithm 
is strategyproof, suppose player i ma-
nipulates the algorithm, and so can 
affect only the computation of the per-
fect division (the random assignment 
is independent of the player’s actions), 

Figure 2. Example of valuations showing 
that cut and choose is not strategyproof; 
player 1 desires the colored subinterval 
uniformly, and player 2 values the entire 
cake uniformly. 
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Figure 3. Throwing away a piece from the right side of the cake increases  
the social welfare of the best proportional allocation. Player 1 desires  
the colored piece, and player 2 values the entire cake uniformly.0 1
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Sometimes it is 
appropriate to 
take a global view 
and promote the 
interests of society 
as a whole. 

sired piece of cake (not necessarily 
connected) valued uniformly, so the 
player simply wants as much of this 
desired piece as possible. If we again 
imagine the cake to be time, but in the 
context of access to a shared backup 
server, then conceivably a user would 
be equally interested in time intervals 
when his computer is idle. Note that 
piecewise uniform valuations are in 
particular piecewise constant. 

Despite this progress, the design of 
strategyproof cake-cutting algorithms 
is still largely an open problem, first 
because the algorithms described ear-
lier (especially the deterministic one) 
can handle only restricted valuations,e 
and second because these algorithms 
cannot be simulated in the Robertson-
Webb model. The underlying assump-
tion is that players report their full 
preferences to a central authority, an 
assumption that does not impose an 
unreasonable communication burden 
because piecewise constant valuations 
can be represented concisely, though 
in an informal sense does preclude a 
distributed implementation. 

Optimizing Welfare 
Envy-freeness and proportionality are 
notions that pertain to individuals; for 
example, a proportional cake-cutting 
algorithm guarantees that each and ev-
ery individual does well. Sometimes it 
is appropriate, though, to take a global 
view and promote the interests of so-
ciety as a whole. The social welfare is 
a quantification of the happiness of 
society, typically in two flavors: utili-
tarian, which in our context is the sum 
of values players have for their alloca-
tions, and egalitarian, which is deter-
mined by the lowest value any player 
has for his piece of cake. I focus on the 
utilitarian version here. 

As an aside, notions of social wel-
fare require an interpersonal com-
parison of values. So far, when I said a 
piece of cake is worth 1/2 to a player, 
I meant it is worth 1/2 of the player’s 
value for the entire cake. One player’s 
happiness for receiving 1/2 of his value 
of the cake may not be equal to an-
other player’s happiness for receiving 
the same fraction. In contrast, to study 

e	 An extension to more expressive valuations 
would have to avoid the daunting impossibil-
ity results covered in the literature.27,38

utilitarian or egalitarian social welfare 
we must assume all players have the 
same value for the whole cake, say $1, 
and therefore 1/2 of a player’s value for 
the cake is literally worth $0.5. 

Intuitively, tension exists between 
the interests of individuals and of so-
ciety. Several years ago, two groups of 
researchers set out to make this in-
tuition precise. Bertsimas et al.6 and 
Caragiannis et al.12 independently 
coined the term “price of fairness” for 
the worst-case ratio between the social 
welfare of the optimal allocation and 
the social welfare of the best fair allo-
cation (compare with the well-known 
price of anarchy36). Any notion of so-
cial welfare, as well as any notion of 
fairness, can be plugged into this defi-
nition. A price of fairness of 2 would 
mean, for instance, there are examples 
where the social welfare of the best 
fair allocation is at most 50% of what it 
could be if the fairness restriction were 
removed. 

To see why we must pay for fairness 
with (utilitarian) social welfare, con-
sider the following scenario: Partition 
the cake (represented by [0, 1]) into √n 
disjoint subintervals, each of length 
1/√n. Each of the first “large” √n play-
ers desires only one of these subinter-
vals; no two large players desire the 
same subinterval, and each large play-
er values his subinterval uniformly. 
The remaining n – √n “small” players 
value the whole cake uniformly. Any 
proportional allocation must allocate 
a piece of length 1/n to each of the 
small players, leaving only 1/√n (by 
length) to the large players. Although 
the valuations of the large players 
are denser, their sum of values for a 
piece of cake of length 1/√n is at most 
1, while the small players contribute 
1/n each to the social welfare and less 
than 1 together. Overall, the social 
welfare is smaller than 2. In contrast, 
the welfare-maximizing allocation di-
vides the entire cake among the large 
players, giving each a piece of cake 
worth 1 and securing social welfare of 
√n. The price of proportionality is at 
least the ratio between the latter and 
former values, or at least √n/2. The 
price of envy-freeness is at least as 
high because envy-freeness implies 
proportionality. 

Aumann and Dombb3 subsequent-
ly studied the price of fairness under 
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tion is Pareto-efficient, even when only 
three players have piecewise constant 
valuations.7 Should we sacrifice social 
welfare to obtain Pareto-efficiency? 
How much must be sacrificed? More 
generally, what would constitute an 
ideal cake division?9 These conceptual 
questions may lead to significant tech-
nical insight on the role of optimiza-
tion in cake cutting. 

Cutting Computational Cakes
We have seen here that the computer 
science perspective can contribute to 
the study of cake cutting. Now I explore 
how cake cutting (or at least closely re-
lated models from fair-division theory) 
can be applied to problems in comput-
er science: 

Consider a setting with multiple 
homogeneous and divisible resources 
(compare this with the standard cake-
cutting scenario, which has a single 
heterogeneous divisible resource). 
Leontief preferences, first conceptu-
alized by Wassily Leontief, represent 
situations where a player demands 
the resources in fixed proportions; 
for example, a jeweler may need five 
grams of gold and 10 grams of silver 
to produce a ring, so given one kilo-
gram of gold and two kilograms of 
silver, the jeweler can make 200 rings. 
However, given one kilogram of gold 
and three kilograms of silver, the jew-
eler can still, strangely enough, make 
only 200 rings (perhaps the jeweler 
is known for a specific design) and is 
hence indifferent between these two 
allocations. 

Technological advances (such as 
cluster computing) provide a new im-
petus for studying resource allocation 
under Leontief preferences. Indeed, a 
user may plausibly wish to run many 

instances of a task that requires fixed 
proportions of system resources (such 
as CPU and memory). Such a user ex-
hibits Leontief preferences with re-
spect to personal allocation of system 
resources. Crucially, users can have 
heterogeneous demands; for example, 
some may have CPU-intensive tasks 
and others memory-intensive tasks. 
There is an existing body of work on 
fair-resource allocation, including the 
max-min fairness policy,16 but it fo-
cuses on a single resource type. Even 
in modern cluster-computing envi-
ronments with multiple resources, 
state-of-the-art algorithms allocate re-
sources in “slots,” or bundles contain-
ing fixed amounts of each resource. 
Although slots provide a usable single-
resource abstraction, the methodology 
clearly leads to inefficiencies. 

Fortunately, the theory of fair divi-
sion already provides an almost tai-
lor-made framework for tackling this 
modern technological challenge. The 
first authors to recognize this were 
Ghodsi et al.,24 who, in an impressive 
paper nicely combining theory and 
practice, also suggested a solution—
the dominant resource fairness, or 
DRF, mechanism; to illustrate DRF, 
consider the following example from 
the paper: 

A system includes nine CPUs and 
18GB RAM. There are two players, 
one wishing to run as many instanc-
es as possible of a task that requires 
one CPU and 4GB RAM and the other 
with a task requiring three CPUs and 
1GB RAM. Each instance of the task of 
player 1 requires 1/9 of the total CPU 
in the system and 2/9 of the total RAM. 
The latter fraction of RAM is larger, 
hence we say the dominant resource 
of player 1 is RAM. Likewise, the frac-

the assumption that connected piec-
es must be allocated. An especially 
interesting insight in this context is 
the so-called “dumping paradox”2: 
By discarding pieces of cake, one can 
increase the social welfare of the best 
proportional, or envy-free, allocation; 
for example, say player 1 uniformly 
values a very small interval centered 
around the midpoint 1/2, and player 2 
values [0, 1] uniformly. A proportional 
allocation allocating the entire cake 
and making only one cut would have 
to make the cut at 1/2 (see Figure 3a). 
This division is suboptimal in terms of 
social welfare because player 1 would 
be twice as happy to get an additional 
tiny piece from player 2. Curiously, af-
ter discarding a small piece from the 
right side of the cake, we can produce 
a proportional division by making 
the cut just to the left of the desired 
interval of player 1 (see Figure 3b); 
the social welfare increases from 1 to 
slightly less than 3/2. Arzi et al.2 dem-
onstrated that by discarding some of 
the cake it is possible to gain as much 
as a factor of √n. 

A high price of fairness means 
there are examples where fair alloca-
tions are severely suboptimal from 
society’s point of view. Nevertheless, 
these examples may be rare and do 
not preclude the possibility of usually 
obtaining high social welfare even un-
der fairness constraints. Cohler et al.14 
investigated the problem of optimiz-
ing social welfare under envy-freeness 
constraints. For piecewise constant 
valuations (as defined earlier), welfare-
maximizing proportional or envy-free 
allocations can be computed in poly-
nomial time. This result can be lever-
aged to obtain (in polynomial time) 
fair allocations for general valuations 
that are arbitrarily close to optimal. 
Computing optimal fair cake divisions 
with connected pieces is much more 
difficult,5 even if we abandon fairness 
completely and focus just on optimiz-
ing social welfare.4 

Now I ask, with tongue in cheek, 
how good are optimal cake divisions? 
Economists would say a good alloca-
tion must be Pareto-efficient, in the 
sense that no other allocation is valued 
at least as highly by all players and is 
strictly better for at least one player. It 
turns out there are examples where no 
welfare-maximizing envy-free alloca-

Figure 4. DRF allocation for an example in the text. Shaded regions represent  
allocated shares.
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tions of CPU and RAM for player 2 
are 1/3 and 1/18, respectively; hence, 
for player 2, CPU is the dominant 
resource. The DRF mechanism allo-
cates as many tasks as possible while 
equalizing the dominant shares, or 
fractions of dominant resources each 
user receives. In this example, DRF al-
locates three tasks to player 1 for a to-
tal allocation of three CPUs and 12GB 
RAM and two tasks to player 2 for a 
total allocation of six CPUs and 2GB 
RAM (see Figure 4). The dominant 
shares are equal, with 12/18 = 2/3 of 
the RAM for player 1 and 6/9 = 2/3 of 
the CPU for player 2. Allocating addi-
tional tasks (or even fractions thereof) 
is impossible because the CPU pool is 
saturated. 

Ghodsi et al. demonstrated that the 
DRF mechanism satisfies each and 
every one of the axiomatic properties 
mentioned here, being strategyproof 
and producing allocations that are 
Pareto-efficient, envy-free, and propor-
tional; in this setting envy-free alloca-
tions are not necessarily proportional. 
From an economics viewpoint, Ghodsi 
et al.’s theoretical contribution is the 
discovery that an important mecha-
nism known as the “egalitarian equiv-
alent rule”33 exhibits especially com-
pelling properties when players have 
Leontief preferences, a discovery that 
generated considerable excitement in 
computer science and led to a string 
of papers that built on these ideas; see, 
for example, Friedman et al.,22 Gutman 
and Nisan,25 and Parkes et al.32 

Nevertheless, the work so far is just 
the tip of the iceberg. Perhaps most 
important, existing theoretical mod-
els do not capture dynamic settings 
where users can arrive and depart and 
change their demands over time. One 
obstacle is conceptual; not immedi-
ately clear is how to interpret fairness 
properties like envy-freeness when 
some players arrive before others. 
Earlier this year, Kash et al.26 took the 
first conceptual and technical steps 
toward a dynamic model, but the as-
sumption that drives their work—that 
allocations of resources are irrevo-
cable—may not hold in practice. Ap-
plying more practical versions of the 
model in the real world is one of the 
most compelling challenges at the 
border of computer science and eco-
nomics today. 

Conclusion 
Most of the computer science articles 
cited here were published in the past 
five years, and many other publica-
tions are available. Computer scien-
tists’ interest in cake cutting has been 
piqued, and I expect to see a surge of 
work yielding smarter cake-cutting al-
gorithms, nifty applications, and per-
haps even deployed systems. 

This article should be viewed as an 
invitation to cake cutting, a field as 
much fun as it is scientifically signifi-
cant, and that involves great intellec-
tual challenges. Magdon-Ismail et al.29 
said it like this: “Cake cutting is not a 
piece of cake.” 
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