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The Network Equilibrium 
Problem in Integers 

R. W. RoMfithal 
Northwestern University 
Evanston, Illinois 

ABSTRACT 

In the usual approach to network equilibrium models3 the 
flow variables are modeled as continuous. When the problem 
under study involves discrete decision makers each controlling 
an indivisible unit of flow3 another approach is called for. 
We treat the problem as an n-person noncooperative game with 
pure strategies -corresponding to feasible paths through the 
network. It is shewn that pure-strategy Nash equilibria exist 
and that any solution to an integer-variable analogue of the 
usual network equilibrium model is such a Nash equilibrium. It 
is also shown that when individuals can control more than a 
single unit of flaw and want to minimize the sum of their costs3 
pure-strategy Nash equilibria do not necessarily exist. 

1. INTRODUCTION 

A directed network of m arcs is given. Each of n indi¬ 

viduals must select a directed path from his origin to his 

destination. A directed path from an individual's origin to 

his destination is termed feasible for that individual. *3^ 

individuals choose feasible paths containing arc k in the net¬ 

work, the cost to each of these individuals is that 

peurt of the journey. Cj^ is assumed to be nonnegative and non¬ 

decreasing as a fxinction of fot k = 1, ..., m. If all in¬ 

dividuals have chosen their routes, the total cost to an 

individual traversing path S is ^ ^ equilibrium for 

kes ^ ^ 

the system is a set of feasible paths, one for each individual. 

Networks, 3: 53-59 
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54 ROSENTHAL 

such that no Individual, cam decreaise his total cost by switch¬ 

ing viAilaterally to scxne other feasible path. We shall assxime 

in all that follows that at leaist one feaisible path exists for 

each individual. 

The stamdaurd application of this type of model is to 

interpret cost on an au:c ats the time needed to travel a road. 

The individual seeks to minimize his total travel time assuming 

that all other individual«' paths are fixed. The system is in 

equilibrium when no indju^i.dual can improve his position by 

changing to another route. 

There aure at least two fruitful ways to approach this prob¬ 

lem. Firstly, one might model the various flows as continuous, 

rather tham discrete, variables. This approach, reminiscent of 

models of electrical networks, has been frequently taken. (See, 

for example, Beckmauin et.al. [1956]; Chatrnes amd Cooper [1958]; 

Charnes and Cooper [1961]; Dafermos amd Spaurrow [1969].) Sec¬ 

ondly, one might view the problem am an n-person, noncooperative 

game in which the pure strategies correspond to paths in the 

network. Namh equilibria for such games aure sought. 

In section 2 we describe the usual continuous-flow approach 

to this problem amd object to its use whenever the flows of the 

system must be integer-valued. In section 3 the model is de¬ 

scribed as am n-person nonc(x>perative game for which Nash equi¬ 

libria aure sought. It is shown that pure-strategy Nash equilib¬ 

ria always e3(ist for games of this type amd that amy solution 

to a certain integer-variadsle amadogue of the continuous-flow 

problem of section 2 is such am equilibrixim. In section 4, am 

example is presented which illustrates that pure-strategy Nash 

equilibria need not exist if individuals aure allowed to control 

more tham one unit of flow amd wamt to minimize the sum of their 

costs. 

2. THE CONTINUOUS-VARIABLES MODEL 

Let X., denote the fraction of individual i's flow which 
Ik 

passes through arc k(lsl,...,n; ksl,...,m) where the 

now assumed to be defined over entire intervals. Consider the 

problem; 

minimize ^ ^ c (t)dt 

k-1 ° ^ 

n 

subject to x^ = y X. for k = 1, ..., m; the equations char- 

i»l 

acterizing conservation of flow for each Individual at each 
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NEl^RK EQUILIBRIUM PROBLEM 55 

node; and 0 < x., <1 for each Individual and each eurc. If 

the values which solve this prc^lem are eLLl integer-valued, 

they represent an equilibriiun for the system. If not, and the 

individual flows are in actuality not divisible, one may have 

difficulty interpreting the solution. Firstly, if it is used 

as an approximation to a true equilibrixxn in a large problem, 

in what sense is it a good approximation? Secondly, how should 

one interpret the costs (or travel times) for fractioned flows? 

In the next section, we shall present an example which 

indicates at leeist one sense in which the approximation is not 

good. In the following exan^le we discuss the interpretation 

of costs for fractional flows. Consider a single individued 

with two cures leading frexn his origin to his destination; 

^1^*1^ = and ~ Restricted to integer flows, 

the single unit of flow may be sent down either path with cost 

of one. Both cure equilibria. The continuous-veuriables solu¬ 

tion is to sexKi 1/2 unit of flow through each arc. If the 

costs axe viewed as travel times, then each half unit cunrives 

. /2 . ' /2 
in — time units. Thus, the total flow arrives in —j < 1 time 

units. We seem to have minimized the mcucinnim travel time for 

auiy peurt of the flow. Alternatively, we have minimized the 

weighted average of the travel times; i.e., x^ 1/7^ + 

Both of these interpretations are Vedid in general. As in Jiis 

example, however, it is not generally true that the sum of the 

travel times is minimized. 

3. THE GAME-THEORETIC MODEL 

The individuals cure cissumed to be playing a game in which 

the pure strategies for each are the individuals' feasible 

paths. The payoffs (to be minimized) are the s\xns of the costs 

of the eurcs used. Nash equilibria axe sought. In this case 

these correspond to equilibria for the system. For general 

n-person games, however, one is not guaranteed that any Nash 

ec[uilibria must exist; unless the individual strategy sets aure 

extended to include all possible randomizations over the sets 

of pure strategies. (See Nash [1951].) (The cost of playing 

a ramdomized strategy is taUcen to be the expected cost over the 

relevamt ptire strategies.) These randomizations do not corre¬ 

spond to fractional solutions to the continuous-vauriables model. 

For this class of games, however, it is not necessary to intro¬ 

duce randomizations, since pure-strategy Naush equilibria adways 

exist. 
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r Theorem: In gomes derived from network equilihrium models^ 
pureestrategy Nash equilihria always exist. Furthermore, any 
solution to the following problem is a pure-strategy Nash 
equilibrium: 

m 

1 < l 
k^l t-o 
n 

■x=3 
‘‘ik subject to x^= \ x^^ for k 1, m; the 

i=l 
equations characterizing conservation of flow at 
each node for each individual; and x.^ = 0 or 1 
for i = 1, ,,,j n; k = 1, m. 

Proof: since solutions to (*) always exist (whenever the con- 

strednts are consistent) it suffices to establish that each is 

an equilibrium. Let solve (*) . Assxme it does not give 

rise to an equilibrium. Then some individual j tedcing some 

path S under (x^^) can reduce his cost by switching to some 

path T; i.e. J ^ I ^^ote that it 

keT\S ^ , keS\T ^ ^ 

suffices to show that no pure strategy is better). Consider 

the new values 

x!^ + 1 if i 
xk 

*ik = *ik 

ik 

j, keT\S 

- 1 if i = j, keS\T| 

otherwise 

(x^j^) is clearly feasible for (*). The objective function 

evaluated at (x°j^) is; 

Xj^+1 

I I c^(t) + I 
.'-1 K 

I c.(t) 
'k'“' ■ ^ V I ^k^^^ ^ ^ c c ^ ''k 

keT\g t-0 keSVr t=0 ke(snT)U(snT ) t=0 

m *k 

“II + I “ I 
k=l t«0 keT\S keS\T 

I (I Cj^(t)). A contradiction. II 

m 

I 
k*l t=0 

< 
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The problem (*) is, of coxirse, closely related to the 

minimization probl^ associated with the continuous-variables 

model. In peurticulcu:, if the the continuous-Vcuriables 

problan happen to be appropriate step functions, the two mini- 

mands are the same. (Note that the proof does not make use of 

the cUBsumption that the c (•) aure nonnegative or nondecreasing.) 

Not every pure-strategy equilibrium solves (*). In Fig¬ 

ure 1, individual 1 travels fram A to B; individual 2 travels 

from A to C. The eu:c costs are: 

If individual 1 takes cures 1 and 3 and individual 2 tcikes arcs 

2 and 6, this clecurly results in an equilibrium. Also am equi¬ 

librium results if individual 1 takes aurcs 2 and 4 and individ¬ 

ual 2 takes aurcs 1 amd 5. The second equilibrium solves (*) 

and the continuous-variables problem. The first solves neither 
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58 ROSENTHAL 

The oontinuous-^ariables model Is sometimes used as an 

approximation to the discrete model for large problems. While 

this approach raay be good enough for memy practical purposes, 

one should keep in mind the potential pitfeJ-ls of rounding to 

nearby integer solutions. In peurtlcular, the amount of flow 

on a particular arc may be greatly distorted. Consider the 

network in Figure 2. Six individueJ.s originate at node S, 

each traveling to a different (i»l,...,6). Each has two 

routes: a direct route which costs 40 times the square of the 

flow; euid an indirect route through node A. The cost on the 

arc from S to A is seven plus the flow. The eurcs from A to 

the vetrlous T^ aul possess zero costs. At the continuous- 

variables solution each individual sends half of his flow on 

each of his feasible paths. At the unique equilibrium all of 

the flow passes through node A. Thus the traffic on the arc 

from S to A is 3 at the "approximate” solution and 6 at the 

equilibrium. 

4. DISPATCHING 

In this section, we extend the model to allow for the 

possibility that am individual, may control more tham one unit 

of flow. An example from traifflc flow might be centrad dis¬ 

patching of taxicabs. For the extended model we shall show by 

example that pure-strategy equilibria need not exist when a 

dispatcher wamts to minimize the sum of his costs. This may 

help to point up the somewhat surprising nature of the theorem 

in the previous section. 

4 

In Figvire 3, one vehicle travels from A to B under the 

control of player 1. Two vehicles travel from A to C. The 

two vehicles travelling from A to C au:e under the control of 
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NETWORK EQUILIBRIUM PROBLEM 59 

the same Individual, player 2. The costs arez 

Ci(Xi) - 2x^ + 3j c^(x^) 

0 if X2 - 1 

6 if x^ - 2, c^(x^) 4x3, c^(x^)~0. 

7 if X2 = 3 

Denote a path to either destination which ccxcmences on eurc 1 as 

L and on arc 2 as R. Represent the first player's pure strate¬ 

gies as rows, the second player's as columns. The payoffs in 

Table 1 will be the total costs to players 1 emd 2, respectively, 

of the relevant strategy combinations. The game in Table 1 has 

no piire-strategy Nash equilibria when both players 2u:e minimizers 

2L,0R 1L,1R 0L,2R 

9,34 7,11 5,12 

0,30 6,15 7,14 

Table 1 
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