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The widespread adopt ion  of the Internet and the 
emergence of the Web changed society’s relationship 
with computers. The primary role of a computer 
evolved from a stand-alone, well-understood 
machine for executing software to a conduit for 
global communication, content-dissemination, and 
commerce. The algorithms and complexity theory 
community has responded to these changes by 
formulating novel problems, goals, and design and 
analysis techniques relevant for modern applications.

Game theory, which has studied deeply the interaction 
between competing or cooperating individuals, plays 
a central role in these new developments. Research 
on the interface of theoretical computer science and 
game theory—an area now known as algorithmic 
game theory (AGT)—has exploded over the past 10 
years. The primary research themes in AGT differ 
from those in classical microeconomics and game 
theory in important, albeit predictable, respects. 
Firstly in application areas: Internet-like networks 
and nontraditional auctions motivate much of the 
work in AGT. Secondly in its quantitative engineering 
approach: AGT research typically models applications 

via concrete optimization problems 
and seeks optimal solutions, impossi-
bility results, upper and lower bounds 
on feasible approximation guarantees, 
and so on. Finally, AGT usually adopts 
reasonable (for example, polynomial-
time) computational complexity as 
a binding constraint on the feasible 
behavior of system designers and par-
ticipants. These themes, which have 
played only a peripheral role in tradi-
tional game theory, give AGT its distinct 
character and relevance.

Here, we touch on the current domi-
nant research trends in AGT, loosely fol-
lowing the organization of the first book 
in the field.30 We focus on contributions 
of the algorithms and complexity theory 
community; see two recent articles in 
Communications18,40 and the references 
therein for alternative perspectives on 
computer science and game theory.

Algorithmic Mechanism Design
Algorithmic mechanism design studies 
optimization problems where the un-
derlying data—such as the values of 
goods and costs of performing a task—
is initially unknown to the algorithm 
designer, and must be implicitly or ex-
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A new era of theoretical computer science 
addresses fundamental problems about 
auctions, networks, and human behavior.

by Tim Roughgarden

Algorithmic 
Game Theory

 key insights
 � �Many modern computer science 

applications involve autonomous 
decision-makers with conflicting 
objectives.  Current research in 
algorithms and complexity theory  
uses game theory as an important  
tool for modeling and reasoning about  
such applications.

 � �One application domain is auctions, 
including the single-item auctions 
of eBay and Amazon; the sponsored 
search auctions of Google, Yahoo!, 
and Microsoft; and the combinatorial 
auctions used by governments to 
sell wireless spectrum.  A second 
application is large networks, where  
the goal is to understand how such 
networks form, how network users 
behave, and what kind of design and 
management strategies ensure good 
network performance.

 � �Recent results that determine the 
computational complexity of computing 
a Nash equilibrium cast doubt on the 
concept’s ability to predict the outcome 
of rational behavior.
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plicitly elicited from self-interested par-
ticipants. Auction settings are canoni-
cal examples, where the private data is 
the willingness to pay of the bidders for 
the goods on sale, and the optimization 
problem is to allocate the goods to maxi-
mize some objective, such as revenue or 
overall value to society. A “mechanism” 
is a protocol that interacts with partici-
pants and determines a solution to the 
underlying optimization problem.

There is a complex dependence be-
tween the way a mechanism employs 
elicited data and participant behav-
ior. For example, consider the sale of a 
single good in a sealed-bid auction with 
several bidders. In a “first-price” auc-
tion, the selling price is the bid of the 
winner (that is, the maximum bid). Bid-
ders naturally shade their bids below 
their maximum willingness to pay in 
first-price auctions, aspiring to achieve 

the lowest-possible price subject to 
winning the auction. Determining how 
much to shade requires guessing about 
the behavior of the other bidders. A dif-
ferent auction is the “second-price” auc-
tion, in which the selling price is only 
the second-highest bid. A famous result 
of Vickrey43 is that every participant of 
a second-price auction may as well bid 
its true value for the good: intuitively, a 
second-price auction optimally shades 
the bid of the winner on its behalf, to the 
minimum alternative winning bid. eBay 
and Amazon auctions are similar to sec-
ond-price auctions in many (but not all) 
respects; see Steiglitz42 for a detailed dis-
cussion. Keyword search auctions, such 
as those run by Google, Yahoo!, and 
Microsoft, are more complex variants 
of second-price auctions with multiple 
heterogeneous goods, corresponding to 
the potential ad slots on a search results 

page. Lahaie et al.30 provide an overview 
of theoretical work on search auctions.

While the economic literature on 
mechanism design is quite mature,20 
computer scientists have initiated a 
number of new research directions. 
We concentrate here on the empha-
sis in algorithmic mechanism design 
on complexity bounds and worst-case 
approximation guarantees, as first 
proposed by Nisan and Ronen.29 Ad-
ditional aspects including prior-free 
revenue-maximization, distributed (or 
Internet-suitable) mechanism design, 
and online (or real time) mechanism 
design are discussed in Nisan et al.30

The technical core of this part of al-
gorithmic mechanism design is the fol-
lowing deep question:

(Q1) To what extent is “incentive-
compatible” efficient computation 
fundamentally less powerful than 
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Network map, Auction paddles, strategy, directionals

http://travel.nytimes.com/2008/11/28/greathomesanddestinations/28
auctions.html?fta=y

http://www.rappart.com/index.php?section=portfolio&portnum=167&
img=6133

http://www.liftconference.com/files/network1.png

anarchy  - something about paths and routing, multidirectional move-
ment in a space

Overall like Celia’s ideas of:

a couple of people - figures silhouetted - who are interact-
ing with the concepts as if in the landscape or on the stage 
of these concepts.

chessboards - a repeated pattern that subtly evokes the 
idea of gaming and strategy

albers, delaunay-like based abstract imagery



80    communications of the acm    |   july 2010  |   vol.  53  |   no.  7

review articles

“classical” efficient computation?
To translate this question into 

mathematics, reconsider the Vickrey 
(second-price) auction for selling a 
single good. Each bidder i has a private 
willingness-to-pay vi and submits to the 
auctioneer a bid bi. The auction com-
prises two algorithms: an allocation al-
gorithm, which picks a winner, namely 
the highest bidder; and a payment al-
gorithm, which uses the bids to charge 
payments, namely 0 for the losers and 
the second-highest bid for the winner. 
We argued intuitively that this auction 
is truthful in the following sense: for ev-
ery bidder i and every set of bids by the 
other participants, bidder i maximizes 
its “net value” (its value for the good, 
if received, minus its payment, if any) 
by bidding its true private value: bi = vi. 
Moreover, no false bid is as good as the 
truthful bid for all possible bids by the 

other participants. Assuming all bid-
ders bid truthfully (as they should), the 
Vickrey auction solves the social welfare 
maximization problem, in the sense that 
the good is allocated to the participant 
with the highest value for it.

More generally, an allocation algo-
rithm x is implementable if, for a judi-
ciously chosen payment algorithm p, 
coupling x with p yields a truthful mech-
anism: every participant is guaranteed 
to maximize its payoff by reporting its 
true preferences. For a single-good auc-
tion, the “highest-bidder” allocation al-
gorithm is implementable (as we have 
seen); the “second-highest bidder” al-
location algorithm is not (a straightfor-
ward exercise). Thus some but not all 
algorithms are implementable.

We can mathematically phrase the 
question (Q1) as follows: Are imple-
mentable algorithms less powerful than 

arbitrary algorithms for solving funda-
mental optimization problems?

Understanding this question in-
volves two interrelated goals: charac-
terization theorems and approxima-
tion bounds.

(G1) Usefully characterize the im-
plementable allocation algorithms for 
an optimization problem.

(G2) Prove upper and lower bounds 
on the best-possible solution quality 
achieved by an implementable algo-
rithm, possibly subject to additional 
constraints such as polynomial run-
ning time.

The second goal quantifies the limi-
tations of implementable algorithms 
via an approximation measure; the 
most commonly used such measure is 
the worst-case ratio, over all possible 
inputs, between the objective function 
value of the algorithm’s solution and 
the optimal objective function value. 
The first goal aims to reformulate the 
unwieldy definition of implementabili-
ty into a more operational form amena-
ble to both upper and lower approxima-
tion bounds. Both goals, and especially 
(G1), seem to grow more complex with 
the number of independent param-
eters required to describe the private 
information of a participant.

Versions of (G2) pervade mod-
ern algorithmic research: for a given 
“constrained computational model,” 
where the constraint can be either 
computational (as for polynomial-
time approximation algorithms) or 
information-theoretic (as for online al-
gorithms), quantify its limitations for 
optimization and approximation. Goal 
(G1) reflects the additional difficulty in 
algorithmic mechanism design that 
even the “computational model” (of 
implementable algorithms) induced 
by strategic constraints is poorly un-
derstood. For example, determining 
whether or not a given algorithm is on-
line is intuitively far easier than check-
ing if one is implementable.

Single-Parameter Mechanism De-
sign. This two-step approach is vividly 
illustrated by the important special 
case of single-parameter problems, 
where goal (G1) has been completely re-
solved. A mechanism design problem 
is single-parameter if the possible out-
comes are real n-vectors ω and each par-
ticipant i has an objective function of 
the form viωi for a private real number vi I
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Truthful 
mechanisms 
are—by design—
strategically 
degenerate in  
that the best  
course of action  
of a participant  
does not depend  
on the actions  
taken by others.

(the “single parameter”). The numbers 
ωi and vi can be thought of as the quan-
tity received and the value per-unit of 
a good, respectively. A single-item auc-
tion is the special case in which each ω 
is either a standard basis vector or the 
all-zero vector. Keyword search auc-
tions are also single-parameter, under 
the assumptions that every advertiser 
cares only about the probability ωi of 
a click on its sponsored link and has a 
common value vi for every such click.

An algorithm for a single-parameter 
problem is monotone if a greater bid 
begets a greater allocation: increasing 
the value of a bid (keeping the other 
bids fixed) can only increase the cor-
responding value of the computed ωi. 
For example, the “highest bidder” allo-
cation algorithm for a single-good auc-
tion is monotone, while the “second-
highest bidder” allocation algorithm 
is not. In general, monotonicity char-
acterizes implementability for single-
parameter problems.

Myerson’s Lemma.27 An allocation 
algorithm for a single-parameter mech-
anism design problem is implementable 
if and only if it is monotone. 

Myerson’s Lemma is a useful solu-
tion to the first goal (G1) and reduces 
implementable algorithm design to 
monotone algorithm design. For ex-
ample, consider the following “rank-by-
weighted bid” allocation algorithm for 
a keyword search auction. Advertisers’ 
bids are sorted in decreasing order, pos-
sibly after scaling by advertiser-specific 
relevance factors, and ad slots are popu-
lated in this order. Assuming that the 
probability of a click is higher in higher 
slots, every such algorithm is mono-
tone: increasing one’s bid can only in-
crease one’s position in the ordering, 
which in turn leads to an only higher 
probability of a click. Thus, Myerson’s 
Lemma guarantees an analog of the sec-
ond-price rule that extends the alloca-
tion algorithm into a truthful auction.a

Despite our thorough understand-
ing of goal (G1), question (Q1) remains 
open for single parameter problems. A 

a	 Modern search engines use allocation algo-
rithms that are similar to rank-by-weighted 
bid algorithms. By historical accident, they 
use a slightly different pricing rule than that 
advocated by Myerson’s Lemma, although 
the two pricing rules lead to comparable out-
comes and revenue at equilibrium. For details, 
see Lahaie et al.30

single-parameter scheduling problem 
proposed by Archer and Tardos1 had 
been the most natural candidate for 
differentiating between the optimi-
zation power of monotone and arbi-
trary polynomial-time algorithms, but 
Dhangwatnotai et al.14 recently gave a 
(randomized) polynomial-time mono-
tone algorithm for the problem with 
approximate guarantee as good as the 
best-possible polynomial-time algo-
rithm (assuming P ≠ NP).

Multiparameter Mechanism De-
sign. Many important mechanism de-
sign problems are not single-parame-
ter. Combinatorial auctions,11 in which 
each participant aims to acquire a het-
erogeneous set of goods and has un-
related values for different sets, are a 
practical and basic example. Combina-
torial auctions are used in practice to 
sell wireless spectrum (where the goods 
are different licenses), with auction de-
signs by theoretical economists gener-
ating billions of dollars of revenue over 
the past decade.11 Their complexity 
stems from “complements,” meaning 
goods that are more useful when pur-
chased in tandem (for example, spec-
trum licenses for small but adjacent 
regions); and “substitutes,” meaning 
goods that are partially redundant (for 
example, two different but functionally 
identical licenses for the same region). 
Each bidder in a combinatorial auction 
has, in principle, an exponential num-
ber of private parameters—one private 
value for each subset of goods.

Multiparameter mechanism design 
is complex and our current understand-
ing of goals (G1) and (G2) is primitive 
for most problems of interest. There 
are natural optimization problems for 
which there is a provable gap between 
the best-possible worst-case approxi-
mation ratio of implementable and ar-
bitrary polynomial-time deterministic 
algorithms. This fact was first proved by 
Lavi et al.;23 more recently, Papadimitri-
ou et al.33 showed that this gap can be as 
large as a polynomial in the number of 
bidders. Because of its importance and 
abundance of open questions, multipa-
rameter mechanism design has been 
a hotbed of activity over the past few 
years. See Roughgarden35 for a survey 
of the primary research threads, includ-
ing upper and lower approximation 
bounds for polynomial-time welfare 
maximization for combinatorial auc-
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posed for road traffic (see Beckmann4) 
and subsequently adapted to commu-
nication networks (see Bertsekas and 
Tsitsiklis5). This was the first general ap-
proximation bound on the inefficiency 
of equilibria; the idea of quantifying 
such inefficiency was explored previ-
ously in a scheduling model.22

Consider a directed graph with fixed 
traffic rates between various origin-
destination pairs in which the traffic 
chooses routes to minimize individual 
cost; see also Figure 1. Here, we as-
sume that the traffic comprises a large 
number of selfish users, each of negli-
gible size, such as drivers on a highway 
or packets in a network. Edge costs are 
congestion-dependent, with the con-
tinuous, nondecreasing function ce(x) 
denoting the per-unit cost incurred by 
traffic on edge e when x units of traffic 
use it. In an equilibrium, each user trav-
els along a minimum-cost path from 
its origin to its destination, given the 
congestion caused by the traffic. These 
selfish routing games are strategically 
non-trivial in that the minimum-cost 
path for a given user generally depends 
on the paths chosen by the others.

For example, in a “Pigou-like net-
work” (Figure 1a), r units of selfish traf-
fic autonomously decide between par-
allel edges e1 and e2 that connect the 
origin s to the destination t. Suppose 
the second edge has some cost func-
tion c2(·), and the first edge has a con-
stant cost function c1 everywhere equal 
to c2 (r). Such networks are strategically 
trivial, just like the truthful mecha-
nisms noted earlier: the second edge’s 
cost is never larger than that of the 

tions, and work toward multiparameter 
analogs of Myerson’s Lemma.

Quantifying Inefficiency  
and the Price of Anarchy
The truthful mechanisms examined 
earlier are—by design—strategically 
degenerate in that the best course of 
action of a participant (that is, truthtel-
ling) does not depend on the actions 
taken by the others. When a designer 
cannot specify the rules of the game 
and directly dictate the allocation of 
resources—or when there is no central 
designer at all—dependencies between 
different participants’ optimal courses 
of action are generally unavoidable and 
preclude exact optimization of stan-
dard objective functions. This harsh 
reality motivates adopting an equilib-
rium concept—a rigorous proposal for 
the possible outcomes of a game with 
self-interested participants—and an 
approximation measure that quantifies 
the inefficiency of a game’s equilibria, 
to address the following basic question:

(Q2) When, and in what senses, are 
game-theoretic equilibria guaranteed 
to approximately optimize natural ob-
jective functions?

Such a guarantee implies that the 
benefit of imposing additional control 
over the system is small, and is particu-
larly reassuring when implementing 
an optimal solution is infeasible (as in 
a typical Internet application).

Routing with Congestion. There are 
now numerous answers to question (Q2) 
in different models. We describe one by 
Roughgarden and Tardos,37,39 for a mod-
el of “selfish routing” originally pro-

first, even when it is fully congested. 
For this reason, all traffic uses the sec-
ond edge at equilibrium. This equilib-
rium does not generally minimize the 
average cost of all users. For example, 
if r = 1 and c2 (x) = x as in Figure 1a, the 
average cost at equilibrium is 1, while 
splitting the traffic equally between the 
two edges yields a routing with average 
cost 3/4. The latter traffic pattern is not 
an equilibrium because of a “conges-
tion externality”: a selfish network user 
routed on the first edge would switch to 
the second edge, indifferent to the fact 
that this switch (slightly) increases the 
cost incurred by a large portion of the 
population. Similarly, in the Braess’s 
Paradox7 network of Figure 1b, the av-
erage cost at equilibrium is 2 (with all 
traffic on the zig-zag path), while a be-
nevolent dictator could route the traf-
fic at average cost 3/2 (by splitting traf-
fic between the two two-hop paths).b

The price of anarchy (POA) of a selfish 
routing network is the ratio of the aver-
age user cost at equilibrium and in an 
optimal routing—4/3 in both of the net-
works in Figure 1. The closer the POA is 
to 1, the lesser the consequences of self-
ish behavior. Replacing the cost func-
tion of the second edge in Figure 1a by c2 
(x) = xd for large d shows that the POA can 

b	 This network is called a “paradox” because re-
moving the intuitively helpful zero-cost edge—
depriving users of one of their options—recov-
ers the optimal solution as an equilibrium, 
thereby decreasing the cost incurred by all us-
ers. Analogously, cutting a taut string in a net-
work of strings and springs that carries a heavy 
weight can cause the weight to levitate further 
off the ground!10

Figure 1. Two selfish routing networks with price of anarchy 4/3. One unit of selfish traffic travels from s to t. At equilibrium, all traffic 
travels on the bottom path and the zig-zag path, respectively. In an optimal solution, traffic is split equally between the two edges and  
between the two two-hop paths, respectively.
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be arbitrarily large, even in Pigou-like 

networks, and suggests that the POA is 
governed by the “degree of nonlinear-
ity” of the cost function c2. A key result 
formalizes and extends this intuition to 
arbitrary networks: among all networks 
with cost functions lying in a set C (for 
example, bounded-degree polynomi-
als with nonnegative coefficients), the 
largest-possible POA is achieved already 
in Pigou-like networks.37 Conceptu-
ally complex topologies do not amplify the 
worst-case POA. This reduction permits 
the easy calculation of tight bounds on 
the worst-case POA for most interesting 
sets C of cost functions. For example, 
the POA of every selfish routing network 
with affine cost functions (of the form 
ce(x) = aex + be for non-negative ae, be) is at 
most 4/3, with a matching lower bound 
provided by the examples in Figure 1.39 
See Nisan et al.30 for a recent survey de-
tailing these and related results.

These POA bounds provide a theo-
retical justification for a common rule 
of thumb used in network design and 
management: overprovisioning net-
works with extra capacity ensures good 
performance. Precisely, suppose every 
edge e of a network has a capacity ue and 
a corresponding cost function ce(x) = 1/
(ue − x); see Figure 2a. (If x ≥ ue, we in-
terpret the cost as infinite.) This is the 
standard M/M/1 queueing delay func-
tion with service rate ue. We say that a 
network is b-overprovisioned for b ∊ (0, 
1) if, at equilibrium, at least a b fraction 
of each edge’s capacity remains un-
used. The following is a tight bound on 
the POA for such networks; the bound 

results. The second is to prove POA-

like guarantees that apply “on aver-
age,” even when such experimentation 
strategies fail to converge to an equi-
librium. Remarkably, such approxima-
tion bounds hold in interesting classes 
of games, including in selfish routing 
networks. See Awerbuch et al.,2 Blum 
et al.,6 and Goemans et al.19 for ini-
tial formalizations of this approach. 
Roughgarden36 recently proved the 
general result that, under fairly weak 
conditions, POA bounds for equilibria 
extend automatically to the results of 
repeated experimentation. 

Complexity of Equilibrium 
Computation
Equilibrium concepts—most famous-
ly the Nash equilibrium28—play a star-
ring role in game theory and micro-
economics. If nothing else, a notion 
of equilibrium describes outcomes 
that, once reached, persist under some 
model of individual behavior. In engi-
neering applications we generally de-
mand a stronger interpretation of an  
equilibrium, as a credible prediction 
of the long-run state of the system. But 
none of the standard equilibrium no-
tions or the corresponding proofs of 
existence suggest how to arrive at an 
equilibrium with a reasonable amount 
of effort. This fact motivates the fol-
lowing questions.

(Q3) When can the participants of 
a game quickly converge to an equilib-
rium? More modestly, when can a cen-
tralized algorithm quickly compute an 
equilibrium? 

is illustrated in Figure 2b.

Theorem (Consequence of Rough-
garden37) The POA of every b-overprovi-
sioned network is at most

1
2
 (1 + 

1
Ö̀b

 )

Thus even 10% extra capacity reduc-
es the worst-case price of anarchy of 
selfish routing to roughly 2.

Further Aspects of Quantifying Inef-
ficiency. We have barely scratched the 
surface of recent work on equilibrium 
efficiency analyses. For an overview of 
work on some other application do-
mains, including resource allocation, 
scheduling, facility location, and net-
work design, see Nisan et al.30

An important emerging trend in 
this area is to prove POA-type bounds 
under increasingly weak assumptions 
on the rationality of participants. Re-
call in algorithmic mechanism design, 
our only assumption was that par-
ticipants will make use of a foolproof 
strategy (one that dominates all oth-
ers), should one be available. Here, we 
implicitly assumed that selfish par-
ticipants can reach an equilibrium of 
a game without such foolproof strate-
gies, presumably through repeated 
experimentation. This much stronger 
assumption has been addressed in two 
different ways in the recent literature. 
The first is to formally justify it by posit-
ing natural experimentation strategies 
and proving that they quickly reach a 
(possibly approximate) equilibrium; 
see Chien and Sinclair9 and the refer-
ences therein for a sampling of such 

Figure 2. Modest overprovisioning guarantees near-optimal routing. (a) displays the per-unit cost c(x) = 1/(u − x) as a function of the load x 
for an edge with capacity u = 2. (b) shows the worst-case price of anarchy as a function of the fraction of unused network capacity.

(a) M/M/1 delay function (b) Extra capacity vs. POA curve
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These questions are interesting for 
two reasons. First, algorithms for equi-
librium computation can be useful 
practically, for example in game-play-
ing and for multi-agent reasoning.41 
Second, assuming that players can in-
vest only polynomial computation in 
playing a game, resolving the complex-
ity of computing an equilibrium con-
cept has economic implications: a poly-
nomial-time algorithm is an important 
step toward establishing the concept’s 
credibility, while an intractability result 
casts doubt on its predictive power.

There has been a frenzy of recent 
work on these questions, for many dif-
ferent fundamental equilibrium con-
cepts. Perhaps the most celebrated 
results in the area concern the PPAD-
completeness of computing mixed-
strategy Nash equilibria in finite 
games with two or more players.8,12 
To briefly convey the spirit of the area 
with a minimum of technical fuss, 
we instead discuss the complexity of 
converging to and computing pure-
strategy Nash equilibria in a variant 
of the routing games discussed ear-
lier. We then discuss the key differ-
ences between the two settings. For 
work on the complexity of computing 
other equilibrium concepts, such as 
market, correlated, and approximate 
Nash equilibria, and for a discus-
sion of equilibrium computation in 
extensive-form, compact, randomly 
generated, and stochastic games, see 
Nisan30 and Roughgarden38 and the 
references therein.

Pure Nash Equilibria in Network 
Congestion Games. In the atomic vari-
ant of selfish routing, there are a finite 
number k of players that each control 
a non-negligible amount of traffic (say 
one unit each) and choose a single route 
for it. Each edge cost function ce : {1, 2, 
…, k} ® R+, describing the per-player 
cost along an edge as a function of its 
number of users, is non-decreasing. An 
outcome (P1,…,Pk)—a choice of a path 
Pi for each player i—is a pure-strategy 
Nash equilibrium (PNE) if each player si-
multaneously chooses a best response: 
a path with minimum possible cost, 
given the paths chosen by the other 
players. For instance, consider Pigou’s 
example (Figure 1a) with the constant 
cost on the upper edge raised from 1 to 
2. If there are two players (with origin s 
and destination t), then there are three 

PNE: one with both players on the lower 
link, and two in which each link is used 
by a single player. In every case, a deviat-
ing player would incur cost 2 and be no 
better off than in the equilibrium.

Best-response dynamics is a simple 
model of experimentation by players 
over time: while the current outcome 
is not a PNE, choose an arbitrary player 
that is not using a best response, and 
update its path to a best response. The 
update of one player usually changes 
the best responses of the others; for 
this reason, best-response dynamics 
fails to converge in many games (such 
as “Rock-Paper-Scissors”). In an atomic 
selfish routing network, however, every 
iteration of best-response dynamics 
strictly decreases the potential function

F ( P1, … , Pk) = ∑ 
eÎE

 [ce (1) + ce (2) + · · · + ce 
(xe)],

where xe denotes the number of paths 
Pi that contain edge e, and is thus guar-
anteed to terminate, necessarily at a 
PNE.26,34 Does convergence require poly-
nomial or exponential time? Can we 
compute a PNE of such a game by other 
means in polynomial time?

Assume for the moment that the 
problem of computing a PNE of an 
atomic selfish routing network is not 
solvable in polynomial time; how 
would we amass evidence for this fact? 
An obvious idea is to prove that the 
problem is NP-hard. Remarkably, a 
short argument21,25 shows that this is 
possible only if NP = coNP! Intuitively, 
solving an NP-hard problem like satisfi-
ability means to either exhibit a satisfy-
ing truth assignment of the given Bool-
ean formula or to correctly determine 
that none exist. Computing a PNE of an 
atomic selfish routing game appears 
easier because the latter situation (of 
there being no PNE) can be ruled out 
a priori—the “only” challenge is to ex-
hibit a solution in polynomial time.c

To motivate the definition of the ap-
propriate complexity class, recall that 
problems in the class NP are character-
ized by short and efficiently verifiable 
witnesses of membership, such as 

c	 The complexity classes P and NP are usually de-
fined for decision problems, where the answer 
sought is a simple “yes” or “no.” Here we refer 
to the similar but more general search versions 
of P and NP, where for a “yes” instance, the de-
liverables include a correct solution.

Equilibrium 
concepts play  
a starring role 
in game theory. 
If nothing else, 
a notion of 
equilibrium 
describes outcomes 
that, once reached, 
persist under  
some model of 
individual behavior.
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satisfying truth assignments or Ham-
iltonian cycles. There is thus a generic 
“brute-force search” algorithm for NP 
problems: given an input, enumer-
ate the exponentially many possible 
witnesses of membership, and check 
if any of them are valid. Computing 
a PNE of an atomic selfish routing 
game appears to be easier than an 
NP-hard problem because there is a 
guided search algorithm (namely, best-
response dynamics) that navigates the 
set of possible witnesses and is guar-
anteed to terminate with a legitimate 
one. At worst, computing a PNE might 
be as hard as all problems solvable by 
such a guided search procedure. This 
is in fact the case, as we formalize here.

What are the minimal ingredients 
that guarantee that a problem is solv-
able via guided search? The answer 
is provided by the complexity class 
PLS (for “polynomial local search”).21 
A PLS problem is described by three 
polynomial-time algorithms: one to 
accept an instance and output an ini-
tial candidate solution; one to evalu-
ate the objective function value of a 
candidate solution; and one that ei-
ther verifies local optimality (for some 
local neighborhood) or else returns a 
neighboring solution with strictly bet-
ter objective function value. To solve a 
PLS problem means to compute a lo-
cal optimum, by local search or by oth-
er means. For example, computing a 
PNE of an atomic selfish routing game 
can be cast as a PLS problem by adopt-
ing the potential function as an objec-
tive function, and defining two out-
comes to be neighbors if all but one 
player choose the same path in both. 
Local minima then correspond to the 
PNE of the game. A problem in PLS is 
then PLS-complete if every problem in 
PLS reduces to it in polynomial time, 
in which case the complete problem 
is solvable in polynomial time only if 
every problem in PLS is.

The problem of computing a PNE 
of an atomic selfish routing network is 
PLS-complete.17 It is therefore polyno-
mial-time solvable if and only if P = PLS. 
In the spirit of the P vs. NP question, it 
is generally believed that P ≠ PLS but 
researchers seem far from a resolution 
in either direction. Since PLS contains 
several important problems that have 
resisted all attempts at a computation-
ally efficient solution, PLS-hardness is 

viewed as strong evidence that a prob-
lem will not be solved in polynomial 
time (at least in the near future).

Mixed-Strategy Nash Equilibria and 
PPAD. A mixed strategy is a probability 
distribution over the pure strategies of 
a player. In a mixed-strategy Nash equi-
librium (MNE), every player simultane-
ously chooses a mixed strategy maxi-
mizing its expected payoff, given those 
chosen by the others. For example, in 
“Rock-Paper-Scissors,” with each play-
er receiving payoff 1 for a win, 0 for a 
draw, and -1 for a loss, the only MNE 
has each player randomizing uniform-
ly over its three strategies to obtain an 
expected payoff of 0. Nash proved that 
every game with a finite number of  
players and strategies has at least one 
MNE.28 Computing an MNE of a finite 
game is a central equilibrium compu-
tation problem.

We focus on the two-player (“bi-
matrix”) case, where the input is two 
m × n payoff matrices (one for each 
player) with integer entries; with three 
or more players, the problem appears 
to be harder in a precise complexity-
theoretic sense.15 We emphasize that 
the two payoff matrices are complete-
ly unrelated, and need not be “zero-
sum” like in Rock-Paper-Scissors. 
(When the two payoff matrices sum 
to a constant matrix, an MNE can be 
computed in polynomial time via lin-
ear programming; see for example, 
Nisan30 for details.)

There is a non-obvious “guided 
search” algorithm for two-player 
games called the Lemke-Howson algo-
rithm;24 see von Stengel30 for a careful 
exposition. This algorithm is a path-
following algorithm in the spirit of 
local search, but it is not guided by 

From intro paragraph: ...AGT usually adopts reasonable (for example, 
polynomial-time) computational complexity as a binding constraint on 
the feasible behavior of system designers and participants.

Rock-paper-scissors, score board?, time, binding options of each 
choice.

constrained computation
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an objective or potential function and 
thus does not prove that computing an 
MNE of a bimatrix game is in PLS. In 
conjunction with our earlier reason-
ing, however, the Lemke-Howson al-
gorithm shows that the problem is not 
NP-hard unless NP = coNP.25

A complexity class that is related to 
but apparently different from PLS is 
PPAD, which stands for “polynomial 
parity argument, directed version”. 
This class was defined in Papadimi-
trou32 to capture the complexity of 
computing MNE and related prob-
lems, such as computing approxi-
mate Brouwer fixed points. Its formal 
definition parallels that of PLS, with a 
PPAD problem consisting of the mini-
mal ingredients necessary to execute 
a Lemke-Howson-like path-following 
procedure (again easily phrased as 
three polynomial-time algorithms). A 
problem in PPAD is PPAD-complete if 
every problem in PPAD reduces to it in 
polynomial time; the complete prob-
lem is then polynomial-time solvable 
only if all problems in PPAD are. Since 
PPAD contains several well-studied 
problems that are not known to be 
solvable via a polynomial-time algo-
rithm, a proof of PPAD-completeness 
can be interpreted as a significant in-
tractability result.

A few years ago, the problem of 
computing an MNE of a bimatrix game 
was shown to be PPAD-complete.8, 12 
Thus, if P ≠ PPAD, there is no general-
purpose and computationally efficient 
algorithm for this problem, and in par-
ticular there is no general and tractable 
way for players to reach a Nash equilib-
rium in a reasonable amount of time. 
This hardness result casts doubt on the 
predictive power of the Nash equilib-
rium concept in arbitrary games. See 
Chen8 and Daskalakis et al.12 for the 
details of this tour de force result and 
Daskalakis et al.13 for a high-level sur-
vey of the proof.

Future Directions
The rapid rate of progress in algorith-
mic game theory has been nourished 
by deep connections with other areas 
of theoretical computer science and 
a consistent infusion of new moti-
vating applications. There remains 
a surfeit of important open research 
directions across all three of the AGT 
areas surveyed here, such as develop-

ing theory for the design and analysis 
of mechanisms for multi-parameter 
problems, for minimizing the ineffi-
ciency of equilibria (for example, via 
a mediating network protocol), and 
for the computation of approximate 
equilibria. See Roughgarden35 and the 
concluding sections of many chapters 
in Nisan30 for more details and many 
concrete open problems.

A broad challenge, mentioned also 
in Shoham’s recent Communications 
article,40 is to develop more appropri-
ate models of agent behavior. All of the 
results described in this article, even 
the welfare guarantee of the simple 
second-price auction, depend on some 
kind of behavioral assumptions about 
the participants. Such assumptions 
are required to address modern appli-
cations, yet are largely foreign to the 
theoretical computer science mind-
set, which is characterized by minimal 
assumptions and worst-case analysis. 
But a number of new types of worst-
case guarantees, coupled with novel 
behavioral models, have already be-
gun to sprout in the AGT literature. For 
example: mechanism implementation 
in undominated strategies3 and in ex 
post collusion-proof Nash equilibri-
um;31 the price of total anarchy;6,36 and 
the complexity of unit-recall games.16 
We expect these are only the vanguard 
of what promises to be a rich and rel-
evant theory.	

This work is supported in part by NSF CAREER Award CCF-
0448664, an ONR Young Investigator Award, an AFOSR 
MURI grant, and an Alfred P. Sloan Fellowship.
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