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Many parlor games like the game of "Le Her" or "Morra"  [Dresher (1963)], 
involve just two players and finitely many moves for the players. When the number 
of actions available to a player is finite, we could in theory, reduce the problem 
to a game with exactly one move for each player, a move where actions for the 
players are various master plans for the entire game chosen from among the finitely 
many possible master plans. These master plans are called pure strategies. The 
original game is often analyzed using such a reduced form called games in normal 
form (also called strategic form). Certain information about the original game can 
be lost in the process [Kuhn (1953), Aumann and Maschler (1972)]. The reduction 
however helps to focus our understanding of the strategic behavior of intelligent 
players keen on achieving certain guaranteed goals against all odds. 

Given a two-person game with just one move for each player, the players in- 
dependently and simultaneously select one among finitely many actions resulting 
in a payoff for each player. If i, j are their independent choices in a play, then the 
game is defined by a pair of real matrices A = (a~j), B = (bij) where aij is the payoff 
to player I and b~j is the payoff  to player II. The game is called zero sum if 
aij + b~j = O. Thus in zero-sum games, what one player gains, the opponent loses. 
In such games A suffices to determine the payoff. 

We can use the following example [Dresher (1963)] to illustrate what we have 
said so far. 

Example. From a deck of three cards numbered 1, 2, 3 player I picks a card at 
will. Player II tries to guess the card. After each guess player I signals either High 
or Low or Correct, depending on the guess of the opponent. The game is over 
as soon as the card is correctly guessed by player II. Player II pays player I an 
amount equal to the number of trials he made. 

There are three pure strategies for player I. They are: 
~: Choose 1, 
fl: Choose 2, 
?: Choose 3. 

For  player II the following summarizes the possible pure strategies, excluding 
obviously "bad ones". 

(a) Guess 1 at first. If the opponent says Low, guess 2 in the next round. If the 
opponent still says Low, guess 3 in the next round, 

(b) Guess 1 at first. If the opponent says Low, guess 3 in the next round. If 
the opponent says High, guess 2 in the next round. 

(c) Guess 2 at first. If the opponent says Low, guess 3; if the opponent says 
High, guess 1. 

(d) Guess 3 at first. If the opponent says High, guess 1 in the next round. If 
the opponent says Low, guess 2 in the next round. 
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(e) Guess 3 at first. If the opponent says High, guess 2 in the next round. If 
the opponent still says High, guess 1 in the next round. 

Thus the payoff matrix is given by 

(a) (b) (c) (d) (e) 

A = f l  3 1 3 . 

7 2 2 1 

A pair of pure strategies (i*,j*) for a payoff matrix A = (aij) is called a saddle 
point if a~j, ~ ai, j, ~< a~, i Vi, Vj. Thus a~,j, is the guaranteed gain for player I against 
any '~/" player II chooses. It is also the maximum loss to player II against any 
"i" player I chooses. In general such a saddle point may not exist. When it does 
we have 

ai,j, = max rain a.. = min max aij. 
i j 1J j i 

The above game has no saddle point. In fact max~ min t aij = 1 and min~ max~ 
a~j = 2. When players face intelligent opponents, the saddle point strategies are 
the best course of actions for both players. 

When a game has no saddle point, without violating the rules of the game, it 
might be possible for players to enlarge the available set of masterplans and look 
for a saddle point in the enlarged game. For  example a master plan for a player 
in this new game could be based on the outcome of a suitably chosen random 
device from an available set of random devices, where the possible outcomes are 
themselves masterplans of the original game. If each player selects his masterplan 
based on the outcome of his independently chosen random device we enter into 
a new game called a mixed extension of the game. Here the set of available random 
devices are called mixed strategies for the original game and they will be the pure 
strategies for the mixed extension game. The expected payoff K(x,  y) is the outcome 
for the mixed extension game when player I uses the random device x and player 
II uses the random device y. 

In our example above player I could rely on a random device x* -- (X*x, x2*, x~) = 
(_2 ! 2~ where say x* is the probability of choosing pure strategy ~ in the original 5 7 5~ 5 /  

game. Player I can guarantee an expected gain of 9 no matter which pure strategy 
__ * * * * * i 3 i player II uses. Similarly, the random device y* - (y, ,  Yb, Yc, Yd, Ye ) = (0, g, 3' g' O) 

where say y* = 3 is the probability of selecting the pure strategy c by the random 
device y*. Player II by using y* can guarantee an expected loss no more than 9 
whatever player I does. Thus, if x, y are any arbitrary probability vectors for players 
I and II, then the expected payoff K(x,  y) to player I satisfies 

K(x,  y*) <~ K(x*,  y*) <~ K(x*,  y) Vx, and Vy. 
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Thus for the mixed extension game, (x*, y*) is a saddle point. Here x*, y* are 
called optimal mixed strate#ies for players I and II respectively and 9 is called the 
value of the game. 

While Borel [von Neumann (1953)] suspected that games may not in general 
possess value even in the mixed extension, von Neumann (1928) Iaid the founda- 
tions of Game Theory by proving the decisive minimax theorem. This celebrated 
theorem remained dormant for a while. It was the classic monograph of [von 
Neumann and Morgenstern (1944)] that arrested the attention of mathematicians 
and social scientists and triggered research activity in Game theory. 

Of the many existence proofs for the minimax theorem [von Neumann (1928), 
Kakutani (1941), Ville (1938), Loomis (1946), Nash (1950), Owen (1970) and so 
on] Kakutani's proof and Nash's proof are amenable for extensions to more 
general situations. Nash's proof is based on the Brouwer's fixed point theorem. 
Brouwer's theorem asserts that any continuous self map q~ of a compact convex 
set X in Euclidean n-space R" admits a fixed point. That is q~(x)= x for some 
x e X .  We will now prove the minimax theorem using the Brouwer's fixed point 
theorem. 

Minimax theorem. (von Neumann). Let A = (ai~) be any m x n real matrix. 
Then these exists a pair of probability vectors x* * * y* =(xl,x•, . . , x*  ) and =(y*, 
y* . . . . .  y*) such that for a unique constant v 

~a~jx*>~v, j = 1 , 2  . . . . .  n, (1) 

a,jy* <~ v, i = 1, 2 . . . . .  m. (2) 
J 

Equivalently if K (x, y) = ~,~ Z j  ai jxiy j then (x*, y*) is a saddle point for K (x, y). That is 

min max K(x, y) = max min K(x, y), 
y x x y 

where min and max are taken respectively over the set of all probability vectors 
x for player I and probability vectors y for player II. 

Proof. Given any probability vector x for I and y for II ifpi = p~(x, y) = Z j  aijYi - 
Zi  Y'.j aijxlyj, qj = qj(x, y)= Zi  Z j  a i j x iy j -  Zi  ai~xi, we are looking for a pair (x, y) 
with p~~<0 and qj~<0 for all i,j. Let q~ : (x, y) --* (¢, r/) be a map where ~ is a 
probability m-vector and t/is a probability n-vector defined by coordinates 

~i xi + max(pi' O) yj + max(qj, O) 
= , t / j -  ; i =  1,2 . . . . .  m, 

m n 

1 + ~ max(p» 0) 1 + ~ max(q«, O) 
1 1 

j =  1 ,2 , . . , n .  

It can be easily checked that (p is a continuous self-map of the set of probability 
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vector pairs. By the Brouwer's fixed point theorem, there exists an (x*, y*) such 
that q~(x*, y*) = (x*, y*). 

Thus x* Sk max(Pk, 0) = max (Pi, 0) for all i. For  some i, x* > 0, Pi <~ O. Thus 
max(pk, 0) = 0 for all k. A similar argument shows that max(q~, 0) = 0 for all I. These 
are precisely the equalities we wanted for v = ~,~ Y'.j a~x*'iyj.* The second assertion 
that (x*, y*) is a saddle point for the mixed extension K(x, y) easily follows from 
multiplying respectively the inequalities (1) and (2) by yj and xi and taking the 
sum over j and i respectively. [] 

The existence theorem does not tell us how to compute a pair of optimal 
strategies. An algebraic proof was given by Weyl (1950). Thus if the entries of 
the payoff are rational, by the algebraic proof one can show that the value is 
rational and a pair of optimal strategies have rational entries. Brown and Von 
Neumann (1950) suggested a solution by differential equations that roughly mimics 
the above tatonnement process (x,y)~(~,tl).  It turned out that the minimax 
theorem can be proved via linear programming in a constructive way leading to 
an efficient computational algorithm a la the simplex method [Dantzig (1951)]. 
Interestingly the minimax theorem can also be used to prove a version of the 
duality theorem of linear programming. 

Equivalence of the minimax theorem and the duality theorem 

Given an m x n real matrix A = (aii) and given column m-vector b and column 
n-vector c we have the following two problems called dual linear programs in 
standard form. 

Primal: max c.x 

subject to Ax <~ b, x >~ O, 

Dual: min b.y 

subjectto Ary >1 c, y >~0. 

Any x satisfying the constraints of the primal is called a feasible solution to the 
primal. Feasible solutions to the dual are similarly defined. Here c.x and b.y 
are called the objective functions for the primal and the dual. 

The following is a version of the fundamental theorem of linear programming 
due to yon Neumann [Dantzig (1951)]. 

Duality Theorem. I f  the primal and the dual problems have at least one feasible 
solution, then the two problems have optimal solutions; further, at any optimal 
solution, the value of the two objective functions coincide. 

Indeed the duality theorem and the minimax theorem are equivalent. We will see 
that either one implies the other. 
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Duality theorem =~ minimax theorem 

Given a payoff matrix A = (ag j), by adding a constant c to all the entries, we can 
assume aij > 0 for all i,j and v > 0. Our inequalities (1) and (2) can be rewritten as 

aii v >~1' for all j, 

~ a i j ( Y J ~ < ~ l ,  for all i, 
j k V /  

where say, p = (Pl, . . . ,  P,ù), q = (ql . . . . .  qù) with 

p , = X i ~ 0 ,  ~ p ~ = l ,  (3) 
v i v 

qj=YJ>~O, Zqj= 1-. (4) 
1) j v 

Given a matrix A = a~j with all entries positive consider the dual linear programs 

Problem A. min ~i  Pi subject to S~ a~jpi ~> 1 for all j and p~/> 0 for all i. 

Problem B. max Z j  qj subject to Z j  a,jqj ~< 1 for all i and qj ~> 0 for all j. 

Here q = 0 is feasible for Problem B. For large N the vector p = (N . . . . .  N) is 
feasible for Problem A. By the duality theorem we have an optimal solution p*, q* 
to the two problems. Further 5Z~ p* = Z j  q* at any optimal pairs. By normalizing 
p* and q* we have optimal x* and y* satisfying (1), (2) for the payoff A with 
value v = 1/Ziq*. Thus the minimax theorem is equivalent fo solving the above 
dual linear programs. 

Before reducing the dual linear programs to a single garne problem we need 
the following theorems. 

Theorem on skew symmetric payoffs. Let A = - A r be a payoff  matrix. Then the 
value o f  the garne is zero and both players have the same set o f  optimal strategies. 

Proof. Let if possible v < 0. Let y be optimal for player II. Thus Ay = - AXy < 0 
and hence ATy > 0. This contradicts v < 0. Similarly we can show that v > 0 is not 
possible. Thus v = 0 and optimal strategies of one player are also optimal for the 
other player. [] 

Equalizer theorem. Let  A = (aij) be a payoff  with value v. Let  the expected payoff  
to player I when he uses any optimal strategy x and when player II uses a f ixed 
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column be v. Then player II has an optimal strate#y which chooses this column with 
positive probability. 

Proof. We can as weil assume v = 0 and the particular column is the nth column. 
It is enough to show that the system of inequalities 

a i ju  j ~ 0 
J 

u , =  1 

has a solution u >/0. We could normalize this and get the desired strategy. This 
is equivalent to finding a solution u, w ~> 0 to the matrix equation 

[ e  A ó l f U ] = P = [ ~ l  • 

(Here e n is nth unit vector). It is enough to show that the point p is in the closed 
cone K generated by the columns of the matrix 

Suppose not. Then by the strong separation theorem [Parthasarathy and 
Raghavan (1971)] we can find a strictly separating hyperplane (f, «) between the 
closed cone K and the point p. This shows that the vector f~> 0 and the scalar 
« < 0. Further f 'a j  i> 0 for all columns aj and f'an + « ~> 0. Normalizing f we get 
an optimal strategy for player I which gives positive expectation when player II 
selects column n. This contradicts the assumption about column n. []  

M i n i m a x  t h e o r e m = ~ D u a l i t y  t h e o r e m  

Consider the following m + n + 1 × m + n + 1 skew symmetric payoff matrix 

B = - A T 0 . 

b T _ c T 

Since B is a skew symmetric payoff the value of B is 0. Any optimal mixed strategy 
(t/*, ~*, 0) for player II is also optimal for player I. If 0 > 0, then the vectors 
y* = (1/0).11", x* = (1/0). 4" will be feasible for the two linear programming problems. 
Further when player Il uses the optimal strategy and I uses the last row, the expected 
income to player I is b.y* - c.x* <~ O. Since the inequality b.y* - c.x* >~ 0 is always 
true for any feasible solutions of the two linear programs, the two objective 
functions have the same value and it is easy to see that the problems have y*, x* 
as their optimal solutions. We need to show that for some optimal (t/*, ~*, 0), 
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0 > 0. Suppose not. Then  by the equalizer theorem player  I I  pays  a penalty if he 
chooses column n with positive probabil i ty,  namely  - b .  q* + c" ~* > 0. Thus  either 
b.r/* < 0 or  c - ~ * >  0. Say c . ¢ * >  0. Fo r  any feasible ~ for the pr imal  and for the 
feasible y° of  the dual  we have c .~  - b .y  ~< 0. Fo r  large N, ~ = x ° + N~* is feasible 
for the pr imal  and  c.(x°+ N ~ * ) - b ' y ° >  0 a contradiction.  A similar a rgument  
can be given when b.r/* < 0. 

Extreme optimal strategies. In  general op t imal  strategies are not  unique. Since 
the opt imal  strategies for a player  are determined by linear inequalities the set of  
opt imal  strategies for each player is a closed bounded  convex set. Fur ther  the sets 
have only finitely many extreme points and one can effectively enumera te  them 
by the following character izat ion due to Shapley and Snow (t950). 

Theorem. Ler A be an m x n matrix garne with v v ~ O. Optimal mixed strategies 
x* for player I and y* for player II  are extreme points of the convex set of optimal 
strategies for the two players if and only if there is a square submatrix B = (a~i)i~i,j~s 
such that 

i. B nonsin#ular. 
ii. ~i~~ ai~x* = v 

~ * ~ V  111. jeJ a i j Y j  

iv. x* = 0  i f i¢I .  
v. y* = 0 if jq~J. 

j ö J  ~ { 1, 2 . . . . .  n}. 
i ~ I « { 1 , 2  . . . . .  m}. 

Proof. (Necessary.) After renumbering the columns and the rows, we can assume 
for an extreme opt imal  pair  (x*, y*), x* > 0 i = 1, 2 . . . . .  p; y* > 0 j = 1, 2 . . . . .  q. If  
row i is actively used (i.e. x* > 0,) then Z~'=I ai;y* = v. Thus  we can assume 
Ä = (aij)~~i,j~ä such that  

B a i J x . { = v ,  j ö J = { 1 , 2  . . . . .  q}, 
i=1 > v ,  f o r j ~ ß  

a i j Y , { = v ,  i ~ T =  {1,2 . . . .  ,p}, 
j=l  < v ,  , f o r i¢ I .  

We claim that  the p rows and the q columns of Ä = (ai;)ij,j~ j are independent.  
Suppose not. For  some (rq . . . . .  ~p) ¢ 0 

aijni= O, j e  J, 
i=1 

p 
aijx* = v, jöJ.  

i ~ l  

Thus ~~'= 1 7~i Z )  q'= 1 aiy* = v Z~=- ~. rt, = 0. As v ~ 0, Z pi=l zti = 0. Since Y~i aijx* > v for 
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- 0 x " = x * + e n i > ~ O ,  jCJwe  can find e > 0 sufficiently small such that x' i = x* en i >~ , 
x'i = x'i' = ni - O, i > p and 

alix'i = ~ a i ~ x * - e  ~, aijnl ~ v, for all j, 
i = 1  i = 1  i = 1  

a,jxT = ~, aijx* + e. ~ aijni >~ v, for allj. 
i = l  i = 1  i = 1  

Thus x', x" are optimal and x * =  (x '+  x")/2 is not extreme optimal, a contra- 
diction. Similarly the first q columns of Ä are independent. Hence a nonsingular 
submatrix B containing the first p rows and the first q columns of Ä = (a0id, jd 
and satisfying conditions (i)-(iv) exists. 

Conversely, given such a matrix B satisfying (i)-(iv), the strategy x* is extreme 
" ' >~ " / >  v optimal, otherwise x ' ¢  x ,  x * =  (x '+  x")/2 and we have Zi  aiixi , i  v, ~,~ a~jx~ 

for j ö J  with Y~i a~jx* = v for j öJ .  Thus Y.~~I a~~x'~ = ~. , iEi  %x'[ = v for j = J and the 
matrix B is singular. [] 

Since there are only finitely many square submatrices to a payoff matrix there 
could be only finitely many extreme points and as solutions of linear equations, 
they are in the same ordered subfield as the data field. The problem of efficiently 
loacting an extreme optimal strategy can be handled by solving the linear pro- 
gramming problem mentioned above. Among various algorithms to solve a linear 
programming problem, the simplex algorithm is practically the most efficient. 
Linear inequalities were first investigated by Fourier (1890) and remained dormant 
for more than half a century. Linear modeling of problems in industrial production 
and planning necessitated active research and the pioneering contributions of 
Kantorovich (1939), Koopmans (1951) and Dantzig (1951) brought them to the 
frontiers of modern applied mathematics. 

Simplex algorithm. Consider the canonical linear programming problem 

max ~ bjyj 
J 

subject to 

B al jy j=di ,  i = l , 2  . . . . .  m, 
j = l  

yj ~>0, j = l , 2 , . . , n .  

Any solution y = (Yl . . . . .  yù) to the above system of inequalities is called a 
feasible solution. We could also write the system as 

yl  C1 + y 2  C 2  + " ' "  -[- yn Cn : d, 

Y l , Y 2 , ' " , Y n  ~ O, 
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where C 1, C 2 . . . . . .  C" are the columns of the matrix A and d is the column vector 
with coordinates d~, i = 1, 2 . . . . .  m. It is not hard to check that any extreme point 
Y = (Yl, Y2 . . . . .  yù) of the convex polyhedra of feasible solutions can be identified 
with a set of linearly independent columns C ~', C~~,.. ,C ~k such that the yj are 
zero for coordinates other than i 1, i 2 . . . . .  i k. By slightly perturbing the entries we 
could even assume that every extreme point of feasible solutions has exactly m 
coordinates positive. 

We call two extreme points adjacent if the line segment joining them is a one 
dimensional face of the feasible set. Algebraically, two adjacent extreme points 
can be identified with two bases which differ by exactly one basis vector. The new 
basis is chosen by bringing a column from outside into the current basis which 
in turn determines the removal of an appropriate column from the current basis. 
An iteration consists of searching for an improved value of the objective function 
at an adjacent extreme point. The algorithm terminates if no improvements in 
the value of the objective function with adjacent extreme points is possible. 

Fictitious play. An intuitively easy to implement algorithm to find the approxi- 
mate value uses the notion of fictitious play [Brown (1951)]. 

Assume that a given matrix game, A = (a~~)m ×ù has been played for t rounds 
with (il,j1), (i»ja) . . . .  , (it,it) as the actual choices of rows and columns by the two 
players. Let rows 1, 2 . . . . .  m appear kl, ka . . . . .  km times in the t rounds. For player 
II  one way of learning from player I's actions is to pretend that the proportions 
(k l~ t , . . . ,  km~t) are the true mixed strategy choices of player I. With such a belief, 
the best choice for player II  in round t + 1 is to choose any column j~+ 1 which 
minimizes the fictitious expected payoff (1/t)~im=lk~a~j. 

Suppose in the above data, columns 1,2 . . . . .  n appear l~,l 2 . . . . .  lù times in the 
first t rounds. Player I can also pretend that the true strategy of player II  is 
(Ix/t, 12/t . . . . .  lù/t). With such a belief the best choice for player I in round t + 1 is 

• 1 n to choose any row t t + 1 which maximizes the fictitious expected income / t  Z~ = ~ lja~j. 
The remarkable fact is that this naive procedure can be used to approximate the 
value of the garne. We have the following 

Theorem. Let  (x t, y') be the strategies (k l~ t , . . . ,  km~t), (Il~t, . . .  ,lù/t) t = 1, 2 . . . .  where 
(xl ,y ~) is arbitrary and (xt, J ) f o r  t>~2 is determined by the above f ict i t ious 
play. Then 

v = lim min 1 kiai~ = lim max ~ ~ ljai~. 
t-~ o9 j t i = l t--* ao i [ j = l  

The above procedure is only of theoretical interest. It is impractical and the 
convergence to the value is known to be very slow. Even though v( t )= min,(I / t )  
y , m  1 k i a i j - - *  V as t ~ o% the mixed strategies ¢(t) = (kl~t, k2 / t , . . . ,  k~/t) and t/(t) = 
(l~/t . . . .  , IJt) may  not converge. 
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A proof can be given [Robinson (1951)] by showing that for any skew symmetric 
payoff A, 

lim m!n ~ k la l j  = O. 
t .t i 

In general the sequence of strategies { (x t, yt)} o scillates around optimal strategies. 

Completely mixed games. A mixed strategy x for player I is called completely 
mixed iff x > 0 (i.e. all rows are essentially used). Suppose x, y are completely 
mixed optimal strategies for the two players. The inequalities Ay ~< v" 1 are actually 
equalities, for otherwise v = (x, Ay)< (x ,v .1)= v, a contradiction. In case v = 0, 
the matrix A is singular. We call a matrix garne A completely mixed if every 
optimal strategy is completely mixef for both players. 

Theorem. I f  a matrix game A is compIetely mixed, then A is a square matrix and 
the optimal strategies are unique. 

Proof. Without loss of generality v ¢ 0. In case y' ¢ y" are two extreme optimal 
strategies for player II, then Ay'= v. 1, Ay"= v. 1 and A ( y ' - y " ) =  0. Thus rank 
A < n. Since the extreme y' > 0, by the Shapley Snow theorem, A has an n x n 
submatrix which is nonsingular. This contradicts rank A < n. Thus rank A = n and 
the extreme optimal strategy is unique for player II. A similar argument applies 
for player I and shows that rank A =m, and the extreme optimal strategy 
is unique for player I. [] 

We have a formula to compute the value v for completely mixed garnes, and it 
is given by solving Ay = v.1. The unique solution y is optimal for player II. Since 
y is a probability vector y = vA - 1.1 gives v = d e t  A/(Zl Z~ Aij) where det A is the 
determinant of A and Aij are the cofactors of A. 

In case the payoff is a square matrix it can be shown that when one player has 
on optimal strategy which is not completely mixed then his opponent also possesses 
an optimal strategy that is not completely mixed [Kaplansky (1945)]. 

For  Z-matrices (squate matrices with oft-diagonal entries nonpositive) if the 
value is positive, then the maximizer cannot omit any row (this results in a 
submatrix with a nonpositive column which the minimizer will choose even in the 
original garne). Thus the game is completely mixed. One can infer many properties 
of such matrices by noting the game is completely mixed. It is easy to check that 
since v > 0 the matrix is non-singular and its inverse is nonnegative: For  completely 
mixed garnes A = (aij) with value zero, the cofactor matrix (Aij) has all Aij > 0 or 
all A~j < 0. This can be utilized to show that any Z-matrix with positive value has 
all principal minors positive [Raghavan (1978), (1979)]. 

The reduction of matrix garnes to linear programming is possible even when 
the strategy spaces are restricted to certain polyhedral subsets. This is useful in 
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solving for stationary optimal strategies in some dynamic garnes [Raghavan and 
Filar (1991)]. 

Polyhedral eonstraints and matrix games. Consider a matrix game A where players 
I(II) can use only mixed strategies constrained to lie in polyhedra X(Y) .  Say 
X = {x:B'rx <~ c, x >>. O} where X « set of mixed strategies for player I. Let 

Y = { y : E y ~ > f  y~>O}. 

We know that max~~ x minr~ r X T Ay  = miny~r maxx¢ x X T Ay. The linear program 
minr~ r x T Ay  has a dual 

maxf.  z, 
zET 

where T=  {z:ETz <~ ATx, z >1 0}. Thus player I's problem is 

m a x  f . z ,  
(z,x)EK 

where K = {(z, x): ETT, <~ X, BTx <~ c, z >~ O, X >~ 0}. This is easily solved by the simplex 
algorithm. 

Dimension relations. Given a matrix game A = (aij)m ×ù let X, Y be the convex 
sets of optimal strategies for players I and Il. Ler the value v = 0. Let Ja = {J:Yj > 0 
for some y~Y} .  Let Jz = {J:Z~a~ix~=O for any x ~ X } .  It is easy to show that 
J l  c Jz. From the equalizer theorem we proved earlier that J2 c J1. Thus Ja = J2 = 
J, say. Similarly we have 11 = 12 = I for player I. Since the rows outside 12 and 
the columns outside JE are never used in optimal plays, we can as well restrict to 
the garne Ä with rows in I2 and columns in Jz and with value 0. Let )~, Y be the 
vector spaces generated by X, Y, respectively. The following theorem independently 
due to [Bohnenblust, Karlin and Shapley (1950)] and [Gale and Sherman (1950)] 
charaeterizes the intrinsie dimension relation between optimal strategy sets and 
essential strategies of the two players. 

Dimension theorem. Il] - dim )~ = I JI - dim Y. 

Proof. Consider the submatrix Ä = (alj)i~t.»« For any y~ Y let )7 be the restriction of 
y to the coordinates j~J .  We have Ay = 0. Ler An = 0 for some n in R I•1. Since 
we can always find an optimal strategy y* with y* > 0 for all j~J ,  we have 
z = y* - en >~ 0 for small e and Äz = 0. Clearly z~ Y. Further since the linear span 
of y* and z yield n the vector space {u:Äu=0} coincides with Y. Thus dim 
Y= I J [ -  rank Ä. A Similar argument shows that dim )~ = I I I -  tank Ä. Hence 
rank Ä = I I I - d i m  7~= I J I - d i m  Y. [] 
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Semi-infinite games and intersection theorems 

Since a matrix payoff A = (afj) can be thought of as a function on I x J, where 
i e I =  {1 ,2 , . . ,m}  and j s J =  {1,2 . . . .  ,n}, a straighfforward extension is to prove 
the existence of value when I or J is not finite. If exactly one of the two sets I or 
J is assumed infinite, the games are called semi-infinite garnes [Tijs (1974)]. Among 
them the so-called S-games of Blackwell and Girshick (1954) are relevant in 
statistical decision theory when one assumes the set of states to be finite of nature. 

Let Y be an arbitrary set of pure strategies for player II. Let I = { 1, 2 . . . .  , m} be 
the set of pure strategies for player I. The bounded kernel K(i, y) is the payoff to 
player I when "i" is player I 's choice and ye  Y is the choice of player II. Let 
S = {(S1, $2 , . .  , S m ) I S  i = K(i, y), i = 1, 2 , . . ,  m; y~ Y}. The garne can also be played 
as follows. Player II  selects an seS. Simultaneously player I selects a coordinate 
i. The outcome is the payoff sf to player I by player II. 

Theorem. I f  S is any bounded set then the S-garne has a value and player I has 
an optimal mixed strategy. I f  con S (convex hull of S) is closed, player II  has an 
optimal mixed strategy which is a mixture of at most m pure strategies. I f  S is closed 
convex, then player II  has an optimal pure strategy. 

Proof. Let t* ~ T = con S be such that m in t«  max~ tl = maxi t* = v. Let (4, x) = c 
be a separating hyperplane between Tand  the open box G = {x:maxi xl < v}. For  
any e > 0 and for any i, t* - e < v. Thus ~~ ~> 0 and we can as weil assume that 
is a mixed strategy for player I. By the Caratheodory theorem [Parthasarathy 
and Raghavan (1971)] the boundary point t* is a convex combination of at most  
m points of S. It  is easy to check that c = v and ~ is optimal for player I. When 
S is closed the convex combination used in representing t* is optimal for player 
II; otherwise t* is approximated by t in S which is in the e neighborhood of t*. [] 

The sharper assertions are possible because the set S is a subset of R m. Many 
intersection theorems are direct consequences of this theorem [Raghavan (1973)]. 
We will prove Berge's intersection theorem and Helly's theorem which are needed 
in the sequel. We will also stare a geometric theorem on spheres that follows from 
the above theorem. 

Berge's interseetion theorem. Let S 1, $ 2 , . . ,  Sc be compact convex sets in R m. Let 
( - I , ~ j S i # O f o r j =  1,2 . . . . .  m. I f S =  Uk=~ Sf is convex then ~k=~ Sf # ~b. 

Proof. Let players I and II  play the S-game where I chooses one of the indices 
i =  1, 2 , . . ,  k and II  chooses an x~S. Let the payoff be f r (x )=  distance between x 
and Si. The functionsfi  are continuous convex and nonnegative. For  any optimal 
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#flx~ + P2lx~ + "'" + ltpl«~ of player II, we have 

Thus player II  has an optimal pure strategy x ° =  Z j # i x »  If an optimal strategy 
2 = ()~, . . . . .  2«) of player I skips an index say 1, then player II  can always choose 

o k S~. I f21>0Vi ,  any Y ~ N i ~  i S~ and then 0 = Z i  2if~(y) ~> v. Thus v = 0 and x e(-]i= 1 
then f i (x  °) = v. Since x°eSi ,  for some i we have v = 0 and x°e  N~= i Si. [] 

Helly's theorem. Let  S1,S2 , .  , Sk be convex sets in R m. Let NiEISi ~ ~b/fl ~ Ill 
k m + l .  Then Ni=xSi~~. 

Proof. By induction we can assume that for any I I [ = r ~ ( m + l ) ,  ~i«xS~:/:(o 
and prove it for I / I - - r +  1. Say, I =  {1,2 . . . . .  r +  1}. Let a i sS  ~ if 14:j. Let C =  
con{a~ . . . . .  at~+x)}. Since r > n  by the Cara theodary  theorem C =  [..)i~~ Ci where 
Ci = t o n  {ai . . . . .  ai-  i, ai+ l, aù+ i}. (Here we define a o = aù+ i and aù+ 2 = ai). Fur ther  
C i ~ S i. By Berge's theorem ~i~t Ci :/: c~. [] 

The following geometric theorem also follows from the above arguments.  

Theorem. Let S 1 , $ 2 » . . .  , S m be compact convex sets in a Hilbert space. Let  
(-]i~ j Si v ~ qb for  j = 1, 2 . . . . .  m, but 0 i m= i Si = q~. Then there exists a unique v > 0 and 
a point x o such that the closed sphere S(xo, v) with center x o and radius v has nonnull 
intersection with each set S i while spheres with center Xo and with radius < v a r e  
disjoint with at least one S i. In fact  no sphere o f  radius < v around any other point 
in the space has nonempty intersection with all the sets S i. 

When both pure strategy spaces are infinite, the existence of value in mixed 
strategies fails to hold even for very simple garnes. For  example, if X -- Y = the 
set of  positive integers and K ( x , y ) =  s g n ( x -  y), then no mixed strategy p = (Pl, 
P2 . . . .  ) on X can hedge against all possible y in guaranteeing an expected income 
other then the worst income - 1. In a sense if p is revealed, player II  can select a 
sufficiently large number  y such that the chance that a number  larger than y is 
chosen according to the mixed strategy p is negligible. Thus 

s u p i n f K * ( p , y ) =  -- 1 where K * ( p , y ) = ~ p ( x ) K ( x , y ) .  
P Y x 

A similar a rgument  with the obvious definition of K*(p, q) shows that  

sup infK*(p, q) = -- 1 < infsup K*(p, q) = 1. 
P q q q 

The failure sterns partly from the noncompactness  of  the space P of probabil i ty 
measures on X. 
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Fixed point theorems for set valued maps 

With the intention of simplifying the original proof of von Neumann, Kakutani 
(1941) extended the classical Brouwer's theorem to set valued maps and derived 
the minimax theorem as an easy corollary. Over the years this extension of 
Kakutani and its generalization-I-Glicksberg (1952)] to more general spaces have 
found many applications in the mathematical economics literature. While Brouwer's 
theorem is marginally easier to prove, and is at the center of differential and 
algebraic topology, the set valued maps that are more natural objects in many 
applications are somewhat alien to mainstream topologists. 

Defnition. For any set Y let 2 r denote a collection of nonempty subsets of Y. 
Any function ~b:X~2 r is caUed a correspondence from X to Y. When X, Y are 
topological spaces, the correspondence ~b is upper hemicontinuous at x iff given 
an open set G in Yand given G = ~b(x), there exists a neighborhood N ~ x ,  such 
that the set q~(N) = Ur~s q~(Y) c G. The correspondence q~ is upper hemicontinuous 
on X iff it is upper hemicontinuous at all x E X .  

Kakutani's fixed point theorem. Let  X be compact convex in R". Ler 2 x be the 
collection of  nonempty compact convex subsets o f  X.  Let  c~:X ~ 2 x be an upper hemi 
continuous correspondence from X to X.  Then x~q~(x) for  some x. 

In order to prove minimax theorems in greater generality, Kakutani's theorem 
was further extended to arbitrary locally convex topological vector spaces. These 
are real vector spaces with a Hausdorff topology admitting convex bases, where 
vector operations of addition and scalar multiplication are continuous. The 
following theorem generalizes Kakutani's theorem to locally convex topological 
vector spaces [Fan (1952), Glicksberg (1952)]. 

Fan-Glicksberg fixed point theorem. Let  X be compact convex in a real locally 
convex topological vector space E. Let  Y be the collection o f  nonempty compact 
convex subsets o f  X.  Let  (p be an upper hemicontinuous correspondence from X to 
YI Then x~(9(x) for  some x. 

The following minimax theorems of [Ville (1938) and Ky Fan (1952)] are easy 
corollaries of the above fixed point theorem. 

Theorem. (Ville). Ler X ,  Y be compact metrtc spaces. Let  K(x,  y) be continuous 
on X x Y Then 

m i n m a x f f K ( x , y ) d u ( x ) d v ( y ) = m a x m i n f f K ( x , y ) d v ( x ) d ~ ( y ) v  » ~ v 

where I~, v may range over all probability measures on X ,  Y, respectively. 
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Ky Fan's minimax theorem. Let X,  Y be compact convex subsets of locally convex 
topological vector spaces. Ler K : X  x Y-~ R be continuous. For every 2EX,  ~~ Y, let 
K(~, y): Y-~ R be a convex function and K (x, )~): X ~ R be a concave function. Then 

max min K(x, y) = min max K(x, y). 
xEX y~Y yeY xEX 

Proof. Given any 2~X, y~Ylet  

A(~) = {v:vE Y, minK()~,y) = K(~,v)} 
yeY 

and 

F(y) = {u:u•X, minK(x,y) = K(u,)7)}. 
xeX 

The sets A(~) and F07 ) are compact convex and the function q~:(x, y ) ~  F05 ) x A(2) 
is an upper hemicontinuous map from X x Y to all nonempty compact convex 
subsets of X x Y. Applying Fan-Glicksberg  fixed point theorem we have an 
(x°,y°)eÓ(x°,y°). This shows that (x°,y °) is a saddle point for K(x,y). [] 

In Ky Fan's minimax theorem, the condition that the function K is jointly 
continuous on X x Y is somewhat stringent. For example let X = Y = the unit 
sphere S of the Hilbert space 12 endowed with the weak topology. Let K(x, y) be 
simply the inner product (x ,  y) .  Then the point to set maps y ~ A(y), x ~ F(x)  are 
not upper hemicontinuous. [-Nikaido (1954)]. Hence Ky Fan's theorem is inapplicable 
to this case. Yet (0, 0) is a saddle pointI 

However in Ville's theorem, the function K*(l~,v)=~~K(x,y)d#(x)dv(y) is 
bilinear on P x Q where P(Q) are the set of probability measures on X(Y). Further 
K* isjointly continuous on P x Q where P, Q are compact convex metrizable spaces 
viewed as subsets of C*(X)(C*(Y)) in their weak topologies. Ville's theorem now 
follows from Fan's theorem. 

Definition. Let X be a topological space. A function f : X  ~ R is called upper 
semicontinuous iff {x:f(x)  < c} is open for each c. If g is upper semicontinuous, 
- g  is called lower semicontinuous. 

In terms of mixed extensions of K on X × Y, the following is a strengthening 
of Ville's theorem. 

Theorem. Let X,  Y be compact Hausdorff. Let K : X  × Y ~ R  be such that K(x,-) 
and K(',y) are upper semicontinuous and bounded above for each x ö X ,  yE Y. Then 

inf sup K*(#, v) = sup inf K*(#, v), 
veQ ,u~p p_~P w Q  

where P(Q) are the set of probability measures with finite support on X(Y).  
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Proof. Let X*, Y* denote regular Borel probability measures on X and Y 
respectively. When X or Y is finite the assertion follows from Blackwell's assertion 
for S-games. Let Y be any finite subset of Y. For e > 0, the set of e-optimal strategies 
# of the maximizer in the mixed extension K* on X* × ~'* is weakly compact. 
This decreasing net of e-optimals have a nonempty intersection with 

inf max K*(#, v) = max inf K*(#, v). (7) 
veQ /~eX* ,ueX* veQ 

For  Ymetrizable, K* is well-defined on X* × Y*. However by (7) 

inf max K*(#, v) ~> inf sup K*(/A v) 
veQ ,ueX* veQ #eP 

max inf K*(#, v) ~< sup inf K*(#, v). 
#eX* veQ #eP veQ 

Thus the assertion follows when Y is metrizable. The general case can be handled 
as follows. Associate a family G of continuous functions ~b on Ywith K(x, y) >~ ~(y) 
for some x. We can assume G to be countable with 

infsup I49(y)dv(y)= inf fsup K(#, v). 
veQ ~beG J veQ J/~eP 

Essentially G can be used to view Yas a metrizable case. [] 

Other extensions to non-Hausdorff  spaces are also possible [Mertens (1986)]. 
One can effectively use the intersection theorems on convex sets to prove more 

general minimax theorems. 
General minimax theorems are concerned with the following problem: Given 

two arbitrary sets X, Yand a real function K : X  × Y-~R, under what conditions 
on K,X,  Y can one assert 

sup inf K(x, y) = inf sup K(x, y). 
xeX yeY yeY xeX 

A standard technique in proving general minimax theorems is to approximate the 
problem by the minimax theorem for matrix games. Such a reduction is often 
possible with some form of compactness of the space X or Y and a suitable 
continuity and convexity or quasi-convexity on the function K. 

Definition. Let X be a convex subset of a topological vector space. Let f : X  ~ R. 
For convex functions, {x: f (x )< c} is convex for each c. Generalizing convex 
functions, a funct ionf :X ~ R is called quasi-convex if for each real c, {x : f (x )< c} 
is convex. A function g is quasi-concave if - g  is quasi-convex. 

Theorem. [Sion (1958)]. Ler X, Y be convex subsets of linear topological spaces 
with X compact. Ler K : X  x Y ~ R  be upper semicontinuous in x (for each fixed y) 
and lower semicontinuous in y (for each x). Let K(x,y) be quasi-concave in x and 
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quasi-convex in y. Then 

sup inf K(x, y) = inf sup K(x, y). 
x~X y¢=Y x~Y x~X 

T.E.S. Raghavan 

Proof. Case (i). Both X, Yare compact and convex: Let ifpossible supx infy K(x, y) < 
c < infrsup~K(x,y ). Let A z = {y:K(x,y) > c} and B r = {x:K(x,y) < c}. Therefore 
we have finite subsets A c X, B « Y such that for each ye  Y and hence for each 
y~Con B, there is an x~A with K (x , y )>  c and for each x ~ X  and hence for each 
x e C on  A, there is a y~B, with K(x , y )<  c. Without loss of generality let A,B be 
with minimal cardinality satisfying the above conditions. We claim that there exists 
an xoEConA such that K(xo, y )< c for all y~B and hence for all y eCo n  B [by 
qu.asi-convexity of K(xo, y)]. Suppose not. Then if B =  {Yo, Yl . . . .  ,yù}, for any -~ 
x ~ X  there exists a yjeB such that K(x, yj)>~c. Let Ci=(x:K(x, yi)>~c}. T h e  
minimality of B means that (-]7=o.i~j Ci ~ oB. Further (~7=o C~ = q~. By Helly's 
theorem the dimension ofCon B is n. Thus it is an n-simplex. IfG~ is the complement 
of Cg, then the G~ are open and since every open set G~ is an F« set the G:s contain 
closed sets H~ that satisfy the conditions of Kuratowsky-Knaster-Mazurkievicz 
theorem [Parthasarathy and Raghavan (1971)]. Thus we have NT=o Hi ~ (9, and 
that ~7=o Gg¢~b. That is, for some xo~ConA, K(xo, y ) < c  for all y. Similarly 
there is a yoeCon B, such that K(x, Yo) > c for all x~Con A. Hence c < K(xo, Yo) < c, 
a contradiction. 

Case (ii). Let X be compact convex: Let supx infy K < c < infy SUpx K. There exists 
B c Y, B finite, such that for any x e X ,  there is a y e B  with K(x ,y )<c .  The 
contradiction can be established for K on X x Con B c X x Y. [] 

Often, using the payoff, a topology can be defined on the pure strategy sets, 
whose properties guarantee a saddle point. Wald first initiated this approach [Wald 
(1950)]. 

Given arbitrary sets X, Y and given a bounded payoff K on X x Y, we can 
topologize the spaces X, Ywith topologies :-x, 3--r where a base for ~-x consists 
of sets of the type 

S(xo, e ) = [x:K(x, y ) -  K(xo, y ) < e for all y}, e > 0, xo~X. 

Definition. The space X is conditionally compact in the topology Æx iff for any 
given e > 0, there exists a finite set {x 1, x 2 . . . . .  xù~~)} such that U~'~)~ S(xi, e) = X. 

The following is a sample theorem in the spirit of Wald. 

Theorem. Let K : X  × Y-~R. Ler X be conditionally compact in the topology 9- x. 
For any 6 > 0  and finite sets A ~ X ,  B «  Y let there exist Y ~ X , y ~ Y  such that 
K(x, y) <~ K(~, y) + 6for  all x~A, y~B. Then Supx infr K(x, y ) = infr supx K(x, y ). 
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Proof. Since X is condit ionally compact  in the topology  ~ ,  for e > 0 

inf sup K ~< infmax K + e 
Y X Y A 

for a finite set A ~ X. If  B is any finite subset of Y, then by assumpt ion inf r 
max a K ~< SUPx min» K. Thus  

inf sup K ~< infsup min K + e, 
Y X • X B 

where ~ is the collection of  finite subsets of  Y. 
Since X is J-x conditionally compact ,  the right side of  the above inequality is 

finite or  - ~ .  We are th rough  if v = infsup min K ~< sup in fK  + 2e. For  otherwise 
i f s u p i n f K < v - 2 e ,  w e h a v e  • x B x r 

X Y 

infK(x,  y) < v - 2e, for all x 
r 

and thus for any finite set A 

infk(x~,y) < v -  2e, for all x~~A. 
r 

That  is for each x i, and e > 0, there exists a y~ such that  K(x~, y~) <~ K(x~, Yi) + e <~ v -- e 
for each i. Thus 

supminK(x,y~) <~ v - e, where B = {y~, i e l  with 1I[ finite}. 
X B 

That  is v ~< v - e, a contradiction. [ ]  

Continuous payoffs. While the above general minimax theorems guarantee e- 
optimals with finite steps, in mixed extensions, certain subclasses of games admit  
optimal mixed strategies with finite steps. These subclasses depend on the nature 
of the cones generated by K(x,.) and K(.,y). Let X, Y be compact  metric. Let 
K:  X x Y ~  R be continuous.  Since K is bounded,  we can assume K > 0. Let C(X), 
C(Y) be the Branch space of  cont inuous functions on X, Y, respectively. The 
functions h«(x)= K(x,«)  generate a cone whose closure we denote by C. Let 
E = C - C. Let P be the cone of nonnegative functions in C(X). Any positive linear 
opera tor  A:E ~ C(X) maps C into P. 

Theorem. Let C have non-null interior in Ë or let A be an isometry and the image 
cone A(C) have non-null relative interior in its closed linear span. Then player II  
(the minimizer) has an optimal strategy with finite spectrum. I f  C has nonnull interior, 
both players have finite step optimals. Further, in this case K(x, y) is separable. That 
is K(x, y) = Zi  ~ j  ai~ri(x)sj(Y). 

Proof. Fo r  any Borel probabil i ty measure v on Y the map  z :v~K*(v )  is a 
cont inuous map  of  Y* into C(X). Further,  B = z(Y*) is compact  in C(X). In fact 
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when A is an isometry, S = con (A(B), 0) is compact and the range cone A(C)= 
Uù~= 1 nS. By the Baire Category Theorem the compact set S has nonnull interior 
and hence finite dimensional. The isometry A preserves extreme points. The 
function K(., et) is mapped into M(', «) under the isometry and any finite step 
optimal Vo for M(x, y) is optimal for K. Separability of K follows from the finite 
dimensional nature of C when C has interior. []  

Extreme optimals. Extreme optimal strategies are hard to characterize for infinite 
games except for some special cases. Let X, Y be compact metric with a continuous 
payoff K(x,y). Then the following theorem extends Shapley-Snow theorem to 
certain infinite games. 

Theorem. Let v # 0 and ler v o be optimal for player II with spectrum a(vo)= Y 
Then an optimal strategy # with spectrum tr(l~ ) = X o is extreme iff {h«(x):K(x, et), 
cte Y} generates a dense linear manifold in LI (Xo, ~ ,  Iz), where ~ is the class of Borel 
sets on X o. 

The proof mimics Shapley-Snow arguments for finite games with the helpful 
hint that L ~ = L*. 

Needless to say, the structure of optimal strategies can be quite complicated even 
for C °~ payoffs K on the unit square. An example will settle what we want to 
convey l-Glicksberg and Gross (1953)]. 

Example. Let #~, vn be the nth moments of any arbitrary probability measures 
K ~o # # v with infinite spectrum. Then the C ~° kernel (x,y) = Z~=o(1/2~)(x ~ -  #ù) 

( f - v ~ )  has/~, v as the unique optimal strategies. 

Proof. The kernel K is analytic and for any optimal 2 for player I we have 
Zù~o(1/2n)(2n-/~ù)(yn-v~)=0. Thus 2ù =/~~ for all n=~2=# .  Similarly v is the 
unique optimal for the minimizer. []  

More generally, given compact convex sets S, To f  probability measures on the 
unit interval, one would like to know when they would be the precise set of optimal 
mixed strategies for a continuous game on the unit square. The following theorem 
is a partial answer to this question [Chin, Parthasarathy and Raghavan (1976)]. 

Theorem. Ler S, T be compact convex sets of probability measures on the unit 
interval with only finitely many extreme points given by {#1, ]/2 . . . . .  /A p } and {v 1, v 2 . . . .  v q} 
respectively. Let the spectrum of at least one #eS,  v~ T be the entire unit interval. 
Further for any e > 0, let 

Bi(E j) ùt 
max sup max sup t~.(Hj) < 

1 <j<q i ß j  ~ < F., o,J 6. _ _ 1 <_j<_q i c j  # ( H j )  
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for some #'(E,) > 0, v~(H~) > 0, r = 1 . . . . .  p, s = 1 . . . . .  q. Then there exists a continuous 
payoff  K(x,  y) on the unit square with S and Tas the precise set of  optimal strategies 
for the two players. 

Proof. We will indicate the proof for the case q = 1. The general case is similar. 
One can find a set of indices il, i 2 . . . . .  ik- 1, such that the matrix 

[i it 
B i k -  l ] 1 p/11 #i2 

2 2 
B21 ]"/i2 ~ " '"  # i k -  1 

k 

is nonsingular where #~ = ~~ x" dlfl. Using this it can be shown that 

K(x,  y) = ~ [a, + bnx i' + . . .  hùx ik-1 - x n] [yn _ v~] 

n 2"" M ,  

is a payoff precisely with optimal strategy sets S, T for some suitable constants 
Mn. [] 

Many infinite games of practical interest are often solved by intuitive guess 
works and ad hoc techniques that are special to the problem. For polynomial 
or separable games with payoff 

K(x,  y) = ~ ~ aijri(x)sj(y), 
i j 

K'(,,v)=E~ù,j[fr,(x)a,,(x)][fsj(,)dv(y)]=Y~Y,,,ju,~» 
• i j 

where u = (u l  . . . . .  Um) and v =(vl  . . . . .  v,) are elements of the finite dimensional 
convex compact sets U, V which are the images of X* and Y* under the maps 
#-~ (( t l  d•, ~r2 d , , . . ,  irrn d/~); v - '  @1 dv . . . . .  j'sù dr). Optimal/P,  v ° induce optimal 
points u °, v ° and the problem is reduced to looking for optimal u °, v °. The optimal 
u °, v ° are convex combinations of at most min(m, n) extreme points of U and V. 
Thus finite step optimals exist and can be further refined by knowing the dimensions 
of the sets U and V [Karlin (1959)]. Besides separable payoffs, certain other 
subclasses of continuous payoffs on the unit square admit finite step optimals. 
Notable among them are the convex and generalized convex payoffs and Polya-type 
payoffs. 

Convex payolts. Let X, Ybe compact subsets of R m and R" respectively. Further, 
let Y be convex. A continuous payoff K(x,  y) is called convex if K(«, .) is a convex 
function of y for each «ex. The following theorem of [Bohnenblust, Karlin and 
Shapley (1950)] is central to the study of such games. 
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Theorem. Let {~b«} be a family of  continuous convex functions on Y. l f sup«  ~b~(y) > 0 

~'~'i = 1 ~i~~i (y) > 0 for all y~ Y, then for some probability vector 2 = (21, 22 . . . .  )-(ù+ 1)), "+ 1 
for all y, for some n + 1 indices cq, a 2 . . . . .  aù+l. 

Proof.  The  sets K « =  {y:~b«(y)~<0} are compac t  convex and  by assumpt ion  
0 «  K« = ~b. By HeUy's intersection theorem 

n + l  

( ]  K«, = ~b. (10) 
i = 1  

Tha t  is q~«,(y)> 0 for some 1 ~<i~< n + 1 for each y. Fo r  any mixed strategy 
P = (Pl . . . . .  Pù+I) on {a~,i= 1 . . . . .  n + 1} the kernel 

n + l  

K(p, y) = ~ p,(a«,(y) (11) 
i = 1  

admits  a saddle point  with value O by Fan 's  min imax  theorem. Let  (2, yO) be such 
a saddle point.  By (10) the value t~ > 0. Thus  

n + l  

2i~b«,(y) > 0, for all y (12) 
i = 1  

[ ]  

As a consequence we have the following 

Theorem. For a continuous convex payoff  K(x,  y) on X x Y as defined above, the 
minimizer has a pure optimal strategy. The maximizer has an optimal strategy using 
at most n + 1 points in X .  

Proofi For  any probabi l i ty  measure  # on X let K*(#, y) = ~xK(x, y)d#(x). By K y  
Fan ' s  min imax  theorem K* has a saddle point  (/F, y°) with value v. Given  e > 0, 
max« K(ct, y) - v + e > 0. F r o m  the above theorem "÷ 1 , = Z~ = 1 2~ K(«  i, y) - v + ~ > 0 for all 
y. Since X is compact ,  by an e lementary  limiting a rgument  an opt imal  2 with at 
mos t  n + 1 steps guarantee  the value. Here  yO is an opt imal  pure strategy for the 
minimizer.  [ ]  

Weaker  forms of convexity of payoffs still guarantee  finite s tep  opt imals  for 
games on the unit square 0 ~< x, y ~< 1. The  following theorem of Gl icksberg (1953) 
is a sample (Karl in proved this theorem first for some special cases). 

Theorem. For a continuous payoff  K on the unit square ler (Ot/t3yt)K(x, y)>~ O for 
all x, for some power l. Then player I I  has an optimal strategy with at most ½1 steps; 
(0, 1 are counted as ½ steps). Player I has an optimal strategy with at most l steps. 

Proof. We can assume v = 0 and (~l/t3yt)K(x, y) > 0. I f I  r is the degenerate  measure  
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at y, we have K*(#, It)>~ 0 for all op t imal  # of  the maximizer.  By assumpt ion  
K*(#, y ) =  0 has at mos t  l roots  count ing multiplicities. Since interior roots  have 
eren multiplicities the spect rum of opt imal  strategies of  the minimizer  lie in this 
set. Hence  the assert ion for player  II. We can construct  a po lynomia l  p(y) >>. 0 of 
degree ~ < l -  1 with K*(#, y) -p (y )  having exactly I roots. Let yt,  Y2 . . . . .  Yt be those 
roots. We can find for each ~, K*(~, y ) -  p(y)= K( '2 ,y) -  p(Y,y), with the same 
roots. Next  we can show K ( x , y ) -  p(x, y) has the same sign for all x,'y. Indeed 
p(x, y) is a po lynomia l  game with value 0 whose opt imal  s trategy for the maximizer  
serves as an op t imal  s trategy for the original game K(x, y). [] 

Bell.shaped kernels. Let K:R2---~ R. The  kernel K is called regular bell shaped if 
K(x,y) = ~o(x - y) where q~ satisfies (i) ~o is continuous on R; (ii) for xl  < x2 < "" < xù; 
Yl < Y2 < "'" < Yù, det II ~0(xl - y«)II is nonnegative;  (iii) Fo r  each xl  < "" < xù we 
can find Yl < Y2 < " ' "  < Yù such that  det II ~o(xi - yj) II > 0; (iv) J'R~0(U) du < ~ .  

Theorem. Let  K be bell shaped on the unit square and let q~ be analytic. Then the 
value v is positive and both players have optimal strategies with f ini tely  many steps. 

Proof.  Let  v be op t imal  for the minimizer.  If  the spect rum a(v) is an infinite set then 

ot K(x - y) dr(y) -= v 

by the analyticity of the left-hand side. But for any q~ satisfying (i), (ii), (iii) and 
(iv) ~ ò K ( x -  y)dv(y)--*O as x--* oo. This contradicts  v > O. [ ]  

Fur ther  refinements are possible giving bounds  for the number  of steps in such 
finite opt imal  strategies [Kar l in  (1959)]. 
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