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A VARIETY OF Internet online services are designed based 
on contests. A canonical example is crowdsourcing 
services, which solicit solutions to tasks by open calls to 
online communities. Here the tasks can be of different 
categories, such as art design, software development, 
data-science problems, and various challenges such as 
planetary-scale locating of objects.12,28 These services 
operate under certain contest rules that include 
specifying a prize allocation mechanism, for example, 
awarding only a first-place prize or several position 
prizes. The prizes can be monetary, or in-kind rewards 
such as in terms of attention, status, or computing 
resources, for example, CPU, bandwidth, and storage. 
We refer to a contest as any situation in which agents 
invest irreversible and costly efforts toward winning a 
prize, which is allocated based on relative performance. 
We use the term “contest theory” in a broad sense 
to refer to a set of theories developed for the better 
understanding and informed design of contests.

A central question in contest theory 
is: How to allocate prizes to maximize a 
desired objective? The objective may be 
to maximize the utility of production 
to the agent who solicits solutions to a 
task, or to the whole society. The ques-
tion of how to allocate prizes was stud-
ied as early as 1902 by Galton.15 A study 
of how to allocate prizes necessitates 
to consider the incentives of contes-
tants, who act strategically in investing 
costly production efforts.1,11,44 Game 
theory models of contests have been 
studied in auction theory, economic 
theory, operations research, as well 
as theoretical biology; for example, 
Bishop and Smith.3 The use of com-
pensation schemes based on an indi-
vidual’s ordinal rank rather than abso-
lute performance in firms have been 
studied by economists; for example, 
Lazear and Rosen.27 Game theory and 
pertinent computational questions 
have been studied by computer scien-
tists.31,33,36 Several new contributions 
have been made on optimal allocation 
of prizes in crowdsourcing contests, 
equilibrium outcomes in games that 
model simultaneous contests, and the 
worst-case efficiency of production 
in equilibrium outcomes of various 
games that model contests. 

The skill-rating methods that use 
observations of relative performance 
comparisons as input, such as ranking 
outcomes in contests, have been stud-
ied extensively in the past. They are now 
widely used in various applications, 
such as sport competitions, online 
gaming, and online labor platforms. 
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The skill parameters reflect the abil-
ities of players: the larger the value of a 
player’s skill parameter, the more pro-
ficient is the player. If the production 
cost is according to a linear function, 
we can normalize the payoff functions 
such that a player’s skill parameter 
can be interpreted as the reciprocal of 
his or her production cost per unit ef-
fort. The game as defined here allows 
us to study equilibrium outcomes un-
der different prize allocation mecha-
nisms, such as assigning fixed shares 
of a prize budget in decreasing order 
of invested efforts, or splitting a prize 
budget among players in proportion to 
their effort investments. The prize al-
location can be interpreted as the win-
ning probabilities for an indivisible 
prize item, or as the shares of an infi-
nitely divisible prize. The game allows 
us to study equilibrium outcomes for 
different types of production costs. For 
example, it is common to consider lin-
ear production costs, we refer to as con-
stant marginal production costs, under 
which the production cost per unit ef-
fort is constant; in particular, we refer 
to unit marginal production cost when 
the production cost per unit effort is of 
unit value. We may also consider pro-
duction costs with either decreasing 
or increasing marginal costs. It is note-
worthy that the game as defined here 
formally corresponds to an auction, 
where efforts, skills, and production 
costs are in correspondence with bids, 
valuations, and payments, respectively

We say a game is with complete in-
formation if the players have perfect 
information about each other’s skill 
parameters. A game with complete in-
formation can be used as a model of a 
contest when the players are informed 
about who is going to participate in 
the contest and about the skills of 
the participants. For example, a situ-
ation like this can be found in com-
petition-based software development 
platforms such as TopCoder, where 
a contest takes place after a registra-
tion phase, which reveals identities 
of participants. A game is said to be 
with incomplete information if the value 
of each player’s skill parameter is his 
or her private information. In a game 
with incomplete information, skill pa-
rameters are assumed to be random 
variables according to a prior distribu-
tion, which is a common knowledge. 

The design of skill-rating methods is 
based on statistical models of rank-
ing outcomes developed from 1920s 
onward. More recent developments 
include skill-rating methods that allow 
for contests among two or more teams 
of players, which are common in online 
gaming and online labour platforms. 
New results have been recently devel-
oped in the area of statistical inference 
for statistical models of ranking data, 
including new characterizations of the 
accuracy of various skill parameter es-
timators and new iterative methods for 
skill parameter estimation.

In this article, we survey some main 
results of contest theory. Specifically, 
we discuss basic game theory models 
of contests that are found in online ser-
vices. We explain the conditions under 
which to optimally allocate prizes to 
maximize a given objective, such as the 
total effort or the maximum individual 
effort, in a strategic equilibrium. We will 
focus on games in which players make 
simultaneous effort investments; the 
games that involve some aspect of se-
quential play are only briefly discussed. 

We consider both games that model a 
single contest (see Figure 1) and games 
that model a system of two or more si-
multaneous contests (Figure 2). Simul-
taneous contests are common in the 
context of online crowdsourcing plat-
forms. We explain basic principles of 
popular skill rating systems and point 
out some new results in this area. We 
conclude with an outlook on future re-
search directions.

This article complements exist-
ing surveys on the game-theoretic as-
pects in contest theory, for example, 
Corchon,9 Konrad,25 and Nitzan.32 We 
provide an overview of some of the top-
ics covered in the book by Vojnović ,42 
where the reader may find a more ex-
tensive coverage of references. 

Strategic Game Models of Contests
The standard game theory framework 
for studying contests is based on the 
assumption that agents are rational 
and strategic players who invest effort 
with a selfish goal to maximize their in-
dividual payoffs. The payoff of a player 
combines the utility of winning a prize 
and the cost of production. Specifically, 
we consider a normal-form game that 
models a contest, defined by:

˲˲ Set of two or more players:  
N={1,2,…,n}; 

˲˲ Payoff functions: for any given vec-
tor of efforts b = (b1, b2, … , bn ), the pay-
off of player i is given by

si (b) = vixi (b) – c(bi )
where 

˲˲ v1, v2, … , vn are positive-valued 
skill parameters,

˲˲ x(b) := (x1 (b), x2 (b), … , xn (b)) is 
prize allocation, and 

˲˲ c(x) is a production cost function. 

Figure 1. Single contest.
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A game with incomplete information 
allows us to model uncertainty about 
skills of competitors in a contest; in 
the context of online services, such an 
uncertainty may arise because it may 
not be a priori known who is going to 
participate in a contest. 

The strategic effort investment by 
a player can be according to a pure 
strategy, specifying a value of the ef-
fort investment, or according to a 
mixed strategy, specifying a probabil-
ity distribution over pure strategies. 
An investment of efforts by players is 
a pure-strategy Nash equilibrium if no 
player can increase his or her payoff by 
a unilateral deviation. Similarly, a set 
of mixed strategies is a mixed-strategy 
Nash equilibrium if no player can in-
crease his or her expected payoff by a 
unilateral deviation. A Bayes-Nash equi-
librium is a mapping of an individual’s 
skill to a value of effort such that no 
player can increase his or her expected 
payoff by a unilateral deviation.

The utility of production is typically 
studied with respect to the following 
two metrics: the total effort and the 
maximum individual effort. The total 
effort has been studied extensively be-
cause it corresponds to the revenue 
accrued in an all-pay auction, and the 
total outlay accrued in a rent-seeking 
contest.26,40 The maximum individual 
effort has been studied motivated by 
applications in contests, such as in 
crowdsourcing services, where a con-
test owner makes use only of the best 
submitted solution. The utility of pro-
duction has also been studied from a 
societal perspective, defined by a social 
welfare function, which is commonly 
defined as the sum of payoffs of all the 
parties involved (players and the con-
test owner). For example, when players 
incur unit marginal production costs 
and the payoff to the contest owner is 
the total effort invested by the players, 
social welfare corresponds to the total 
valuation of prizes by those who win 
them. Social welfare in an equilibrium 
can be smaller than optimal value; in 
some instances, optimum social wel-
fare is achieved only if a given prize 
budget is fully assigned to highest-skill 
players, while in equilibrium a lower-
skill player can have a strictly positive 
winning probability.

Single contest. We now consider a 
normal-form game that models a sin-

gle contest among two or more players, 
for different prize allocation mecha-
nisms and production cost functions. 
A model of a single contest allows us to 
study situations in which players have 
no outside options such as investing 
effort in an alternative contest; we will 
later discuss games that model simul-
taneous contests, which provide play-
ers with such outside options. 

Standard all-pay contest. A classic 
game that models a contest, we refer 
to as the standard all-pay contest, as-
sumes a prize allocation mechanism 
that allocates entire prize budget to 
a highest-effort player with random 
tie break, and unit marginal produc-
tion costs. This game corresponds to 
the well-known game that models an 
all-pay auction, studied in auction 
theory. The given prize allocation 
mechanism is commonly referred 
to as perfect discrimination, because 
it assumes perfect identification of 
a highest-effort player, achieved by 
some flawless mechanism for com-
parison of individual efforts.  

We first discuss Nash equilibrium 
outcomes in the game with complete 
information that models the standard 
all-pay contest. This game does not 
have a pure-strategy Nash equilib-
rium. It can be easily verified that for 
any given effort investments, there is 
always a player who has a beneficial 
unilateral deviation. On the other 
hand, the game always has one or 
more mixed-strategy Nash equilibria, 
which were first fully characterized by 
Baye, Kovenock, and de Vries.2 

The game has a unique mixed-strat-
egy Nash equilibrium only in some 
special cases, such as in a two-player 
contest, or in a contest with three or 
more players but where two players 
have individual skills larger than that 
of any other player. In general, the 
game has a continuum of mixed-strat-
egy Nash equilibria. This may be con-
sidered a drawback because it implies 
a lack of predictive power. The mixed-
strategy Nash equilibria are payoff 
equivalent: whenever a game has two 
or more mixed-strategy Nash equilib-
ria, the expected payoffs in these equi-
libria are equivalent. In general, the 
equilibrium outcomes are not equiva-
lent with respect to either the expected 
total effort or the expected maximum 
individual effort. It is noteworthy that 

A game with 
complete 
information can be 
used as a model 
of a contest when 
the players are 
informed about 
who is going to 
participate in the 
contest and about 
the skills of the 
participants. 
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Rank-order allocation of prizes. We 
now consider a more general situation 
where a prize budget can be arbitrari-
ly split among two or more position 
prizes, which are assigned to players 
in decreasing order of effort, subject to 
the constraint that any position prize 
is at least as large as any lower posi-
tion prize (see Figure 3). For example, 
a prize budget may be split between 
two position prizes such that 2/3 of the 
prize budget is allocated to first place 
prize and the remaining part is allo-
cated to second place prize; a common 
way of splitting a prize budget in Top-
Coder contests. 

We consider the question of how 
should a prize budget be split among 
position prizes to maximize a given 
objective in equilibrium. Clearly, 
the answer depends on the choice of 
the objective, equilibrium concept, 
heterogeneity of skills, and produc-
tion costs. Suppose the objective is 
to maximize the expected total effort 
in equilibrium of the game with in-
complete information, where players 
have identical prior distributions of 
skills and unit marginal production 
costs. Under these assumptions, it 
is optimal to allocate the entire prize 
budget to first place prize, which was 
shown by Moldovanu and Sela.28 Un-
der the same assumptions, allocating 
the entire prize budget to the first-
place prize is also optimal for the 
objective of maximizing the expected 
maximum individual effort, which 
was shown by Chawla, Hartline, and 
Sivan.7 These results hold even more 
generally for any production cost 
function with decreasing marginal 
costs. In contrast, for production cost 
functions with increasing marginal 
costs, it may be optimal to split a prize 
budget among two or more position 
prizes. The optimality of allocating 
entire prize budget to first place prize 
holds also for the game with com-
plete information, under the assump-
tion that players have identical skills 
and decreasing marginal production 
costs, as shown by Glazer and Hassin17 
and Ghosh and McAfee.16

The assumption that in the game 
with incomplete information the skills 
of players have identical prior distri-
butions is critical for the optimality of 
allocating entire prize budget to first 
place prize. Similarly, the assumption 

there always exists a mixed-strategy 
Nash equilibrium in which all but two 
highest-skill players invest zero effort. 
The expected total effort in this equi-
librium is at least as large as in any 
other equilibrium. 

We now discuss some properties 
that hold in any mixed-strategy Nash 
equilibrium. Without loss of general-
ity, assume that players’ identities are 
in decreasing order of their skill pa-
rameters. The expected total effort is 
of value between v2/2 and v2. Interest-
ingly, the expected maximum individ-
ual effort is always at least half of the 
expected total effort. This provides a 
theoretical support for the efficiency 
of competition-based crowdsourcing 
services in which a contest owner so-
licits solutions from multiple work-
ers, but makes use only of the best 
submitted solution. Intuitively, one 
would expect that such a production 
system is bound to be highly ineffi-
cient because much of the invested 
work ends up being wasted. However, 
by this result, inefficiency can only be 
to a limited extent in any mixed-strat-
egy Nash equilibrium. With regard to 
social welfare, there can be some ef-
ficiency loss in equilibrium, because 
a player whose skill is not the highest 
may have a strictly positive winning 
probability. However, this can only be 
up to a limited extent in any mixed-
strategy Nash equilibrium: the expect-
ed social welfare is always at least 4/5 
of the optimum social welfare. 

Another noteworthy property is the 
so-called exclusion principle, which 
refers to the existence of game in-
stances for which the expected total 
effort in equilibrium can be increased 
by excluding some players from the 
competition. In particular, for some 
game instances, it can be beneficial 
to exclude the highest-skill player. 
Intuitively, such exclusion may result 
in a more intense competition among 
players with more balanced skills, 
and, as a result, yield a higher expect-
ed total effort. 

We now move on to discuss the 
game with incomplete information 
that models the standard all-pay con-
test. We restrict our discussion to prior 
distributions according to which skills 
of players are independent and identi-
cally distributed random variables. The 
game has a unique symmetric Bayes-
Nash equilibrium, in which players 
play identical strategies. The expected 
total effort in this equilibrium is equal 
to the expected value of the second-
highest skill of a player. Interestingly, 
the expected maximum individual ef-
fort is at least half of the expected to-
tal effort in any symmetric Bayes-Nash 
equilibrium, which was established by 
Chawla, Hartline, and Sivan.7 This is 
exactly the same relation we previously 
noted to hold between the expected to-
tal effort and the expected maximum 
individual effort in any mixed-strategy 
Nash equilibrium of the game with 
complete information.   

Figure 3. Rank order allocation of prizes: Allocation of fixed shares w1 ≥ w2 ≥ … ≥ wn ≥0  
of a prize budget in decreasing order of effort.
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that in the game with complete infor-
mation the skills of players are iden-
tical is critical for the optimality of 
allocating entire prize budget to first 
place prize. If the skills of players have 
non-identical prior distributions, then 
there exist game instances such that it 
is profitable to split the prize budget 
over two or more position prizes, which 
is shown by the following example. 

Three players, two prizes example. 
Consider a game where a unit prize 
budget is split between two position 
prizes such that ½ ≤ α ≤ 1 is allocated 
to the first place prize and the remain-
ing part is allocated to the second place 
prize. Assume there are three players: a 
high-skill player with the skill param-
eter of value v>1 and two low-skill play-
ers whose skill parameters are of value 
1. Assume that each player incurs unit 
marginal production cost. This game 
has a mixed-strategy Nash equilibrium 
such that the two low-skill players play 
symmetric strategies. This equilibrium 
is such that in the limit of asymptoti-
cally large skill of the high-skill player, 
the mixed strategy of the high-skill 
player converges to a uniform distribu-
tion on [1 – α,α], and that of low-skill 
players converges to a uniform distri-
bution on [0,1 – α]. In this limit, the 
expected effort of the high-skill player 
is ½, and that of each low-skill player is 
(1 – α)/2. This adds up to the expected 
total effort of value ³/2 – α. Therefore, 
we observe the more balanced the split 
of the prize budget between the two 
position prizes, the larger the expected 
total effort. 

An interesting question to ask is 
how should a prize budget be allo-
cated to maximize a given objective in 
equilibrium, without making a com-
mitment to allocate the entire prize 
budget to players, no matter what 
effort investments they make. This 
question has been resolved for the 
game with incomplete information 
and the objective of maximizing the 
expected total effort by the celebrated 
work of Myerson.28 In particular, if 
the skill parameters are independent 
and identically distributed according 
to a prior distribution that satisfies a 
certain regularity condition, it is opti-
mal to award the entire prize budget 
to a highest-effort player subject to 
his or her effort being larger than or 
equal to a minimum required effort, 

and withhold the prize by the contest 
owner, otherwise. Chawla, Hartline, 
and Sivan7 have recently established 
similar characterization of the opti-
mum prize allocation for the objec-
tive of maximizing the expected maxi-
mum individual effort. 

Smooth allocation of prizes. Now 
consider prize allocation mechanisms 
that have a positive bias to awarding 
players who invest high effort, but do 
not guarantee that the prize is allo-
cated to a highest-effort player. Such 
prize allocation mechanisms can arise 
due to various factors. One factor is 
the stochasticity of production, where 
individual production outputs are ran-
dom variables, positively correlated 
with invested efforts. Another factor is 
allocation of prizes based on a ranking 
of players derived from noisy observa-
tions of individual production outputs. 
Such prize allocation mechanisms are 
referred to be with imperfect discrimi-
nation. The stochasticity of production 
may result in prize allocation accord-
ing to a smooth function of invested 
efforts, for all vectors of efforts except 
for some corner cases such as when all 
players invest zero efforts. 

An example of a smooth allocation 
of prizes is proportional allocation 

that splits a prize budget among play-
ers in proportion to invested efforts, 
conditional on at least one player in-
vesting a strictly positive effort; oth-
erwise, the prize is evenly split among 
players (Figure 4). A smooth prize al-
location may be enforced by the de-
sign of a resource allocation mecha-
nism. For example, proportional 
allocation has been used for alloca-
tion of computing resources37 and 
network bandwidth.22 Such resources 
typically consist of a large number of 
small units and, thus, for any practi-
cal purposes, can be regarded as infi-
nitely divisible resources. 

A more general class of smooth al-
locations is defined by allocating in 
proportion to an increasing positive-
valued function of invested effort, re-
ferred to as a general logit allocation. 
A special case is allocation in propor-
tion to a power function of invested 
effort, with a positive exponent param-
eter r. This is commonly referred to 
as Tullock allocation, which has been 
studied extensively in the literature on 
rent-seeking contests.40 Proportional 
allocation is a special case of a Tull-
ock allocation for the value of param-
eter r equal to 1. The larger the value 
of parameter r, the larger the share of 

Figure 4. Proportional allocation.

Prize 1st 2nd 3rd nth

1 2 3 n

Effort

Rank



76    COMMUNICATIONS OF THE ACM    |   MAY 2017  |   VOL.  60  |   NO.  5

review articles

tional allocation.14 For the game that 
models the contest with proportional 
allocation, the total effort in the pure-
strategy Nash equilibrium cannot be 
increased by excluding some of the 
players from competition.

Simultaneous contests. In the con-
text of online services, a contest is 
often run simultaneously with other 
contests. For example, in competition-
based crowdsourcing services, there 
are typically many open contests at any 
given time. Similarly, in online labor 
marketplaces, there are usually many 
open jobs at any given time. Multiple 
open contests provide players with 
alternative options to invest efforts, 
which can have a significant effect on 
the effort invested in any given contest. 
A player can invest effort only in a lim-
ited number of contests over a period 
of time, or he or she has a limited ef-
fort budget to invest over available con-
tests. A worker may only be able to pro-
duce a high-quality work by focusing to 
a small number of projects at any given 
time, or he or she may only be able to 
devote a limited number of work hours 
per week. Game theory provides us 
with a framework to study the relation 
between the values of prizes offered by 
different contests and the effort invest-
ments across different contests in a 
strategic equilibrium. 

We consider games that model si-
multaneous standard all-pay contests 
that offer prizes of arbitrary values. 
Such games have been studied for dif-
ferent types of production costs. We 
first consider the case where produc-
tion costs are such it is feasible for 
each player to participate in at most 
one contest, in which he or she incurs 
a unit marginal production cost. In 
such a game, strategic decision mak-
ing of a player consists of two compo-
nents: choosing in which contest to 
invest effort, and deciding how much 
effort to invest in the chosen contest. 
This strategic decision making is in-
formed by the available information, 
which consists of the values of prizes 
offered by different contests and the 
prior information about the skills of 
players. We consider the game with 
incomplete information, where the 
skill parameters of players are inde-
pendent and identically distributed 
according to a prior distribution. 
This game has a symmetric Bayes-

the prize allocated to a highest-effort 
player. For more details about smooth 
allocations, see, for example, Corchon 
and Dahm10 and Vojnović .42

One may ask how do equilibrium 
outcomes in the game that models 
the standard all-pay contest compare 
with those in the game with a smooth 
prize allocation, say, according to pro-
portional allocation. A first notable 
difference is that unlike the game that 
models the standard all-pay contest, 
the game with proportional allocation 
has a pure-strategy Nash equilibrium, 
which is unique. 

The total effort in any pure-strategy 
Nash equilibrium is guaranteed to be 
at least v2/2. The total effort increases 
in the highest-skill parameter v1 and it 
can be larger than v2. This is in contrast 
to the game that models the standard 
all-pay contest, where the total effort in 
any mixed-strategy Nash equilibrium 
is at most v2. One may ask whether 
there exists a smooth allocation of 
prizes that guarantees the total effort 
to be within a constant factor of v1 in 
any pure-strategy Nash equilibrium. 
The answer is negative.41 This gives us 
a useful insight that randomized prize 
allocations can achieve a larger total ef-
fort, but there are fundamental limits 
that cannot be surpassed. 

The maximum individual effort can 
be an arbitrarily small fraction of the 
total effort; for example, this is so for 
the simple game instance with equally 
skilled players by taking the number 
of players to be sufficiently large. This 
is in contrast to the game that models 
the standard all-pay contest where we 
noted that in any mixed-strategy Nash 
equilibrium, the expected maximum 
individual effort is at least 1/2 of the ex-
pected total effort. 

The social welfare in any pure-strategy 
Nash equilibrium of the game with 
proportional allocation is always at 
least 3/4 of the optimum value, a result 
by Johari and Tsitsiklis.21 It has been 
shown the game with proportional al-
location is a smooth game (for exam-
ple, see Roughgarden34), which implies 
that the expected social welfare is at 
least 1/2 of the optimum value in any 
mixed-strategy Nash equilibrium. 

Unlike the game that models the 
standard all-pay contest, the exclusion 
principle does not hold for the game 
that models the contest with propor-

An interesting 
question to ask is 
how should a prize 
budget be allocated 
to maximize a 
given objective 
in equilibrium, 
without making 
a commitment 
to allocate the 
entire prize budget 
to players, no 
matter what effort 
investments they 
make. 
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Nash equilibrium, which admits an 
explicit characterization, established 
in DiPalantino and Vojnović .11 In this 
equilibrium, there is a segregation of 
players in different skill levels, such 
that the players of the same skill level 
choose contests according to iden-
tical mixed strategies. A player of a 
higher skill level chooses a contest to 
participate from a smaller set of con-
tests that offer highest prizes. A high-
er expected participation is attracted 
by contests that offer high prizes, ac-
cording to a relation that exhibits di-
minishing returns with respect to the 
values of the prizes. 

Another type of production costs is 
when each player is endowed with an 
effort budget that he or she can split 
arbitrarily over available contests. 
This game is closely related to so-
called Colonel Blotto game: there are 
two colonels and two or more battle-
fields; each colonel is endowed with a 
number of troops that are simultane-
ously deployed over the battlefields; a 
battlefield is won by the colonel who 
places a larger number of troops on 
this battlefield, and the game is won 
by the colonel who wins more battle-
fields. A continuous Colonel Blotto 
game assumes that each colonel is 
endowed with an infinitely divisible 
amount of army force. 

The game with players endowed 
with effort budgets has a rich set of 
equilibrium properties. There are 
game instances with a continuum of 
mixed-strategy Nash equilibria. For 
example, this is the case for the game 
with two players that have non-iden-
tical effort budgets and two or more 
standard all-pay contests that offer 
identical prizes. When players have 
identical effort budgets, the game has 
both pure and mixed-strategy Nash 
equilibria in which each player invests 
all his or her effort in one contest, pro-
vided that the number of players is 
sufficiently large. In the limit of many 
players, the equilibrium participation 
of players across different contests is 
proportional to the values of prizes. 

Games that model simultaneous 
contests with players endowed with 
effort budgets have also been stud-
ied for other prize allocation mecha-
nisms, including proportional allo-
cation and equal-share allocation. 
The game that models simultaneous 

contests with proportional alloca-
tion and players endowed with effort 
budgets is not guaranteed to have a 
pure-strategy Nash equilibrium. A suf-
ficient condition for the existence of a 
pure-strategy Nash equilibrium is that 
each contest has at least two players 
with strictly positive skill parameters. 
The social efficiency in a pure-strategy 
Nash equilibrium can be arbitrarily 
low in a worst case.

Sharing of the utility of production. 
There have been various studies of pro-
duction systems where agents invest 
effort in one or more activities, which 
results in a utility of production that is 
shared among contributors according 
to a utility sharing mechanism. Some 
online services rely on user contribu-
tions and award credits to incentiv-
ize contributions. For example, some 
online services rely on user-generated 
content, such as questions and an-
swers in online Q&A services, and 
award credits in terms of attention or 
reputation points, which are commen-
surate to user contributions. Sharing 
the utility of production has been also 
studied in the context of cognitive la-
bor and allocation of scientific credit, 
for example, Kitcher23 and Kleinberg 
and Oren.24

A central question here is about the 
social efficiency of production in stra-
tegic equilibrium outcomes. Several 
factors can contribute to social inef-
ficiency of production, including the 
choice of the utility sharing mecha-
nism, the nature of the utility of pro-
duction functions, and the nature of 
production cost functions. Special at-
tention has been paid to local utility 
sharing mechanisms, which specify the 
shares of the utility of production asso-
ciated with a project exclusively based 
on the effort investments in this proj-
ect, and not on the effort investments 
in other projects. It is of interest to un-
derstand social efficiency of simple lo-
cal utility sharing mechanisms, for ex-
ample, allocating a priori fixed shares 
of the utility of production in decreas-
ing order of individual contributions 
or allocating in proportion to individu-
al contributions.      

The nature of the utility of produc-
tion is a critical factor for the social 
efficiency of equilibrium outcomes. If 
the utility of production is allowed to 
be according to a non-monotonic func-

tion of effort investments, then there 
are game instances for which the utility 
of production in a pure-strategy Nash 
equilibrium is an arbitrarily small 
fraction of the optimum; for example, 
this can be for a single project game 
with proportional allocation. This is 
an instance of a general phenomenon 
known as the tragedy of the commons,19 
referring to an inefficient use of con-
gestible resources that arises from 
non-cooperative behavior of selfish 
agents. The nature of the production 
cost functions is also a critical factor. 
If, in a single project game with pro-
portional allocation, the utility of pro-
duction is a monotone function, but 
players incur unit marginal production 
costs, then a similar inefficiency of pro-
duction can arise. 

Are there conditions for the games 
under consideration under which 
equilibrium is guaranteed to exist 
and all equilibria are approximately 
socially efficient? Here we may settle 
for the utility of production to be at 
least a constant factor of the optimum 
value. Such conditions have been iden-
tified by Vetta41 for the class of games 
referred to as monotone valid utility 
games. A game is said to be a mono-
tone valid utility game if the players’ 
payoffs are according to utility func-
tions whose sum is less than or equal 
to the value of a social utility func-
tion, and the following two conditions 
hold. The game is required to satisfy a 
monotonicity condition, which restricts 
to social utility functions whose value 
cannot increase by some player opt-
ing out from participation. The game 
is also required to satisfy a marginal 
contribution condition, which restricts 
each player’s utility to be at least as 
large as his or her marginal contribu-
tion to the social utility. In the context 
of games that model simultaneous 
projects, whether or not the marginal 
contribution condition holds depends 
on the nature of the utility of produc-
tion functions and the utility sharing 
mechanism. For example, the margin-
al contribution condition holds if the 
project utility functions are increasing 
functions with diminishing returns in 
the total effort invested in a project, 
and the utility sharing is according to 
proportional allocation. For mono-
tone valid utility games, the utility of 
production in any pure-strategy Nash 
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and one extra parameter for the un-
certainty of the estimate.

Statistical models of ranking out-
comes. The design of skill-rating sys-
tems is based on statistical models 
of ranking outcomes introduced by 
statisticians as early as in 1920s. A 
commonly used statistical model of 
ranking outcomes was introduced by 
Thurstone.39 Under this model, each 
comparison of a given set of indi-
viduals results in a ranking of these 
individuals generated as follows. 
The individuals are associated with 
latent performance random vari-
ables that are assumed to be inde-
pendent across different individuals 
and comparisons. The ranking out-
come of a comparison is assumed to 
be in decreasing order of individual 
performance. Each individual per-
formance is equal to a determinis-
tic skill parameter plus a zero mean 
noise random variable. The value 
of the skill parameter is unknown 
and has to be inferred from the ob-
served ranking outcomes. The noise 
random variables are assumed to be 
independent and identically distrib-
uted over different individuals and 
different comparisons. 

Specifically, for a comparison of a 
set S of individuals, each individual i 
∈ S is associated with performance bi 

= vi + εi, where vi is a real-valued skill 
parameter and εi is a zero mean noise 
random variable. A ranking outcome is 
derived from admitting that i is ranked 
higher than j whenever their respective 
performances satisfy bi > bj. 

A common assumption is that 
noise random variables are according 
to a Gaussian distribution, with zero 
mean and known variance β2. This as-
sumption was made in the original 
work by Thurstone for pair compari-
sons, and has been admitted by many 
popular skill-rating systems, includ-
ing TrueSkill, TopCoder skill-rating 
system, and skill-rating systems used 
in various sport competitions. The 
probability that individual i is ranked 
higher than individual j, in a compari-
son that involves these two individu-
als, is given by

where Φ(⋅) is the cumulative standard 
normal distribution. 

equilibrium is guaranteed to be at least 
1/2 of the optimum value.

The approximate social efficiency 
of the utility of production in any pure-
strategy Nash equilibrium has been 
established under the assumption that 
project utility functions have diminish-
ing returns. The diminishing returns of 
the utility of production are represen-
tative of production systems in which 
individual contributions are substi-
tutes. If, on the other hand, individual 
contributions are complements (that 
is, the utility of production has increas-
ing returns), then the social efficiency 
in an equilibrium outcome can be ar-
bitrarily low. In such cases, the utility 
of production in a pure-strategy Nash 
equilibrium cannot be guaranteed to 
be a constant-factor of the optimum 
value, but it is always at least 1/k of the 
optimum value, where k is the maxi-
mum number of players participating 
in a project.

Sequential contests and tourna-
ments. So far we discussed games that 
model contests where players simul-
taneously invest effort. A variety of 
games have been studied that model 
contests with some elements of se-
quential play. A coverage of these 
games and related work is avail-
able.42 Here we only mention some of 
these games: a single contest with se-
quential effort investments; a multi-
round two-player contest where the 
winner is the player who first wins a 
given number of rounds more than 
the opponent, referred to as tug-of-
war; a contest in which each player 
continuously invests effort until 
dropping out and the contest ends 
as soon as the number of players that 
are still in the competition is equal 
to the number of available prizes, 
referred to as war-of-attrition;5 a 
multi-round contest that ends as 
soon as the utility of cumulative ef-
fort exceeds a threshold whose value 
is private information of the contest 
owner;35 and, a contest where prizes 
are allocated over multiple rounds 
and each player competes until he or 
she wins a prize.8

Common contest architecture has 
the form of a single-elimination tour-
nament, defined by a directed tree and 
a seeding of players. Each contest of 
the tournament has one winner and 
all players who lose in a contest are 

eliminated from further competition. 
The winner of the tournament is the 
player who wins all contests in which 
he or she participates. A typical single-
elimination tournament consists of 
two-player contests and is defined by 
a binary tree and a seeding of players. 
Seeding procedures have been studied 
with respect to various criteria, such as 
the winning probability of the highest-
skill player. These studies have been 
pursued under two different assump-
tions: contest outcomes are assumed 
to be independent random events ac-
cording to given winning probabili-
ties; and in each round of the tourna-
ment, the players who participate in 
this round make strategic effort invest-
ments accounting for their prospec-
tive payoffs in subsequent rounds of 
the tournament.

Skill-Rating Methods
An important component of some on-
line services is a skill-rating system 
that uses as input observed contest 
outcomes. For example, a contest out-
come may be a full ranking, that is, 
an ordered list of participants in the 
contest in decreasing order of individ-
ual performance, or a partial ranking 
such as a top-1 list that contains in-
formation about who participated in 
a contest and who was the winner in 
this contest. The skill ratings are used 
for various purposes, such as for cre-
ation of league tables, leaderboards, 
seeding of tournaments, and match-
making in online labor platforms. 
Popular skill-rating systems include 
TrueSkill, used in online gaming,20 
TopCoder skill-rating system, and 
skill-rating systems used in various 
sport competitions.13

A common requirement for skill- 
rating systems is to allow for pre-
diction of contest outcomes. For 
example, such predictions are used 
in online games for the purpose of  
matching equally skilled players, 
which results in interesting matches 
with uncertain outcomes. The design 
of skill-rating systems is often re-
quired to be based on simple and easy 
to understand principles, which are 
often made public information. The 
skill-rating systems often use only a 
few parameters to represent an in-
dividual’s skill; for example, using a 
scalar parameter for a point estimate 
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Another well-known model is the 
Bradley-Terry model, first introduced 
by Zermelo in 1920s45 and later popu-
larized in 1950s by the work of Bradley 
and Terry4 and others. Under the Brad-
ley-Terry model, the probability that 
individual i is ranked higher than indi-
vidual j, in a comparison that involves 
these two individuals, is given by

where θi and θj are positive-valued skill 
parameters. According to the Bradley-
Terry model, the winning probability 
of an individual in a pair comparison 
with another individual is proportional 
to his or her skill parameter. The natu-
ral generalization to comparison sets 
of two or more individuals, where the 
winning probabilities are proportional 
to the skill parameters, is known as the 
Luce’s choice model. Another general-
ization is a model of full ranking out-
comes for comparison sets of two or 
more individuals, defined by sampling 
individuals from a given comparison 
set without replacement with probabil-
ities proportional to their skill parame-
ters; this is known as the Plackett-Luce 
model. The Luce’s choice model is a 
special instance of a Thurstone model 
with noise random variables according 
to a double-exponential distribution 
with zero mean and variance β2. In this 
case, we have

that corresponds to the Bradley-Terry 
model by using the change of param-
eters  log(θi).

The statistical models of ranking 
outcomes discussed so far have been 
extended to accommodate various re-
quirements of modern applications. 
For example, they have been extended 
to allow for skill rating based on ob-
served outcomes of team competi-
tions, which arises in online gaming 
applications. This extension is based 
on a model that assumes a team per-
formance to be according to a given 
function of individual performances. 
For instance, a team performance may 
be assumed to be a linear function of 
individual performances, such as in 
the TrueSkill rating system. An area in 
which advances have been made is on 

statistical inference methods, which 
we briefly review as follows. 

Statistical inference methods. 
Having admitted a statistical model 
of ranking outcomes, it remains to 
choose a statistical inference method 
for estimation of skill parameters 
based on observed ranking outcomes. 
Two approaches are in common use: 
a frequentist approach and a Bayes-
ian approach. The frequentist ap-
proach considers skill parameters as 
unknown parameters and estimates 
them by minimizing a given loss func-
tion, for example, the negative log-
likelihood in the case of the maximum 
likelihood estimation. The Bayesian 
approach considers skill parameters 
as random variables with a given prior 
distribution, and amounts to comput-
ing the posterior distribution of these 
random variables conditional on the 
observed ranking outcomes. 

Frequentist inference. Statistical 
models of pair comparisons, such 
as the Thurstone model with either 
Gaussian or double-exponential dis-
tribution of noise, have a unique 
maximum likelihood estimator (up 
to an additive constant) provided that 
the adjacency matrix, specifying how 
many times different pairs of individu-
als are compared in the input data, is 
irreducible. An adjacency matrix is said 
to be irreducible if the corresponding 
graph, we refer to as a comparison 
graph, is connected. It was recently 
shown that the accuracy of the maxi-
mum likelihood parameter estima-
tor critically depends on how well the 
comparison graph is connected, for 
example, Hajek, Ox and Xu18 and Vo-
jnovic and Yun.43 Specifically, a key 
parameter is the algebraic connectiv-
ity of the comparison graph, defined 
as the second smallest eigenvalue of 
the Laplacian matrix of the compari-
son graph. Another line of recent re-
search is on various iterative methods 
for skill parameter estimation, includ-
ing gradient-descent based methods 
for minimizing the negative log-like-
lihood function, as well as alternative 
methods based on spectral properties 
of matrices and random walks, for ex-
ample, Neghaban, Oh, and Shah.30

Bayesian inference. For statistical 
models of ranking outcomes accord-
ing to a Thurstone model, the pos-
terior distribution of an individual’s 

An important 
component of  
some online 
services is a  
skill ratings system 
that uses as input 
observed contest 
outcomes. 
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skill is a marginal distribution of 
the posterior joint distribution of a 
multivariate variable that consists of 
individual skills and individual per-
formances. This posterior joint dis-
tribution consists of several factors 
that are conveniently represented by 
a graphical model, a way to represent 
the information about which factors 
depend on which variables. The mar-
ginal posterior distributions of skills 
can be computed using standard 
message-passing methods for infer-
ence in graphical models, such as the 
sum-product algorithm. It is common 
to approximate a marginal distribu-
tion of a skill variable with a distribu-
tion from an assumed family of distri-
butions; for example, assuming the 
family of Gaussian distributions, as 
done in the TrueSkill rating system. 
The approximate Bayesian inference 
amounts to approximating marginal 
posterior distributions of skills by 
distributions from the given family of 
distributions, assuming that marginal 
prior distributions belong to this fam-
ily of distributions.

Future Directions
Strategic game models of contests pro-
vide plenty of interesting hypotheses 
about what strategic user behavior 
may arise in different contest situa-
tions. Future work must be devoted to 
narrowing the gap between theoretical 
results and empirical validations. The 
availability of online services whose 
design is based on contests and the 
collected data provides us with an op-
portunity to test the existing theories 
and guide the development of new 
contributions to contest theory. An-
other research direction is to study sta-
tistical inference methods for various 
contest designs, such as in the recent 
study of A/B testing for auctions.6

While the skill-rating methods 
have been studied extensively over 
many years, some interesting ques-
tions still remain open. Most skill-rat-
ing methods represent an individual’s 
skill by a scalar parameter. In many 
situations, however, it is of interest 
to consider an individual’s skill over 
multiple dimensions; for example, 
an online worker may have differ-
ent types of skills such as analytical 
problem solving, strategic business 
planning, and software programming 

skills. Another interesting direction 
is to study statistical inference meth-
ods for statistical models of ranking 
outcomes that allow for a larger set of 
unknown parameters. For example, in 
an online labor platform, a ranking of 
job applicants would depend not only 
on the idiosyncratic skills of the ap-
plicants, but also on the specific job 
requirements, both of which may have 
uncertainties. Another direction is to 
develop solid theoretical foundations 
for individual skill rating based on 
observed team performance outputs. 
Current statistical inference meth-
ods used in practice assume simple 
models of team performance, such as 
that a team performance is the sum of 
individual performances, which may 
not always be valid in practice. 	
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