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Suppose two players repeatedly meet each other to play a game where

1. each uses a learning rule with the property that it is a calibrated forecast
of the other’s plays, and

2. each plays a myopic best response to this forecast distribution.

Then, the limit points of the sequence of plays are correlated equilibria. In fact, for
each correlated equilibrium there is some calibrated learning rule that the players
can use which results in their playing this correlated equilibrium in the limit. Thus,
the statistical concept of a calibration is strongly related to the game theoretic
concept of correlated equilibrium. Journal of Economic Literature Classification
Numbers: C72,D83,C44. Q 1997 Academic Press

1. INTRODUCTION

Ž .The concept of a Nash equilibrium NE is so important to game theory
that an extensive literature devoted to its defense and advancement exists.
Even so, there are aspects of the Nash equilibrium concept that are
puzzling. One is why any player should assume that the other will play

Ž .their Nash equilibrium strategy? Aumann 1987 says: ‘‘This is particularly
perplexing when, as often happens, there are multiple equilibria; but it has
considerable force even when the equilibrium is unique.’’

One resolution is to argue that the assumption about an opponent’s
Žplays are the outcome of some learning process see for example Chapter 6
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.of Kreps 1991a . Learning is modeled as recurrent updating. Players
choose a best reply on the basis of their forecasts of their opponents’
future choices. Forecasts are described as a function of previous plays in
the repeated game. Much attention has focused on developing forecast

Ž .rules by which a Nash equilibrium or its refinements may be learned.
Many rules have been proposed and convergence to Nash equilibrium has

Ž .been established under certain conditions see Skyrms, 1990 . For example,
Ž .Fudenberg and Kreps 1991 introduce the class of rules satisfying a

property called ‘‘asymptotic myopic Bayes.’’ They prove that if a conver-
gence takes place, it does so to a NE. Note that convergence is not

Ž .guaranteed. In summarizing other approaches, Kreps 1991b points out,
‘‘in general convergence is not assured.’’ This lack of convergence serves to
lessen the importance of the NE and its refinements.

Ž .On the positive side Milgrom and Roberts 1991 have shown that with
any learning rule that requires the player to make approximately best
responses consistent with their expectations, play tends toward the serially
undominated set of strategies. They call such learning rules adaptive and

Žprove that if the sequence of plays converges to a NE or correlated
.equilibrium then each player’s play is consistent with adaptive learning.

Learning, as we have described it, takes place at the level of the
individual. An important class of learning models involve learning at the

Ž .level of populations evolutionary models . Here the different strategies
are represented by individuals in the population. In particular, a mixed
strategy would be represented by assigning an appropriate fraction of the
population to each strategy. A pair of individuals is selected at random to
play the game. Individuals do not update their strategies but their numbers

Ž .wax and wane according to their average suitably defined payoff. Even in
this environment convergence to a NE is not guaranteed. On the positive
side, results analogous to Milgrom and Roberts have been obtained by

Ž .Samuelson and Zhang 1992 .
A second objection to NE is that it is inconsistent with the Bayesian

perspective. A Bayesian player starts with a prior over what their opponent
will select and chooses a best response to that. To argue that Bayesians
should play the NE of the game is to insist that they each choose a

Ž .particular prior. Aumann 1987 has gone further and argued that the
solution concept consistent with the Bayesian perspective is not NE but

Ž .correlated equilibrium CE . Support for such a view can be found in Nau
Ž .and McCardle 1990 who characterize CE in terms of the no arbitrage

Ž .condition so beloved by Bayesians. Also, Kalai and Lehrer 1994 show
that Bayesian players with uncontradicted beliefs learn a correlated equi-
librium.

In this note, we provide a direct link between the Bayesian beliefs of
players and the conclusion that they will play a CE. We do this by showing
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that a CE can be ‘learned’. We do not specify a particular learning rule,
rather, we restrict our attention to learning rules that possess an asymp-
totic property called calibration. The key result is that if players use any
forecasting rule with the property of being calibrated, then, in repeated
plays of the game, the limit points of the sequence of plays are correlated
equilibria.

The game theoretic importance of calibration follows from a theorem of
Ž .Dawid 1982 . Given the Bayesians prior, we look at the forecasts gener-

ated by the posterior. The sequences of future events on which this
forecast will not be calibrated, have measure zero. That is, the Bayesian’s
prior assigns probability zero to such outcomes. Thus, under the common
prior assumption, a Bayesian would expect all the other players to be using
their posterior, and hence to be calibrated. Using our result that calibra-
tion implies correlated equilibria, and the common prior assumption that
Bayesians expect that in the limit, they will be playing a correlated
equilibrium. This provides an alternative to Aumann’s proof that the
common prior assumption and rationality imply a correlated equilibrium.
If the common prior assumption holds then it is common knowledge that
all players are calibrated. If the players use a Bayesian forecasting scheme
that is calibrated, then, by the above, in repeated plays of the game, the
limit points of the sequence of plays are correlated equilibria.

In the next section of this paper we introduce notation and provide a
rigorous definition of some of the terms used in the Introduction. Subse-
quently we state and prove the main result of our paper. For ease of
exposition we consider only the two-person case. However, our results
generalize easily to the n-person case.1

2. NOTATION AND DEFINITIONS

Ž .For i s 1, 2, denote by S i the finite set of pure strategies of player i
Ž . Ž . Ž .and by u x, y g R the payoff to player i where x g S 1 and y g S 2 .i
< Ž . < < Ž . <Let m s S 1 and n s S 2 . A correlated strategy is a function h from a

Ž . Ž . Ž .finite probability space G into S 1 = S 2 , i.e., h s h , h is a random1 2
Ž .variable whose values are pairs of strategies, one from S 1 and the other

Ž . Ž .from S 2 . Note that if h is a correlated strategy, then u h , h , is a reali 1 2
valued random variable.

So as to understand the definition of a correlated equilibrium, imagine
an umpire who announces to both players what G and h are. Chance

Ž .chooses an element g g G and hands it to the umpire who computes h g .
Ž .The umpire then reveals h g to player i only and nothing more.i

1 See the discussion after Theorem 3.
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DEFINITION. A correlated strategy h is called a correlated equilibrium if

E u h , h G E u F h , h for all F : S 1 ª S 1 ,Ž . Ž . Ž . Ž .Ž . Ž .Ž .1 1 2 1 1 2

and

E u h , h G E u h , F h for all F : S 2 ª S 2 .Ž . Ž . Ž . Ž .Ž . Ž .Ž .2 1 2 2 1 2

Thus, a CE is achieved when no player can gain by deviating from the
umpire’s recommendation, assuming the other player will not deviate
either. The deviations are restricted to be functions F of h becausei

Ž . Ž .player i knows only h g . For more on CE see Aumann 1974, 1987 .i
We turn now to the notion of calibration. This is one of a number of

criteria used to evaluate the reliability of a probability forecast. It has been
Ž .argued by a number of writers see Dawid, 1982 that calibration is an

appealing minimal condition that any respectable probability forecast
should satisfy. Dawid offers the following intuitï e definition:

Ž .Suppose that, in a long conceptually infinite sequence of weather forecasts, we
look at all those days for which the forecast probability of precipitation was,

Ž .say, close to some given value p and assuming these form an infinite sequence
determine the long run proportion r of such days on which the forecast event
Ž .rain in fact occurred. The plot of r against p is termed the forecaster’s
empirical calibration cur̈ e. If the curve is the diagonal r s p, the forecaster may
be termed well calibrated.2

To give the notion a formal definition, suppose that player 1 is using a
forecasting scheme f. The output of f in round t of play is an n-tuple
Ž . � Ž . Ž .4 Ž .f t s p t , . . . , p t where p t is the forecasted probability that player1 n j

Ž . Ž .2 will play strategy j g S 2 at time t. Let x j, t s 1 if player 2 plays their
Ž .j-th strategy in round t and equal zero otherwise. Denote by N p, t the

number of rounds up to the t-th round that f generated a vector of
Ž .forecasts equal to p. Let r p, j, t be the fraction of these rounds for

which player 2 plays j, i.e.,

¡0 if N p , t s 0Ž .
t~ I x j, sŽ .r p , j, t sŽ . f Ž s.sp

otherwiseÝ¢ N p , tŽ .ss1

2 Ž .Defined in Dawid 1982, p. 605 . His notation has been changed to match ours.
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The forecast f is said to be calibrated with respect to the sequences of
plays made by player 2 if:

N p , tŽ .
< <lim r p , j, t y p s 0Ž .Ý j ttª` p

Ž .for all j g S 2 . Note that taking 0r0 s 0 is now seen not to matter since
Ž .the only time it will occur is if N p, t s 0, and thus it would be multiplied

by zero anyway. Roughly, calibration says that the empirical frequencies
conditioned on the assessments converge to the assessments. This is to be
contrasted with the asymptotic myopic Bayes condition of Fudenberg and
Kreps which says that the empirical frequencies in round t converge
together with the assessments in round t.

3. CALIBRATION AND CORRELATED EQUILIBRIUM

It is clear from the definition of correlated strategies that a CE is simply
Ž . Ž .a joint distribution over S 1 = S 2 with a particular property. Hence, we

Ž .focus on D x, y , the fraction of times up to time t that player 1 plays xt
and player 2 plays y. This is the empirical joint distribution. We assume

Ž .that when players select their best response for a given forecast they use
a stationary and deterministic tie breaking rule; say the lowest indexed
strategy.

Ž .THEOREM 1. Let p G be the set of all correlated equilibria in a game G.
If each player uses a forecast that is calibrated against the others sequence of
plays, and then makes a best response to this forecast, then,

< <min max D x , y y D x , y ª 0Ž . Ž .t
Ž . Ž . Ž .Dgp G xgS 1 , ygS 2

as t, the number of rounds of play, tends to infinity.

Proof. Observe first that the nm-tuple each of whose components is of
Ž . Ž .the form D x, y lies in the nm y 1 -dimensional unit simplex. By thet

Bolzano]Weirstrass theorem any bounded sequence in it contains a con-
� Ž .4 Ž .vergent subsequence. Thus, for any subsequence D x, y and D x, yti

such that

D x , y y D x , y ª 0,Ž . Ž .Ý t i
Ž .xgS 1
Ž .ygS 2

we need to show that D is a CE.
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Ž . Ž . Ž .For each x g S 1 let M x be the set of mixtures over S 2 for which xb
Ž .is a best response. Note that M x is a closed convex subset of theb

Ž .n y 1 -dimensional simplex which need not have a nonempty interior. Let
Ž .M x be the set of mixtures where player 1 actually plays x given that thep

Ž .forecast is in M x . By the assumption that players choose best responses,p
Ž . Ž . � Ž . Ž .4M x : M x . Further, M x : x g S 1 forms a partition of the sim-p b p

Ž .plex. The empirical conditional distribution of y g S 2 given that player 1
Ž . Ž .played x is D x , y rÝ D x , c . This converges tot c g S Ž2 . ti i

Ž . Ž . Ž .D x, y rÝ D x, c as long as Ý D x, c does not converge tocg SŽ2. cg SŽ2. t i

zero. If it did, it would mean that the proportion of times that x is played
tends to zero. Hence, in the limit, player 1 never plays x, so it can be
ignored. To complete the proof it suffices to show that the n-tuple whose

Ž . Ž . Ž .y-th component is D x, y rÝ D x, c is contained in M x . Observecg SŽ2. b
that:

D x , y s ty1 x y , rŽ . Ž .Ýt ii
Ž . Ž .rFt : f r gM xi p

s ty1 x y , rŽ .Ý Ýi
Ž . Ž .pgM x rFt : f r spp i

s ty1 r p , y , t N p , tŽ . Ž .Ýi i i
Ž .pgM xp

s ty1 p N p , tŽ .Ýi y i
Ž .pgM xp

q ty1 r p , y , t y p N p , t .Ž . Ž .Ž .Ýi i y i
Ž .pgM xp

Since the forecasts being used are calibrated, the second term in the last
expression goes to zero as t tends to infinity. Note that

N p , tŽ .
p g M xŽ .Ý bÝ N q , tŽ .q g M Ž x .Ž .pgM x pp

Ž . Žbecause it is a convex combination of vectors in M x recall thatb
. Ž .M : M , and M x is convex. Thereforep b b

D x , y N p , tŽ . Ž .
s lim pÝ yÝ D x , c Ý N p , tt ª`Ž . Ž .icg SŽ2. pg M Ž x .Ž .pgM x pp

Ž .which is then the yth component of a vector in M x also.b
� Ž .4We have shown that any sequence D x, y contains a convergentt i

subsequence whose limit is a CE. The theorem now follows. B
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In some sense the result above is not surprising. We know from Milgrom
Ž .and Roberts 1991 that if players use best responses they eliminate

dominated strategies. Second, the calibration requirement forces limit
points to satisfy an additional equilibrium requirement. Correlation arises
because players are able to condition on previous plays.

It is natural to ask if Theorem 1 would hold with a non-stationary
tie-breaking rule. The following version of matching pennies shows that this
is not possible.

Matching Pennies

h t

H 1ry 1 y1r1
T y1r1 1ry 1

In each round the row player will forecast that there is a 50% chance that
column will play heads and a 50% chance that column will play tails, i.e.,
Ž .0.5, 0.5 is the forecast. The column player will do likewise. Given these
forecasts there is a tie for the best reply. Consider the following tie
breaking rule: on even numbered rounds play heads and tails on the other
rounds. Notice that the resulting sequence of plays will be: Tt, Hh, Tt,
Hh, . . . . Clearly the forecasts of each player are calibrated, but the
distribution of plays does not converge to a CE.

Theorem 1 raises the question of how a calibrated forecast is to be
Ž .produced. Oakes 1985 has shown that there is no deterministic forecast

that is calibrated for all possible sequences of outcomes. Our requirements
are more modest. Given a game, and a correlated equilibrium of this
game, is there a sequence of plays and a deterministic forecasting rule
which depends only on observed histories that is calibrated? The next
theorem provides a positive answer to this question.

Ž .DEFINITION. Call a point of the distribution D x, y a limit point of
Ž .calibrated forecasts if there exist deterministic best reply functions R ?i

Ž .and calibrated forecasting rules p such that if each player i, plays R p ,i i i
Ž .then the limiting joint distribution will be D x, y .

Ž .DEFINITION. For a game G, let l G be the set of all distributions
which are limit points of calibrated forecasts.

Using this notation we can restate Theorem 1 as saying that for all
Ž . Ž .games G, l G ; p G .

We can represent every game by a vector in R2 m n, where each compo-
nent corresponds to a player’s payoff. A set of games is of measure zero if
the corresponding set of points in R2 m n has Lebesgue measure zero.
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Ž . Ž .THEOREM. For almost e¨ery game l G s p G . In other words, for
almost e¨ery game, the set of distributions which calibrated learning rules can
con¨erge to is identical to the set of correlated equilibriums.

Ž . Ž .Proof. Because of Theorem 1 we need only prove that p G ; l G .
Ž .Let x , y be a deterministic computable sequence such that the limitingt t

Ž .joint distribution is D x, y . At time t, have player 1 forecast

p ? s D x , ? D x , yŽ . Ž . Ž .Ý1, t t t
Ž .ygS 2

and player two forecast

p ? s D ?, y D x , y .Ž . Ž . Ž .Ý2, t t t
Ž .xgS 1

Ž .By the assumption that the joint distribution converges to D x, y , it is
clear that both of these forecasts are calibrated. Further, x is in fact at

Ž . Ž .best response to the forecast p ? , and y is a best response to p ? . So,1, t t 2, t
Ž . Ž . Ž .define R p such that, for all t, x s R p , and similarly for R p .1 t 1 1, t 2

These forecasts and these best reply functions are the key idea of the
Ž . Ž .proof. In fact, in the situation where R ? and R ? are both well defined1 2

we have completed the proof.
Ž . Ž .But R ? and R ? might not be well defined. In other words, there1 2

might be two different strategies x9 and x0 such that x s x9 andt 9

Ž . Ž .x s x0, and then p ? s p ? s p*. This is where the ‘‘almost everyt 0 1, t 9 1, t 0

game’’ condition comes into play.
Ž .Almost every game has the property that all the sets M x haveb

Ž .non-empty interior. To see why this is the case, observe that M x isb
formed by the intersection of half-spaces. Start with a closed convex set
with nonempty interior, C, say, and add these half-spaces one at a time.
We can choose C to be the simplex of all mixed strategies. Consider a
half-space H, chosen at random such that the coefficients that define H
are continuous with respect to Lebesgue measure. We claim that the
intersection of C and H is either the empty set or a set with an open
interior.

Pick a point p in the interior of C. Let q be the point in the boundary
of H which is closest to p. Let ¨ be the ray from p to q and d its length.
Both ¨ and d have continuous distributions since they are a continuous
transformation of the half-space H. Now consider the distribution of d
conditional on ¨ . Given ¨ there is a unique d such that H will be tangent
to C and not contain C. The conditional probability of d taking this value
is 0. Hence the unconditional probability is zero also.
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Ž . 3The interiors of the sets of the form M x are disjoint. Thus, near theb
point p* there are points p x 9 and p x 0 such that the unique best response
to p x 9 is x9 and the unique best response to p x 0 is x0. Forecasting p x 9 or
p x 0 instead of p* makes the reply function well defined. Unfortunately,
when the forecast of p x 9 is made, the actual frequency will turn out to be

< x 9 <p*. Thus, the calibration score will be off by at most p y p* . If we can
choose p x 9 to be convergent to p* this solves this last problem and our
proof is complete.

x 9 Ž . Ž . x 9 x 9Define a sequence p s 1 y 1ri p* q 1ri p . Then p convergesi i
to p* and, for all i, p x 9 has x9 as its unique best reply. For each i, forecasti
p x 9 sufficiently many times to ensure that there is a high probability thati
the empirical distribution is within 1ri of p*. With high probability the
empirical frequency conditional on forecast p x 9 will be within 2ri of p x 9

i i
and hence the calibration score will converge to zero. B

To see why Theorem 2 only holds for almost every game and not every
game, consider the following example:

1 2 3

A 2 _ 2 0 _ 3 0 _ 1
B 2 _ 2 0 _ 1 0 _ 3
C 2 _ 0 1 _ 1 1 _ 0

Ž .If Row randomizes between A and B with equal probability and Col plays
Ž .1, then this is a correlated equilibrium with a payoff of 2, 2 . But, the only

Ž . Ž .point in l G is the distribution which puts all its weight on point C, 2
Ž . Ž . Ž . �Ž .4which yields a payoff of 1, 1 . This is because M A s M B s 1, 0, 0b b

Ž . ŽŽ ..and M c is the entire simplex. So, if R 1, 0, 0 s A, then Row willb Row
ŽŽ ..never play strategy B, and likewise if R 1, 0, 0 s B, then Row willRow

never play A. So, a mixture of A and B is impossible and thus the payoff
Ž . Ž . Ž .2, 2 is impossible. Thus, p G / l G .

Can Theorem 1 be strengthened such that convergence to a Nash
equilibrium is assured instead of convergence to a CE? The previous
theorem shows that if one assumes only calibration, one gets any CE in
Ž .p G . So, without further assumptions on the forecasting rule, conver-

gence to Nash cannot be assured. In particular, adding an assumption that
Žthe limit exists does not refine the equilibrium attained in contrast with

.Fudenberg and Kreps who show that if a limit exists it must be Nash . This
is because Theorem 2 does not just find an accumulation point it finds a
direct limit.

3 The interiors and the union of the boundaries would form a partition.
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Is it easy to construct a forecast that is calibrated? Given the impossibil-
Ž .ity theorem of Oakes 1985 the existence of a deterministic scheme that is

calibrated for all sequences is ruled out. However, a randomized forecast-
ing scheme is possible.

Ž .THEOREM 3 Foster and Vohra, 1991 . There exists a randomized fore-
cast that player 1 can use such that no matter what learning rule player 2 uses,
player 1 will be calibrated. That is to say, player 1’s calibration score

N p , tŽ .
< <C ' r p , j, t y p 1Ž . Ž .Ý Ýt t tp Ž .jgS 2

con¨erges to zero in probability. In other words, for all e ) 0 we ha¨e that
Ž .lim P C - e s 1.t ª` t

Proof. See the Appendix.

The important thing to note about Theorem 3 is that each player can
individually choose to be calibrated. The other player cannot foil this
choice. Player 1 does not have to assume that player 2 is using an
exchangeable sequence, nor that player 2 is rational. Player 1 is still
calibrated if player 2 plays any arbitrary sequence. Second, the proof is
constructive, i.e., there is an explicit algorithm for producing such a
forecast.4 To extend this result to the n-person case the forecasting rules
must predict the joint distribution of what everyone else will play.

If in Theorem 1 we require only that the players use a forecasting rule
that is close to calibrated in the sense of Theorem 3, we obtain:

COROLLARY. There exists a randomized forecasting scheme, such that if
both player 1 and player 2 follow this scheme, then for any normal form
matrix game and for all e ) 0, there exists a t ) 0, such that for all t ) t ,0 0

< <P min max D x , y y D x , y - e ) 1 y e .Ž . Ž .tž /
x , yŽ .Dgp G

Ž .In other words, D con¨erges in probability to the set p G under thet
Hausdorff topology.

4. THE SHAPLEY GAME AND FICTITIOUS PLAY

The most famous of learning rules for games is called fictitious play
Ž .FP , first conceived in 1951 by George Brown. In a two-person game it

4 The most involved step is inverting a matrix.
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goes as follows:

Ž .DEFINITION Definition of Fictitious Play . Row computes the propor-
tion of times up to the present that Column has played each of hisrher
strategies. Then, Row treats these proportions as the probabilities that
Column will select from among hisrher strategies. Row then selects the
strategy that is hisrher best response. Column does likewise.

In 1951 Julia Robinson proved that FP converges to a NE in two-person
zero-sum games.

After the Robinson paper, interest naturally turned to trying to general-
ize Robinson’s theorem to nonzero sum games. In 1961, K. Miyasawa
proved that FP converges to a NE in two-person nonzero-sum games
where each player has at most two strategies.5 However, in 1964 Lloyd
Shapley dashed hopes of a generalization by describing a nonzero-sum
game consisting of three strategies for each player in which FP did not
converge to a NE. In this section we show that FP doesn’t converge to a
correlated equilibrium. We use Shapley’s original example:

Payoff Matrix for Shapley Game

1 2 3

1 1 _ 0 0 _ 1 0 _ 0
2 0 _ 0 1 _ 0 0 _ 1
3 0 _ 1 0 _ 0 1 _ 0

As observed by Shapley, FP in this game will oscillate between 6 states,
Ž . Ž . Ž . Ž . Ž . Ž .1,1 then 1, 2 , then 2, 2 , 2, 3 , 3, 3 , and 3, 1 , and then repeat.
Fictitious play stays longer and longer in each state, so the periods of
oscillation grow larger and larger. There is only one correlated equilibrium
with support on these six states.6 It assigns probability 1r6 to each state.

5 Ž .See Monderer and Shapley 1993 for other situations in which FP converges.
6 Ž .Using Nau and McCardle 1990 , the following linear program produces all the CE:

p G p G p G p G p G p G p ,11 12 22 23 33 31 11

p F p , p F p ,13 11 13 23

p F p , p F p ,21 22 21 31

p F p , p F p ,32 33 32 12

which is equivalent to the LP : p s p s p s p s p s p s p , p F p , p F11 12 22 23 33 31 11 13 11 21
p , p F p . Adding the constraint that p s p s p s 0, this LP has a unique solution11 32 11 13 21 32
of p s p s p s p s p s p s 1r6.11 12 22 23 33 31
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Fictitious play is never close to this distribution.7 Thus, it does not
converge to a CE.

The Shapley game is interesting because it has a CE which is not a
mixture of Nash equilibriums.8 Theorem 3 tells us that there are calibrated
learning rules which will then converge to this CE. The expected payoff is
Ž . Ž .1r2, 1r2 which Pareto dominates the Nash payoff of 1r3, 1r3 .

Note added in proof. Earlier versions of this paper as well as presenta-
tions of the results at various conferences have generated numerous
follow-up papers on calibration and its connections to game theory. In this
section, we give a brief description of some of this work.

Theorem 3, which establishes the existence of a randomized forecasting
scheme that is calibrated, has prompted a number of alternative proofs.

Ž .The first of these was due to Sergiu Hart personal communication and is
particularly simple and short. It makes use of the mini]max theorem. The
draw back is that the scheme implied by the method is impractical to

Ž .implement. Independently, Fudenberg and Levine 1995 also gave a proof
using the mini]max theorem. The approach is more elaborate than Hart’s
but produces a forecasting scheme that is practical to implement. In a

Ž .follow-up paper Fudenberg and Levine 1996 consider a refinement of the
calibration idea that involves the classification of observations into various
categories. For this refinement they derive a procedure that yields almost
as high a time-average payoff as could be obtained if the player chooses
knowing the conditional distribution of actions given categories. If players
use such a procedure, the long time average of play resembles a correlated
equilibrium.

Ž .Our own proof of Theorem 3 which is described in the Appendix is
based on establishing the existence of a forecasting scheme that has a
property called no-regret. A proof along the lines of Theorem 1 shows that
a no-regret procedure would also lead to a correlated equilibrium. Hart

Ž .and Mas-Collel 1996 have extended this idea in many ways. First, they
Ž .give a very elegant proof of no-regret based on Blackwell’s 1956 vector

mini]max theorem. Second, they modify this scheme which requires a
matrix inversion to one that involves regret-matching. This greatly reduces

7 This can be seen either by direct calculation or by the following trick. If fictitious play was
Ž .ever close to this CE, then the marginals would have to be close to 1r3, 1r3, 1r3 . But these

marginals correspond to the Nash equilibrium. Shapley created this example precisely to show
that the marginals didn’t converge to the marginals of the Nash equilibrium; in fact, the

Ž .marginals are bounded away from the 1r3, 1r3, 1r3 point. Thus the Nash equilibrium is not
an accumulation point of the sequence of plays. Thus, we know that the marginals are never
close to being correct, and thus the joint distribution is also never close.

8 Ž . Ž .The unique Nash equilibrium for this game is 1r3, 1r3, 1r3 vs 1r3, 1r3, 1r3 . So, any
CE which isn’t Nash is also not a mixture of Nash equilibria.
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the computations required to implement the procedure. The simplified
procedure no longer has the no-regret property but will converge to a
correlated equilibrium. Their theorem is much harder to prove since they
cannot appeal to a no-regretrcalibration property as we have done.

Ž .Kalai et al. 1996 have recently shown that the notion of calibration is
mathematically equivalent to that of merging. This allows one to establish
relationships between convergence results based on merging and those
based on calibration and so derive some new convergence results.

APPENDIX

This appendix provides a telegraphic proof of Theorem 3. For more
Ž .details see Foster and Vohra 1991 .

We will first prove a property called ‘‘no-regret.’’ Consider k forecasts,
each with a loss or penalty at time t of 0 F Li F 1 for i s 1, . . . , k. Nowt
consider a randomized forecast which picks forecast i at time t with
probability w i. We define the loss from using the combined forecast to bet
the weighted sum of the losses of each forecast, namely, Ýk w i Li .is1 t t

DEFINITION. The regret generated by changing all i forecasts to j
iª j � i j4 i j

i jforecasts is R ' max 0, S s S I where I is the indicatorT T T S ) 0 x ) 0T

function and

T
i j i i jS ' w L y L .Ž .ÝT t t t

ts1

We choose the probability vector w so that it satisfies the following flowt
conservation equations:

k k
i iª j j jª i; i w R s w R .Ž . Ý Ýt ty1 t ty1

js1 js1

The duality theorem of linear programming can be used to establish the
existence of a nonnegative solution w to this system such that Ýk w i s 1.t is1 t

Ž .LEMMA 1 No-Regret . For all i* and j* the regret grows as the square
i*ª j* 'root of T. In particular, R F 2kT .T

Ž . Ž 2 . Ž .Proof. Let G x ' d x r2 I . Since x F 1r2d q G x we see thatd x ) 0 d

1 1
i*ª j* i*j* i jR F q G S F q G S .Ž . Ž .ÝT d T d T2d 2d ij
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X Ž .Now G x s d xI and sod x ) 0

Si j y Si j GX Si jŽ . Ž .Ý t ty1 d ty1
ij

s w i Li y L j dSi j I i jŽ .Ý Ž .t t t ty1 S ) 0ty 1
ij

s d Li w i Riª j y w jR jª iÝ Ý Ýt t ty1 t ty1ž /
i j j^ ` _

s 0 by flow conservation
s 0.

Ž i j. i jExpanding G S as a two-term Taylor series around S showsd t ty1

G Si j F G Si j q Si j y Si j GX Si jŽ . Ž . Ž . Ž .Ý Ý Ýd t d ty1 t ty1 d ty1
ij ij ij

2 2i i jq w L y L dŽ . Ž .Ý t t t
ij

2i j iF G S q kd wŽ . Ž .Ý Ýd ty1 t
ij i

F G Si j q kd .Ž .Ý d ty1
ij

Ž i j.Computing the recursive sum we see that Ý G S F Tkd and soi j d T
i*ª j* i*ª j*' 'Ž .R F 1r2d q Tkd . Picking d s 1r 2kT shows R F 2Tk .T T

B

We will now show that for a suitable loss function, a randomized
forecast that has no regret must also be calibrated.

v First, our forecasting scheme will choose in each round a probability
� i 4vector from the set p N i s 0, 1, . . . , k which is chosen so that any

Ž . Ž .probability distribution over S 2 the opponents strategies is within e of
one of these points.

v We denote the move made by player in 2 by the vector X st
w x Ž .X , X , X , . . . where X s 1 if strategy j g S 2 was chosen, andt, 1 t, 2 t, 3 t, j
zero otherwise. Note that X will be a 0]1 vector with exactly one nonzerot
component.

v
iNext, the loss incurred in round t from forecasting p will be

i < i < 2 < i < 2L s X y p s Ý X y p .t t jg SŽ2. t, j j

v
i iThe probability of forecasting p at time t will be w .t
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Ž .We seek to choose the w ’s so that L-2 calibration C t goes to zero int 2
probability as t gets large, where

N p , tŽ .2
C t s r p , j, t y p .Ž . Ž .Ž .Ý2 j tp

Ž .The expected value of C t is given by:2

t k
2i i iE C t s w r p , j, s y p rs.Ž .Ž . Ž .Ž .Ý Ý Ý2 j t j

ss1 is1 Ž .jgS 2

Simple algebra yields

max Riª jrt F E C t F e q max Riª jrt .Ž .Ž .Ý Ýt 2 t
j ji i

If the probabilities w ’s are chosen to satisfy the flow conservation equa-t
tions displayed earlier, we deduce that

k
E C t F e q O .Ž .Ž .2 ž /'2

Ž .Thus if we let k grow slowly and e go slowly to zero, we see that C t ª 02
Ž .in expectation which implies C t ª 0 in probability by Jensen’s inequal-2

Ž .ity. The L-1 calibration definition of Eq. 1 follows from the fact that it is
smaller than the square root of the L-2 calibration. Thus we have proved
Theorem 3.
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