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This paper deals with the complexity of computing Nash and correlated equilib- 
ria for a finite game in normal form. We examine the problems of checking the 
existence of equilibria satisfying a certain condition, such as “Given a game G and 
a number r, is there a Nash (correlated) equilibrium of G in which all players 
obtain an expected payoff of at least r?” or “Is there a unique Nash (correlated) 
equilibrium in G?” etc. We show that such problems are typically “hard” 
(NP-hard) for Nash equilibria but “easy” (polynomial) for correlated equilibria. 
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1. INTRODUCTION 

1.1. Motiuation 

Game-theoretic solution concepts may be theoretically interpreted and 
practically applied in numerous ways and in a variety of contexts. For 
some of these interpretations, the complexity of computing the equilib- 
rium may be absolutely irrelevant. For instance, one may think of a Nash 
equilibrium as a condition which must be satisfied by any steady state in a 
certain dynamic biological system. Such an application may be supported 
without assumptions on the players’ rationality and, more specifically, 
without assuming that any of them “computed” the equilibrium. 

However, there is a large class of applications-especially in economic 
theory-which does implicitly assume that a rational decision maker is 
faced with the technical problem of computing equilibria. For instance, 
whenever the Nash equilibrium concept is interpreted as a self-enforcing 
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agreement among rational players, which is attained by negotiation or 
suggested to them by another party or even read by the players from a 
certain “game theory guide,” it is implicitly assumed that someone com- 
putes Nash equilibria. This “someone” may be the players themselves, 
or the “other party,” or the “game theory guide” author. At any rate, 
this “someone” is not an omniscient superbeing-it eventually turns out 
to be a person or a machine for which bounded rationality considerations 
and computational restrictions do apply. 

We therefore believe that the complexity of computing a certain solu- 
tion concept is one of the features determining its plausibility for a whole 
range of theoretical and practical applications. 

This paper deals with two of the most widely used solution concepts for 
noncooperative games: the Nash equilibrium (introduced by Nash (1951)) 
and the correlated equilibrium (introduced by Aumann (1974)). The main 
results, given in the next subsection, may be summarized, in very bold 
strokes, as saying that Nash equilibrium is a complicated solution con- 
cept, whereas correlated equilibrium is a simple one. 

Related results, also demonstrating the computational difficulties asso- 
ciated with Nash equilibria, are contained in Gilboa (1988) and Ben Porath 
(1988). 

In Section 2 we present some preliminaries and provide the basic defini- 
tions. The proofs are in Section 3. Section 4 is devoted to some technical 
remarks. 

1.2. The Results 

Assuming familiarity with the standard definitions quoted in Section 2, 
we may state our main results. We first define the problems. 

In the following definitions, the word “game” should be interpreted as 
a finite game with rational payoffs given in its normal form. Each defini- 
tion relates to two problems-one for Nash equilibrium (NE) and one for 
correlated equilibrium (CE): 

(1) NE (CE) max payoff: Given a game G and a number r, does there 
exist a NE (CE) in G in which each player obtains the expected payoff of 
at least r? 

(2) NE (GE) uniqueness: Given a game G, does there exist a unique 
NE (CE) in G? 

(3) NE (CE) in a subset: Given a game G and a subset of strategies Ti 
for each player i, does there exist a NE (CE) of G in which all strategies 
not included in Ti (for each i) are played with probability zero? 

(4) NE (CE) containing a subset: Given a game G and a subset of 
strategies Ti for each player i, does there exist a NE (CE) of G in which 
every strategy in Ti (for every player i) is played with positive probability? 



82 GILBOAANDZEMEL 

TABLE1 

NE CE 

Max payoff 
Uniqueness 
In a subset 
Containing a subset 
Maximal support 
Minimal support 

NP-hard” P 
NP-hardb P 
NP-hard” P 
NP-hard” P 
NP-hard” P 
NP-hardO,d NP-hardc,d 

(t NP-complete for two players. 
b CoNP-complete for two players. 
c NP-complete for any number of players. 
d NP-hard even for zero-sum games. 

(5) NE (CE) maximal support: Given a game G and an integer r 2 1, 
does there exist a NE (CE) of G in which each player uses at least Y 
strategies with positive probability? 

(6) NE (CE) minimal support: Given a game G and an integer k 2 1, 
does there exist a NE (CE) of G in which each player uses no more than k 
strategies with positive probability? 

THEOREM. (a) Th e o f 11 owing problems are NP-hard (NPH): NE max 
payoff, NE uniqueness; NE in a subset, NE containing a subset, NE 
maximal support, NE minimal support, CE minimal support. 

(b) The following problems are of polynomial time complexity (P): CE 
max payoff, CE uniqueness, CE in a subset, CE containing a subset, CE 
maximal support. 

These results may be summarized in Table I. 

2. PRELIMINARIES 

2.1. Game Theory Definitions 

A game (to be precise, a noncooperative game in normal form) is a 
triple (N, (S&, (h&n) where N is a nonempty set (of players), S’ is a 
nonempty set (of strategies of player i) for every i E N, and hi: S + [w for 
every i, where S = lIiE~ Si (hi is the payofffunction of player i). A game 
G = (N, (SI)iEN, (hl)iEN) is called finite if the set N and all sets (Sr)iEN are 
finite. We will henceforth discuss only finite games. Since we are inter- 
ested in computational issues, we will also assume that the game data are 
rational, i.e., hi: S + Q rather than S * R. 

Given a finite game G = (N, (,!9jiEN, (hqiEN) in which we assume, with- 
out loss of generality, that N = (1, . . . , n}, we define the (mixture) 
extension of G to be the game G = (N, (XqiENy (HqiEN) where: 
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(1) 2,’ is the set of all probability vectors over Si (the set of mixed 
strategies of player i); 

(2) For every o = (ai, (T*, . . . , CT”) E C = Ily=, C i we define a 
measure P, on S by P,(s) = l$i ai where s = (s’, s*, . . . , s”), and 
H’(U) is the expected payoff to player i according to P,, i.e., 

H’(u) = &ES P,(s)h’(s). 

An n-tuple of mixed strategies a = (a ‘, if*, . . . , a”) E C is called a 
Nash equilibrium of G (in mixed strategies) if the following condition 
holds for every i E N and vi E 2’: 

Hi(@) 1 I-@‘, a*, . . . ) zi-1, d, a’+‘, . . . ) a”). 

That is to say, i? is a Nash equilibrium if no player can increase his/her 
expected payoff by a unilateral deviation from the (equilibrium) strategy 
suggested for him/her by a. 

Nash (1951) has shown that every finite game has a Nash equilibrium in 
mixed strategies as above. The proof uses topological arguments 
(Brauer’s fixed point theorem); to the best of our knowledge, there is no 
“elementary” proof of this fact. Hence it seems unlikely that the existing 
proofs of existence will be used to develop a polynomial algorithm for the 
computation of Nash equilibria, although they may give some insight into 
the development of iterative algorithms which, in turn, may prove useful 
for practical purposes (see, for instance, Samuelson, 1988). 

We now turn to correlated equilibria. In these, it is assumed that the 
players have some randomization device they may all observe simulta- 
neously. Hence any probability distribution on S may now be considered 
a solution of the game, rather than the smaller set of distributions which 
are the product of independent marginal distributions. A correlated equi- 
librium is therefore defined to be a probability distribution p on S which 
satisfies the following condition: 

For every s = (si, s2, . . . , s,) = (s;,, si, . . . , sj:) E S such that p(s) > 
0, for every player i E N and for every strategy Si E Si, 

The intuition which stands behind this definition is the following. Sup- 
pose an (n + 1)st party chooses each s E S with probability p(s) and 
reveals to each player only his/her component Si of s. Given this informa- 
tion, and assuming that the other players will play the strategy “recom- 
mended” to them by the (n + 1)st party, player i has a conditional proba- 
bility regarding the other players’ choices. It is required that the strategy 
“recommended” to player i, that is, sji, will be optimal for him/her given 
this conditional probability. 
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Aumann (1974), who introduced the concept of correlated equilibria, 
also noted that every Nash equilibrium in mixed strategies induces a 
correlated equilibrium defined by the product of the players’ mixed strate- 
gies. This also implies that for every game there are correlated equilibria. 
However, Hart and Schmeidler (1986) noted that correlated equilibria are 
defined by a finite set of linear inequalities, and showed (without using 
Nash’s result) that the feasible set induced by these inequalities is non- 
empty for all games. (Their result also deals with games with an infinite 
number of players, for which there is no Nash equilibrium in general.) In 
fact, all the results presented in this paper, which prove that a certain CE 
problem is easy, use this observation and that linear programming prob- 
lems can be solved in polynomial time. 

2.2. Computer Science Definitions 

Unfortunately, we cannot provide succinct and formal definitions for all 
the terms we will use. For the sake of brevity, we will provide only short 
and intuitive explanations, and the interested reader is referred to Aho et 
al. (1974) and Garey and Johnson (1979) for formal definitions. 

By problem we refer to a YES/NO problem, i.e., a function A(.) from 
the set of inputs to the set {YESNO}. An instance of a problem is a given 
input. The size, 1x1, of an instance x is the number of digits in the encoding 
ofx. 

An algorithm T is a well-defined set of instructions which may be identi- 
fied with a Turing machine and thought of as a computer program with a 
specific output state denoted YES. Let T1 be the set of inputs such that T, 
when given x, reaches the output state YES within a finite number of 
steps. In that case, the number of steps is called the running time of T 
on x. 

An algorithm T is said to solve the problem A if T1 = {x: A(x) = YES}; 
i.e., it reaches the state YES precisely on the correct set of inputs. The 
computational complexity of T, c(n), is the maximum running time, over 
all inputs x E T, such that 1x1 5 n. Note that this definition is not symmet- 
ric with respect to replacing YES by NO. We will focus on the order of 
magnitude of c(n), rather than on the function itself. More specifically, we 
will be interested in the existence of “polynomial algorithms,” that is, 
algorithms for which the time complexity c(n) is bounded from above by 
some polynomial of n. The set of all problems for which there exists such 
an algorithm is denoted by P. Most of the well-known optimization prob- 
lems, such as the traveling salesman problem, the set covering problem, 
and the knapsack problem, are generally believed to be outside P. Rather, 
they are known to be in a set containing P, which is called NP. 

A problem is called NP (or belongs to the class NP) if there is a nonde- 
terministic Turing machine which solves it in polynomial time. One may 
think of a nondeterministic Turing machine as a computer with an un- 
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bounded number of processors working in parallel. Intuitively, a problem 
A is in NP if one can prove in polynomial time, possibly using a guess, 
that A(x) = YES. For example, the problem of deciding whether a certain 
graph contains a Hamiltonian tour is not known to be in P; i.e., we do not 
know of a polynomial algorithm for it. However, this problem is in NP 
since we can prove in polynomial time that a given graph is in fact Hamil- 
tonian using a guess that consists of a Hamiltonian tour. Note that the 
definition does not specify how the tour is obtained. The only polynomial 
requirement is to be able to check in polynomial time that the presented 
tour is in fact Hamiltonian. 

As noted previously, the definition of running time is not invariant 
under complementation of YES and NO. The class of problems whose 
complements are in NP is called CoNP. In other words, a problem A is in 
CoNP if one can prove in polynomial time that A(x) = NO. Obviously, 
P c NP but the question of whether the containment is strict is still open. 
It is also not known whether or not NP = CoNP. The “evidence” so far 
suggests a negative answer to both these questions. 

On the set of problems one may define the binary relation “is (polyno- 
mially) easier than” or “can be polynomially reduced to” as follows. A 
problem A is easier than B if there is a polynomial algorithm which trans- 
lates every possible input of A to an input of B, such that all A-inputs for 
which the A-answer is “YES,” and only those, are mapped to B-inputs 
for which the B-answer is “YES.” (In this case, we will also say that B is 
harder than A.) 

A problem in NP which is “harder,” in the above sense, than all prob- 
lems in NP is called NP-complete (NPC). The set CoNPC is defined in a 
similar fashion. Both sets NPC and CoNPC are subsets of a larger set 
called NP-hard (NPH). For a precise definition of this set (which is based 
on a more general notion of the “harder than” relation) see Garey and 
Johnson (1979). However, for our purposes it suffices to recall that if a 
problem A is harder than an NPH problem, then A itself is NPH. Also, the 
following conditional statement is true for each problem A in NPH: if 
there were a polynomial algorithm solving A, there would also be one for 
every problem in NP and in CoNP. In that case P = NP = CoNP (see 
Garey and Johnson, 1979, p. 156). For this reason NP-hard problems are 
considered hard: there are no known polynomial algorithms for them, and 
it is generally believed that such algorithms are unlikely to exist. 

3. PROOFS 

In this section we provide the proof of our theorem. To each problem 
we devote a subsection showing whether it is NPH or P. Then, in Subsec- 
tion 3.13, we show that for the case of two players, the NE problems are 
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in NP except for NE uniqueness which is in CoNP. Finally, we show that 
minimal support CE is also in NP. 

3.1. NE Max Payoff 

The proof is by reduction of the clique problem, defined as follows. 
Given an undirected graph Gr = (V, E) and an integer k, does there exist a 
clique of size k in Gr? That is, does there exist V’ L V, IV’1 = k such that 
{i, j} E E for all i, j E V’? 

(The clique problem is known to be NPC.) 
Given a graph Gr = (V, E) where, without loss of generality, V = 

(1,. . . , n} and a number k, construct a two-person game G as 

I+& ifi=j 
Nl, 9, (1,53) = h*(U, 4, (l,j>) = 1 ifi #j, {i,j} E E 

0 otherwise, 

where E = link, 

W2, 8, U,.N= {il 

i=j 

i#j 

/2*((2, i), (I,])) = [iM’ i i:i 

h’(U, 4, C&51) = (i"' 

izzj 

i#j 

h*(U, 9, C&53) = (t: 

izzj 

iZj 

hW2, 9, (2, j)) = h*@, 9, C&j)) = 0, 

where A4 = nk*. The game matrix is given in Fig. 1. 

CLAIM. G has a NE with expected payoff of at least r = 1 + elk for 
both players iff Gr has a clique of size k. 

Proof. First assume that Gr has such a clique, say {i,, i2, . . . , ik}. 
Define mixed strategies p for player 1 and q for player 2 by 

PW,, = m.i,) = l/k for 1 <jl k. 

It is easy to verify that p and q constitute a Nash equilibrium in which 
both players obtain the payoff r. 
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(1, 4 

(2, 1) 

(2, 4 (k, -M) 

(1, 1). . . (1, 4 

(1 + E, 1 + E) 
(1 + E, 1 + E) 

(eii, 4 

(eij, eij) 
(1 + E, 1 + E) 

(k, -Ml 
6% -MI 

’ (0, 0) 
(0, 0) * 

(2, 1) . . . (2, 4 

C--M, 4 
f-M, k) 

. (0, 0) 

(0, 0) 
C-M, 4 

(0, 0) 

FIGURE I 

Conversely, assume that p = (PC,,,), . . . , ~(2,~)) and q = (q(l,l), . . . , 
qc2,J are two strategies which form a NE in G, such that the expected 
payoff of each player is at least r. We want to show that Gr has a clique of 
size k. 

CLAIM 1. For every 1 5 i 5 n, p(2,,~, q(2,g < 1lnkM. 

Proof. For a given i 5 i 5 n, assume P(~,~) > 0. This implies that 
E(h*1(2, I’), q) 2 r. (Here and in the sequel, this expression means the 
expected payoff of player 1 given that he/she plays the pure strategy (2, i) 
and that player 2 plays the mixed strategy q. We will also use the obvious 
variations of this notation.) This is possible only if qcl,n > 0. But by the 
same argument, the latter implies E(h2)p, (1, i)) 2 r. A simple calculation 
shows that pc2,,) < 1lnkM. The proof for q is symmetric. n 

We now know that most of the probability mass of the mixed strategy of 
each player is concentrated on the first it strategies. Using this fact we will 
show that at least k of them are chosen with positive probability: 

CLAIM 2. I{itPw ’ @I, I{ih,a ’ (81 2 k. 

Proof. Assume the contrary, say I{i(q~t,,~ > O}l < k. Using Claim 1, this 
implies that for at least one index 1 I i 5 n, q(l,Il > (1 - llkM)l(k - 1). 
Simple and not-too-tedious calculations then show that E(h’l(2, i), q) > 
1 + a. But this is possible only if p(I,J1 = 0 for allj 5 n, which is known 
to be false. w 

CLAIM 3. For all i 5 n, ifPcl,ij > 0 then q(1.i) 2 Ilk; and ifqcla > 0 then 
P(I,O 2 l/k. 
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Proof. Assume p(i,i) > 0. The only payoff which exceeds 1 in the (1, i) 
row is attained in column (1, i). Hence E(hll( 1, z), q) 2 r = 1 + Elk only if 
qcl,l) 2 Ilk. (And the other part is proved symmetrically.) n 

Combining the conclusions of Claims 2 and 3 we deduce that there are 
k indices 1 I j, < j, < * * * < jk 5 n such that p(i,jl) = q(i,j/) = l/k for 1 5 
1 5 k. It is now obvious that these indices correspond to a clique of 
size k in Gr. n 

3.2. NE Uniqueness 

Again we use the clique problem. Given a graph Gr we construct a 
game G as in Subsection 3.1, only now we add another strategy-say O- 
to each player. Each player may guarantee himself/herself the payoff r by 
choosing the strategy 0, but if only one of them chooses 0, the other one 
gets the payoff -M. Hence (0, 0) is certainly a NE. However, there are 
no Nash equilibria in which either one of the players obtains less than r. 
We already know from 3.1 that there exists a NE which does not use the 
strategy pair (0, 0), iff there exists a clique of size k. It remains to be seen 
that there can be no NE which mixes the strategy 0 with the old strate- 
gies. But this can be easily obtained by replicating Claims l-3 of 3.1. The 
only modification needed is to note that the conclusion of Claim 1 can be 
strengthened to p(2.i) + po < IlnkM, and similarly for q. It follows that 
(0, 0) is the unique NE iff the graph Gr does not have a clique of 
size k. 

3.3. NE is a Subset 

Use the construction of Subsection 3.2 and define the subsets to be all 
strategies (of each player) but the one denoted 0. 

3.4. NE Containing a Subset 

The proof uses the clique problem again. Given a graph Gr and a num- 
ber k, construct a graph Gr’ by adding one vertex which is connected to 
all the previous ones. Obviously Gr has a clique of size k iff Gr’ has a 
clique of size (k + 1) which includes the new node. Then construct a game 
G as described in Subsection 3.2 for the graph Gr’ and the integer (k + 1). 
This game will have a NE in which the strategy, corresponding to the new 
node in Gr’, is played with positive probability iff Gr has a clique of size k. 

3.5. NE Maximal Support 

Again, use the construction of 3.2 with k 2 2. If a NE which uses more 
than one strategy exists, it must correspond to a clique of size k as in 3.2. 
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3.6. NE Minimal Support 

In this subsection we will prove a stronger result than originally stated: 
we will prove that the NE minimal support problem is NPH even if the 
input is restricted to be a two-person zero-sum game. This result will also 
be used to show that CE-minimal support is also NPH. To this end we 
need a new construction, and this time we will use the set cover problem, 
which is also known to be NPC. The version we use is the following. 

SET COVER. Given a number n r 1 and r subsets T,, T2, . . . , T, of 
N={l,. . . , n} such that UISjjl,Tj = N, and a number k 5 r, are there k 
indices 1 5 j, < j, < * . . < j, S r such that U15,=kTi, = N? 

We will now show that set cover can be reduced to the following 
problem. 

ZERO-SUM NE MINIMAL SUPPORT. Given a two-person zero-sum 
game G and a number k 2 1, is there a NE in G in which both players use 
no more than k strategies with positive probability? 

Proof. Let there be given an integer n L 1, r subsets TI, . . . , T, of 
N={l,. . . , n} such that u~,j,,Tj = N, and an integer k I r. Define 
the following game G: 

s’={1,2,. . . ,r,r+l} 

s2 = (1, 2:. . . , n, n + l} 

j I r, i I n, i @ Tj 
jSr,i=n+ 1 
j=r+l. 

CLAIM. The set N has a cover of size k out of {TI, . . . , T,} iff the 
game G has a NE in which both players do not use more than k strategies 
with positive probabilities. 

Proof of Claim. First assume that G has a NE as required. Consider 
player l’s strategy given by pj = l/r for 1 5 j 5 r (and pr+l = 0). This 
strategy ensures player 1 the expected payoff l/r. Hence the pure strategy 
r + 1 is not an optimal (maxmin) strategy for player 1 and cannot be 
played with probability 1 at any equilibrium. Hence, if p and q are the 
equilibrium strategies of players 1 and 2, respectively, the set J = (1 I j 
5 r[pj > 0) is nonempty. We claim that Uj,JTj = N. Indeed, if the sets 
{q}jE./ fail to cover the set N, there exists an i E N for which E(h’lp, i) < 
1/2r. In this case, p again is not a maxmin strategy for player 1. We then 
conclude that {Tj}jeJ is a cover of N. But our assumption on the Nash 
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equilibrium under consideration implies that IJ( 5 k. This completes the 
first half of the proof. 

Conversely, assume that there are 1 I j, < j2 < . * . < j, 5 r such that 
U iSISk Tj, = N. Let p be a mixed strategy of player 1 defined by Pj, = l/k for 
1 5 15 k, and let q be player 2’s strategy defined by qn+, = 1. The minimal 
expected payoff for player 1, should he/she choose p, is l/k. This is also 
the maximal expected loss incurred on player 2 should he/she choose q. 
Hence these are optimal strategies and they constitute a NE of G. n 

3.7. CE Minimal Support 

In order to prove that this problem is NPH we will use the proof in 
Subsection 3.6. The main point is that for zero-sum games the two con- 
cepts of equilibria coincide in terms of both the equilibrium payoffs 
and the strategies which may be used (at equilibrium) with positive prob- 
ability. 

We first note the following. 

CLAIM 1. Let p be a correlated equilibrium in a two-person zero-sum 
game G. Then E(h’jp) equals the value of the game V (= max,, min, 
EWJp, q) = min, max, EWlp, 4). 

Proof. Assume the contrary, e.g., E(h’jp) < V. (The other case is 
symmetric.) This implies that there are (i, j) E S such that pij > 0 and 

By definition, player 1 has an optimal strategy which assures him the 
payoff V against any strategy of player 2, in particular (po/Xkpik)jcS*. This 
strategy may be a mixed one, but there must be at least one pure strategy 
1 E S’ such that E(h’l1, (p~/Xkpik)jESz) 2 V. This implies that p is not a 
CE. n 

CLAIM 2. Let p be a CE of a two-person zero-sum game G. Then for 
every (i, J] E S such that pd > 0, (pi//Xkpik)i and (pmjIXkph)m are optimal 
strategies for players 2 and 1, respectively. 

Proof. Let us consider player 2’s strategy (the argument for player 1 
is, of course, symmetric.) Consider 

Since p is a CE, this maximum is obtained at m = i. But Claim 1 shows 
that the maximal value is then the value of the game V. This is just the 
definition of a minimax strategy for player 2. n 
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The proof will now be completed by the following: 

PROPOSITION. Let there be given a two-person zero-sum G and an 
integer k. G has a NE in which each player uses no more than k strategies 
with positive probability iff it has such a CE. 

Proof. The “only if” part is trivial since each NE also constitutes a 
CE (in which exactly the same strategies are played with positive proba- 
bility). For the “if” part, assume that there exists such a CE p, and pick a 
pair (i,]] E S such thatpij > 0. By Claim 2, (p;,/Xkpik)l and (pmj/Xkpkj)m are 
optimal strategies, hence a NE. Obviously, in this NE the strategies 
which are played with positive probability are also played with positive 
probability in the CE p. n 

3.8. CE Maximal Payoff 

In view of the observations in Subsection 2.1, this problem can be 
transformed into a linear program. It is well known that the latter can be 
solved in polynomial time. 

3.9. CE Uniqueness 

Given the set of linear constraints on (p&s defining a CE in a given 
game, one may solve two LP problems for each s E S. One of them will 
have the objective function Max ps, and the other Min ps, while both 
share the same feasible set. Obviously, the constraints define a unique CE 
iff all these problems have the same solution. 

3.10. CE in a Subset 

This problem is again solved by linear programming where one con- 
strains the appropriate variables to be zero. 

3.11. CE Containing a Subset 

Again, for each s E S, one solves the LP problem defined by the 
feasible set of CE and the objective function Max ps. Then one takes the 
arithmetic average of all solution vectors obtained. Of course, this is a CE 
since the set of CE is convex. Furthermore, if there exists a CE at which 
ps > 0 for some s E S, thenp, > 0 also in this average solution. Hence, for 
given sets Ti (for every player i) it only remains to check whether for 
everysjETiandeveryiENthereisans=(s’,s*,. . . ,sj,. . . ,s”) 
with ps > 0. (Note that this may be carried out in time complexity which is 
polynomial in the size of the game.) 

3.12. CE Maximal Support 

Identical to 3.11. 
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3.13. Membership in NPC and CoNPC 

We briefly show here that for two players the NE problems are in NP 
except for uniqueness which is in CoNP. Then we show that CE minimal 
support is also NPC for any number of players. 

We start by analyzing NE for two players. In this case, each NE is a 
solution to a polynomial set of linear equalities involving the (rational) 
matrices h’ and h2 as coefficients. Specifically, once one has “guessed” 
the support of the equilibrium strategies, the equilibrium conditions turn 
out to be linear inequalities in the corresponding variables (each pure 
strategy played at equilibrium should yield an expected payoff which is at 
least as high as any other). Furthermore, note that for all the problems 
under discussion, one may restrict one’s attention to basic solutions. It is 
well known that basic solutions of rational systems are themselves ra- 
tional, of size polynomial in the original data. Thus, all basic NE for a 
given game are of polynomial size. This means that if the answer to any of 
the NE problems is YES, there exists a solution of polynomial size. Also, 
given an alleged solution of polynomial size, it is easy to verify in polyno- 
mial time that it is, in fact, a NE satisfying any of the additional proper- 
ties such as max payoff, maximal support, etc. For the case of NE unique- 
ness, we can easily disprove this property in polynomial time by 
presenting a pair of distinct NE. This proves that the NE problems for 
two players are in NP, except for NE uniqueness, which is in CoNP. 

We now consider the case of CE minimal support for any number of 
players. As mentioned earlier, CE can be presented as a linear program- 
ming problem so that its basic solution is of polynomial size. Further- 
more, a CE satisfying the minimal support property can be chosen basic. 
Thus the problem is in NP. 

This completes the proof of our main theorem. 

4. SOMEREMARKS 

4.1. Our results do not imply NP hardness for the problem of comput- 
ing any NE for a given game. (The YES/NO problem which corresponds 
to this question is the trivial problem of existence of NE.) In fact, Me- 
giddo (1988) has shown that, for the case of two players, the problem is 
not NP hard unless NP = CoNP, an unlikely event. The problem for the 
general case is still open. 

4.2. All the complexity analysis carried out here referred to the 
“worst case” complexity of exact algorithms. It is conceivable that prob- 
lems which are hard with respect to this measure are in fact easy in the 
“average” case or if approximations, rather than exact algorithms, are 
concerned. This topic is currently under further study. 
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4.3. Our results about minimal and maximal support for CE can also 
be used to show that, for a given general set of linear constraints, it is 
“easy” to find a solution with the maximal number (or the maximal set) of 
positive variables, but it is “hard” to find the solution with the minimal 
number of positive variables. 
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