
 ECONOMETRICA
 VOLUME 50 SEPTEMBER, 1982 NUMBER 5

 A THEORY OF AUCTIONS AND COMPETITIVE BIDDING'

 BY PAUL R. MILGROM AND ROBERT J. WEBER

 A model of competitive bidding is developed in which the winning bidder's payoff may
 depend upon his personal preferences, the preferences of others, and the intrinsic qualities
 of the object being sold. In this model, the English (ascending) auction generates higher
 average prices than does the second-price auction. Also, when bidders are risk-neutral, the
 second-price auction generates higher average prices than the Dutch and first-price
 auctions. In all of these auctions, the seller can raise the expected price by adopting a
 policy of providing expert appraisals of the quality of the objects he sells.

 1. INTRODUCTION

 THE DESIGN AND CONDUCT of auctioning institutions has occupied the attention

 of many people over thousands of years. One of the earliest reports of an auction

 was given by the Greek historian Herodotus, who described the sale of women to
 be wives in Babylonia around the fifth century B.C. During the closing years of

 the Roman Empire, the auction of plundered booty was common. In China, the
 personal belongings of deceased Buddhist monks were sold at auction as early as
 the seventh century A.D.2

 In the United States in the 1980's, auctions account for an enormous volume
 of economic activity. Every week, the U.S. Treasury sells billions of dollars of
 bills and notes using a sealed-bid auction. The Department of the Interior sells
 mineral rights on federally-owned properties at auction.3 Throughout the public
 and private sectors, purchasing agents solicit delivery-price offers of products
 ranging from office supplies to specialized mining equipment; sellers auction

 antiques and artwork, flowers and livestock, publishing rights and timber rights,

 stamps and wine.
 The large volume of transactions arranged using auctions leads one to wonder

 what accounts for the popularity of such common auction forms as the English
 auction,4 the Dutch auction,5 the first-price sealed-bid auction,6 and the second-

 'This work was partially supported by the Center for Advanced Studies in Managerial Economics
 at Northwestern University, National Science Foundation Grant SES-8001932, Office of Naval
 Research Grants ONR-NOO-14-79-C-0685 and ONR-NOOO-14-77-C-0518, and by National Science
 Foundation Grant SOC77-06000-A1 at the Institute for Mathematical Studies in the Social Sciences,
 Stanford University. We thank the referees for their helpful comments.

 2These and other historical references can be found in Cassady [2].
 30n September 30, 1980, U.S. oil companies paid $2.8 billion for drilling rights on 147 tracts in the

 Gulf of Mexico. The three most expensive individual tracts brought prices of $165 million, $162
 million, and $121 million respectively.

 4The English (ascending, progressive, open, oral) auction is an auction with many variants, some
 of which are described in Section 5. In the variant we study, the auctioneer calls successively higher
 prices until only one willing bidder remains, and the number of active bidders is publicly known at all
 times.

 5The Dutch (descending) auction, which has been used to sell flowers for export in Holland, is
 conducted by an auctioneer who initially calls for a very high price and then continuously lowers the
 price until some bidder stops the auction and claims the flowers for that price.
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 price sealed-bid auction.? What determines which form will (or should) be used
 in any particular circumstance?

 Equally important, but less thoroughly explored, are questions about the
 relationship between auction theory and traditional competitive theory. One may
 ask: Do the prices which arise from the common auction forms resemble
 competitive prices? Do they approach competitive prices when there are many
 buyers and sellers? In the case of sales of such things as securities, mineral rights,
 and timber rights, where the bidders may differ in their knowledge about the
 intrinsic qualities of the object being sold, do prices aggregate the diverse bits of
 information available to the many bidders (as they do in some rational expecta-
 tions market equilibrium models)?

 In Section 2, we review some important results of the received auction theory,
 introduce a new general auction model, and summarize the results of our
 analysis. Section 3 contains a formal statement of our model, and develops the
 properties of "affiliated" random variables. The various theorems are presented
 in Sections 4-8. In Section 9, we offer our views on the current state of auction
 theory. Following Section 9 is a technical appendix dealing with affiliated
 random variables.

 2. AN OVERVIEW OF THE RECEIVED THEORY AND NEW RESULTS8

 2.1. The Independent Private Values Model

 Much of the existing literature on auction theory analyzes the independent
 private values model. In that model, a single indivisible object is to be sold to one
 of several bidders. Each bidder is risk-neutral and knows the value of the object
 to himself, but does not know the value of the object to the other bidders (this is
 the private values assumption). The values are modeled as being independently
 drawn from some continuous distribution. Bidders are assumed to behave
 competitively;9 therefore, the auction is treated as a noncooperative game among
 the bidders. 10

 At least seven important conclusions emerge from the model. The first of these
 is that the Dutch auction and the first-price auction are strategically equivalent.

 6The first-price auction is a sealed-bid auction in which the buyer making the highest bid claims
 the object and pays the amount he has bid.

 7The second-price auction is a sealed-bid auction in which the buyer making the highest bid
 claims the object, but pays only the amount of the second highest bid. This arrangement does not
 necessarily entail any loss of revenue for the seller, because the buyers in this auction will generally
 place higher bids than they would in the first-price auction.

 8A more thorough survey of the literature is given by Engelbrecht-Wiggans [4]. A comprehensive
 bibliography of bidding, including almost 500 titles, has been compiled by Stark and Rothkopf [26].

 9Situations in which bidders collude have received no attention in theoretical studies, despite
 many allegations of collusion, particularly in bidding for timber rights (Mead [14]).

 '0The case in which several identical objects are offered for sale with a limit of one item per bidder
 has also been analyzed (Ortega-Reichert [22], Vickrey [30]). All of the results discussed below have
 natural analogues in that more general setting.

 Another variation, in which the bidders' private valuations are drawn from a common but
 unknown distribution, has been treated by Wilson [34].
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 THEORY OF AUCTIONS 1091

 Recall that in a Dutch auction, the auctioneer begins by naming a very high

 price and then lowers it continuously until some bidder stops the auction and

 claims the object for that price. An insight due to Vickrey [29] is that the decision

 faced by a bidder with a particular valuation is essentially static, i.e. the bidder
 must choose the price level at which he will claim the object if it has not yet been

 claimed. The winning bidder will be the one who chooses the highest level, and

 the price he pays will be equal to that amount. This, of course, is also the way the

 winner and price are determined in the sealed-bid first-price auction. Thus, the

 sets of strategies and the mapping from strategies to outcomes are the same for

 both auction forms. Consequently, the equilibria of the two auction games must

 coincide.

 The second conclusion is that-in the context of the private values model-the

 second-price sealed-bid auction and the English auction are equivalent, although
 in a weaker sense than the "strategic equivalence" of the Dutch and first-price

 auctions. Recall that in an English auction, the auctioneer begins by soliciting

 bids at a low price level, and he then gradually raises the price until only one

 willing bidder remains. In this setting, a bidder's strategy must specify, for each

 of his possible valuations, whether he will be active at any given price level, as a

 function of the previous activity he has observed during the course of the

 auction. However, if a bidder knows the value of the object to himself, he has a
 straightforward dominant strategy, which is to bid actively until the price reaches
 the value of the object to him. Regardless of the strategies adopted by the other
 bidders, this simple strategy will be an optimal reply.

 Similarly, in the second-price auction, if a bidder knows the value of the object
 to himself, then his dominant strategy is to submit a sealed bid equal to that
 value. Thus, in both the English and second-price auctions, there is a unique

 dominant-strategy equilibrium. In both auctions, at equilibrium, the winner will
 be the bidder who values the object most highly, and the price he pays will be the
 value of the object to the bidder who values it second-most highly. In that sense,

 the two auctions are equivalent. Note that this argument requires that each
 bidder know the value of the object to himself.11 If what is being sold is the right
 to extract minerals from a property, where the amount of recoverable minerals is
 unknown, or if it is a work of art, which will be enjoyed by the buyer and then
 eventually resold for some currently undetermined price, then this equivalence
 result generally does not apply.

 A third result is that the outcome (at the dominant-strategy equilibrium) of the

 English and second-price auctions is Pareto optimal; that is, the winner is the
 bidder who values the object most highly. This conclusion follows immediately
 from the argument of the preceding paragraph and, like the first two results, does
 not depend on the symmetry of the model. In symmetric models the Dutch and
 first-price auctions also lead to Pareto optimal allocations.

 'In contrast, the argument concerning the strategic equivalence of the Dutch and first-price
 auctions does not require any assumptions about the values to the bidders of various outcomes. In
 particular, it does not require that a bidder know the value of the object to himself.
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 Expected

 Payment

 e(P*(V)) p*v

 Probability of Winning

 FIGURE 1.

 A fourth result is that in the independent private values model, all four auction

 forms lead to identical expected revenues for the seller (Ortega-Reichert [22],

 Vickrey [30]). This result remained a puzzle until recently, when an application of

 the self-selection approach cast it in a new light (Harris and Raviv [8], Myerson
 [21], Riley and Samuelson [24]). That approach views a bidder's decision prob-
 lem (when the strategies of the other bidders are fixed) as one of choosing,

 through his action, a probability p of winning and a corresponding expected

 payment e(p). (We take e(p) to be the lowest expected payment associated with
 an action which obtains the object with probability p.) It is important to notice
 that, because of the independence assumption, the set of (p, e(p)) pairs that are

 available to the bidder depends only on the rules of the auction and the strategies
 of the others, and not on his private valuation of the object.

 Figure 1 displays a typical bidding decision faced by a bidder who values the
 prize at v. The curve consists of the set of (p, e(p)) pairs among which he must

 choose.12 Since the bidder's expected utility from a point (p, e) is v p - e, his
 indifference curves are straight lines with slope v. Let p*(v) denote the optimal

 choice of p for a bidder with valuation v. It is clear from the figure that p* must
 be nondecreasing.

 In Figure 1, the tangency condition is e'(p*(v)) = v. Similarly, when the
 indifference line has multiple points of tangency, a small increase in v causes a

 jump Ap* in p* and a corresponding jump Ae = v * Ap* in e(p*(v)). Hence we
 can conclude quite generally that e(p*(v)) = e(p*(O)) + fvtdp*(t). It then fol-
 lows that the seller's expected revenue from a bidder depends on the rules of the

 auction only to the extent that the rules affect either e(p*(0)) or the p* function.
 Notice, in particular, that all auctions which always deliver the prize to the
 highest evaluator have the same p* function for all bidders. That observation,
 together with the fact that at the dominant-strategy equilibrium the second-price

 12In general, the (p, e(p))-curve need not be continuous; there may even be values of p for which
 no (p,e(p)) pair is available. However, there will always be a point (O,e(O)) on the curve, with
 e(O) < 0, for the bidder is free to abstain from participation. The quantity e(O) will be negative only if
 the seller at times provides subsidies to losing bidders.
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 THEORY OF AUCTIONS 1093

 auction yields a price equal to the second-highest valuation, leads to the fifth

 result.

 THEOREM 0: Assume that a particular auction mechanism is given, that the

 independent private values model applies, and that the bidders adopt strategies which

 consititute a noncooperative equilibrium. Suppose that at equilibrium the bidder who

 values the object most highly is certain to receive it, and that any bidder who values

 the object at its lowest possible level has an expected payment of zero. Then the
 expected revenue generated for the seller by the mechanism is precisely the expected

 value of the object to the second-highest evaluator.

 At the symmetric equilibria of the English, Dutch, first-price, and second-price

 auctions, the conditions of the theorem are satisfied. Consequently, the expected

 selling price is the same for all four mechanisms; this is the so-called "revenue-

 equivalence" result. It should be noted that Theorem 0 has an attractive
 economic interpretation. No matter what competitive mechanism is used to

 establish the selling price of the object, on average the sale will be at the lowest
 price at which supply (a single unit) equals demand.

 The self-selection approach has also been applied to the problem of designing

 auctions to maximize the seller's expected revenue (Harris and Raviv [8], Myer-

 son [21], Riley and Samuelson [24]). The problem is formulated very generally as

 a constrained optimal control problem, where the control variables are the pairs
 (p*( ), ei(p*(0))). As might be expected, the form of the optimal auction depends
 on the underlying distribution of bidder valuations. One remarkable conclusion
 emerging from the analysis is this: For many common sample distributions-
 including the normal, exponential, and uniform distributions-the four standard

 auction forms with suitably chosen reserve prices or entry fees are optimal
 auctions.

 The seventh and last result in this list arises in a variation of the model where

 either the seller or the buyers are risk averse. In that case, the seller will strictly
 prefer the Dutch or first-price auction to the English or second-price auction

 (Harris and Raviv [8], Holt [9], Maskin and Riley [11], Matthews [13]).

 2.2. Oil, Gas, and Mineral Rights

 The private values assumption is most nearly satisfied in auctions for non-
 durable consumer goods. The satisfaction derived from consuming such goods is
 reasonably regarded as a personal matter, so it is plausible that a bidder may

 know the value of the good to himself, and may allow that others could value the
 good differently.

 In contrast, consider the situation in an auction for mineral rights on a tract of
 land where the value of the rights depends on the unknown amount of recover-

 able ore, its quality, its ease of recovery, and the prices that will prevail for the
 processed mineral. To a first approximation, the values of these mineral rights to
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 1094 P. R. MILGROM AND R. J. WEBER

 the various bidders can be regarded as equal, but bidders may have differing
 estimates of the common value.

 Suppose the bidders make (conditionally) independent estimates of this com-
 mon value V. Other things being equal, the bidder with the largest estimate will
 make the highest bid. Consequently, even if all bidders make unbiased estimates,

 the winner will find that he had overestimated (on average) the value of the
 rights he has won at auction. Petroleum engineers (Capen, Clapp, and Campbell
 [1]) have claimed that this phenomenon, known as the winner's curse, is responsi-

 ble for the low profits earned by oil companies on offshore tracts in the 1960's.
 The model described above, in which risk-neutral bidders make independent

 estimates of the common value where the estimates are drawn from a single

 underlying distribution parameterized by V, can be called the mineral rights
 model or the common value model. The equilibrium of the first-price auction for

 this model has been extensively studied (Maskin and Riley [11], Milgrom [15, 16],
 Milgrom and Weber [20], Ortega-Reichert [22], Reece [23], Rothkopf [25], Wilson
 [34]). Among the most interesting results for the mineral rights model are those

 dealing with the relations between information, prices, and bidder profits.
 For example, consider the information that is reflected in the price resulting

 from a mineral rights auction. It is tempting to think that this price cannot
 convey more information than was available to the winning bidder, since the
 price is just the amount that he bid. This reasoning, however, is incorrect. Since
 the winning bidder's estimate is the maximum among all the estimates, the
 winning bid conveys a bound on all the loser's estimates. When there are many
 bidders, the price conveys a bound on many estimates, and so can be very
 informative. Indeed, let f(x I v) be the density of the distribution of a bidder's
 estimate when V = v. A property of many one-parameter sampling distributions

 is that for vI KV2, f(x v1)/(x I v2) declines as x increases.13 If this ratio
 approaches zero, then the equilibrium price in a first-price auction with many
 bidders is a consistent estimator of the value V, even if no bidder can estimate V
 closely from his information alone (Milgrom [15, 16], Wilson [34]). Thus, the
 price can be surprisingly effective in aggregating private information.

 Several results and examples suggest that a bidder's expected profits in a
 mineral rights auction depend more on the privacy of his information than on its

 accuracy as information about V. For example, in the first-price auction a bidder
 whose information is also available to some other bidder must have zero

 expected profits at equilibrium (Engelbrecht-Wiggans, Milgrom, and Weber [5],
 Milgrom [15]). Thus, if two bidders have access to the same estimate of V and a
 third bidder has access only to some less informative but independent estimate,
 then the two relatively well-informed bidders must have zero expected profits,
 but the more poorly-informed bidder may have positive expected profits. Related
 results appear in Milgrom [15 and 17] and as Theorem 7 of this paper.

 13This property is known to statisticians as the monotone likelihood ratio property (Tong [27]). Its
 usefulness for economic modelling has been elaborated by Milgrom [18].
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 THEORY OF AUCTIONS 1095

 2.3. A General Model

 Consider the issues that arise in attempting to select an auction to use in selling

 a painting. If the independent private values model is to be applied, one must
 make two assumptions: that each bidder knows his value for the painting, and
 that the values are statistically independent. The first assumption rules out the
 possibilities: (i) that the painting may be resold later for an unknown price, (ii)
 that there may be some "prestige" value in owning a painting which is admired
 by other bidders, and (iii) that the authenticity of the painting may be in doubt.
 The second assumption rules out the possibility that several bidders may have
 relevant information concerning the painting's authenticity, or that a buyer,

 thinking that the painting is particularly fine, may conclude that other bidders
 also are likely to value it highly. Only if these assumptions are palatable can the
 theory be used to guide the seller's choice of an auction procedure. Even in this
 case, however, little guidance is forthcoming: the theory predicts that the four
 most common auction forms lead to the same expected price.

 Unlike the private values theory, the common value theory allows for statisti-
 cal dependence among bidders' value estimates, but offers no role for differences
 in individual tastes. Furthermore, the received theory offers no basis for choosing

 among the first-price, second-price, Dutch, and English auction procedures.
 In this paper, we develop a general auction model for risk-neutral bidders

 which includes as special cases the independent private values model and the
 common value model, as well as a range of intermediate models which can better
 represent, for example, the auction of a painting. Despite its generality, the
 model yields several testable predictions. First, the Dutch and first-price auctions

 are strategically equivalent in the general model, just as they were in the private
 values model. Second, when bidders are uncertain about their value estimates,
 the English and second-price auctions are not equivalent: the English auction
 generally leads to larger expected prices. One explanation of this inequality is
 that when bidders are uncertain about their valuations, they can acquire useful
 information by scrutinizing the bidding behavior of their competitors during the
 course of an English auction. That extra information weakens the winner's curse
 and leads to more aggressive bidding in the English auction, which accounts for
 the higher expected price.

 A third prediction of the model is that when the bidders' value estimates are

 statistically dependent, the second-price auction generates a higher average price
 than does the first-price auction. Thus, the common auction forms can be ranked
 by the expected prices they generate. The English auction generates the highest
 prices followed by the second-price auction and, finally, the Dutch and first-price
 auctions. This may explain the observation that "an estimated 75 per cent, or
 even more, of all auctions in the world are conducted on an ascending-bid basis"
 (Cassady [2, page 66]).

 Suppose that the seller has access to a private source of information. Further,
 suppose that he can commit himself to any policy of reporting information that
 he chooses. Among the possible policies are: (i) concealment (never report any
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 1096 P. R. MILGROM AND R. J. WEBER

 information), (ii) honesty (always report all information completely), (iii) censor-

 ing (report only the most favorable information), (iv) summarizing (report only a
 rough summary statistic), and (v) randomizing (add noise to the data before
 reporting).

 The fourth conclusion of our analysis is that for the first-price, second-price,
 and English auctions policy, (ii) maximizes the expected price: Honesty is the
 best policy.

 The general model and its assumptions are presented in Section 3. The analysis
 of the model is driven by the assumption that the bidders' valuations are

 affiliated. Roughly, this means that a high value of one bidder's estimate makes
 high values of the others' estimates more likely. This assumption, though restric-
 tive, accords well with the qualitative features of the situations we have de-
 scribed.

 Sections 4 through 6 develop our principal results concering the second-price,
 English, and first-price auction procedures.

 In Section 7, we modify the general model by introducing reserve prices and
 entry fees. The introduction of a positive reserve price causes the number of
 bidders actually submitting bids to be random, but this does not significantly
 change the analysis of equilibrium strategies nor does it alter the ranking of the
 three auction forms as revenue generators. However, it does change the analysis
 of information reporting by the seller, because the number of competitors who
 are willing to bid at least the reserve price will generally depend on the details of
 the report: favorable information will attract additional bidders and unfavorable
 information will discourage them. The seller can offset that effect by adjusting
 the reserve price (in a manner depending on the particular realization of his
 information variable) so as to always attract the same set of bidders. When this is
 done, the information-release results mentioned above continue to hold.

 When both a reserve price and an entry fee are used, a bidder will participate
 in the auction if and only if his expected profit from bidding (given the reserve
 price) exceeds the entry fee. In particular, he will participate only if his value

 estimate exceeds some minimum level called the screening leveL The most
 tractable case for analysis arises when the "only if" can be replaced by "if and
 only if," that is, when every bidder whose value estimate exceeds the screening
 level participates: we call that case the regular case. The case of a zero entry fee
 is always regular.

 For each type of auction we study, any particular screening level x* can be

 achieved by a continuum of different combinations (r, e) of reserve prices and
 entry fees. We show that if (r, e) and (r, e) are two such combinations with e > e,
 and if the auction corresponding to (r, e) is regular, then the auction correspond-
 ing to (r, e) is also regular but generates lower expected revenues than the
 (r, e)-auction. Therefore, so long as regularity is preserved and the screening level
 is held fixed, it pays to raise entry fees and reduce reserve prices.

 In Section 8, we consider another variation of the general model, in which
 bidders are risk-averse. Recall that in the independent private values model with
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 THEORY OF AUCTIONS 1097

 risk aversion, the first-price auction yields a larger expected price than do the

 second-price and English auctions. In our more general model, no clear qualita-

 tive comparison can be made between the first-price and second-price auctions in

 the presence of risk aversion, and all that can be generally said about reserve

 prices and entry fees in the first-price auction is that the revenue-maximizing fee

 is positive (cf. Maskin and Riley [11]). With constant absolute risk aversion,

 however, both the results that the English auction generates higher average prices
 than the second-price auction, and that the best information-reporting policy for

 the seller in either of these two auctions is to reveal fully his information, retain

 their validity.

 3. THE GENERAL SYMMETRIC MODEL

 Consider an auction in which n bidders compete for the possession of a single

 object. Each bidder possesses some information concerning the object up for

 sale; let X = (XI, . . . , Xn) be a vector, the components of which are the
 real-valued informational variables14 (or value estimates, or signals) observed by

 the individual bidders. Let S = (SI, . .. , Sm) be a vector of additional real-
 valued variables which influence the value of the object to the bidders. Some of

 the components of S might be observed by the seller. For example, in the sale of

 a work of art, some of the components may represent appraisals obtained by the
 seller, while other components may correspond to the tastes of art connoisseurs
 not participating in the auction; these tastes could affect the resale value of the
 object.

 The actual value of the object to bidder i-which may, of course, depend on

 variables not observed by him at the time of the auction-will be denoted by

 Vi = ui(S, X). We make the following assumptions:

 ASSUMPTION 1: There is a function u on Rm n+ such that for all i, ui(S, X)

 = u(S,Xi, {Xj}1j=). Consequently, all of the bidders' valuations depend on S in
 the same manner, and each bidder's valuation is a symmetric function of the
 other bidders' signals.

 ASSUMPTION 2: The function u is nonnegative, and is continuous and nonde-
 creasing in its variables.

 ASSUMPTION 3: For each i, E [ VJ < oo.

 14To represent a bidder's information by a single real-valued signal is to make two substantive
 assumptions. Not only must his signal be a sufficient statistic for all of the information he possesses
 concerning the value of the object to him, it must also adequately summarize his information
 concerning the signals received by the other bidders. The derivation of such a statistic from several
 separate pieces of information is in general a difficult task (see, for example, the discussion in
 Engelbrecht-Wiggans and Weber [7]). It is in the light of these difficulties that we choose to view each

 Xi as a "value estimate," which may be correlated with the "estimates" of others but is the only piece
 of information available to bidder i.
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 Both the private values model and the common value model involve valuations
 of this form. In the first case, m = 0 and each Vi = Xi; in the second case, m = 1
 and each Vi = SI.

 Throughout the next four sections, we assume that the bidders' valuations are
 in monetary units, and that the bidders are neutral in their attitudes towards risk.
 Hence, if bidder i receives the object being sold and pays the amount b, his
 payoff is simply Vi - b.

 Let f(s, x) denote the joint probability density"5 of the random elements of the
 model. We make two assumptions about the joint distribution of S and X:

 ASSUMPTION 4: f is symmetric in its last n arguments.

 ASSUMPTION 5: The variables SI, . . ., Sm, XI, . . . , Xn are affiliated.

 A general definition of affiliation is given in the Appendix. For variables with
 densities, the following simple definition will suffice.

 Let z and z' be points in Rm+n. Let z V z' denote the component-wise
 maximum of z and z', and let z A z' denote the component-wise minimum. We
 say that the variables of the model are affiliated if, for all z and z',

 (2) f(z V z')f(z A z') ' f(z)f(z').

 Roughly, this condition means that large values for some of the variables make
 the other variables more likely to be large than small.

 We call inequality (2) the "affiliation inequality" (though it is also known as
 the "FKG inequality" and the "MTP2 property"), and a function f satisfying (2)
 is said to be "affiliated." Some consequences of affiliation are discussed by
 Karlin and Rinott [10] and by Tong [27], and related results are reported by
 Milgrom [18] and Whitt [32]. For our purposes, the major results are those given
 by Theorems 1-5 below.

 THEOREM 1: Let f: :Rk k- R. (i) If f is strictly positive and twice continuously
 differentiable, then f is affiliated if and only if for i #7]j, a2n f/aziazj > 0. (ii) If
 f(z) = g(z)h(z) where g and h are nonnegative and affiliated, then f is affiliated.

 A proof of part (i) can be found in Topkis [28, p. 310]. Part (ii) is easily
 checked.

 15This assumption-that the joint distribution of the various signals has an associated density-
 substantially simplifies the development of our results by making the statement of later assumptions
 simpler, and by ensuring the existence of equilibrium points in pure strategies. All of the results in
 this paper, except for the explicit characterizations of equilibrium strategies, continue to hold when
 this assumption is eliminated. In the general case, equilibrium strategies may involve randomization.
 These randomized strategies can be obtained directly, or indirectly as the limits of sequences of pure
 equilibrium strategies of the games studied here, using techniques developed in Engelbrecht-Wiggans,
 Milgrom, and Weber [5], Milgrom [17], and Milgrom and Weber [19].
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 THEORY OF AUCTIONS 1099

 In the independent private values model, the only random variables are

 X, ... , Xn, and they are statistically independent. For this case, (2) always
 holds with equality: Independent variables are always affiliated.

 In the mineral rights model, let g(xi I s) denote the conditional density of any
 Xi given the common value S and let h be the marginal density of S. Then
 f(s, x) = h (s)g(xi I s) ... g(Xn Is). Assume that the density g has the monotone
 likelihood ratio property; that is, assume that g(x Is) satisfies (2).16 It then
 follows from Theorem 1 (ii) that f satisfies (2). Consequently, for the case of
 densities g with the monotone likelihood ratio property, the mineral rights model
 fits our formulation.

 The affiliation assumption also accommodates other forms of the density f.

 For example, it accommodates a number of variations of the mineral rights
 model in which the bidders' estimation errors are positively correlated. And, if
 the inequality in (2) is strict, it formalizes the assumption that in an auction for a
 painting, a bidder who finds the painting very beautiful will expect others to
 admire it, too.

 In this symmetric bidding environment, we identify competitive behavior with
 symmetric Nash equilibrium behavior. We will find that, at equilibrium, bidders
 with higher estimates tend to make higher bids. Consequently, we shall need to
 understand the properties of the distribution of the highest estimates.

 Let Y1, . ., -1 denote the largest, . . . , smallest estimates from among
 X2, ... , Xn. Then, using (1) and the symmetry assumption, we can rewrite
 bidder l's value as follows:

 (3) VI = u(Si, . . .,Sm, XI, Y1, * Yn-

 The joint density of S1, ... SmSXl, Y1, ... , Yn 1 's

 (4) (n- 1)n ! f(xl, . . . , sm,Xl)yl, *Yn-I{1 Y -2- -Y-

 where the last term is an indicator function. Applying Theorem 1 (ii) to (4), we
 have the following result.

 THEOREM 2: If f is affiliated and symmetric in X2.... , Xnw then S,, . . .Sm
 X1 Y1 ... . Yn_ 1 are affiliated.

 The following additional results, which are used repeatedly, are derived in the
 Appendix.

 THEOREM 3: If Z1, . . . , Zk are affiliated and gl, . .. , gk are all nondecreasing
 functions (or all nonincreasing functions), then gI(Z1), . .. , gk(Zk) are affiliated.

 16The density g has the monotone likelihood ratio property if for all s' > s and x' > x, g(x I s)
 /g(x I s') > g(x' I s)/g(x' I s'). This is equivalent to the affiliation inequality: g(x I s)g(x' I s')
 ? g(x' s)g(x s').
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 1100 P. R. MILGROM AND R. J. WEBER

 THEOREM 4: If Z1, ... , Zk are affiliated, then Z1, . .. , Zk- 1 are affiliated.

 THEOREM 5: Let Z1, . . . , Zk be affiliated and let H be any nondecreasing
 function. Then the function h defined by

 h(al,bl; ... ; ak, bk)

 = E[H(Zl,..., Zk) I al < Z? < bl, . . ., ak < Zk< bk]

 is nondecreasing in all of its arguments. In particular, the functions

 hl (zi, * * *, zj) = E[ H(Zj, ... ., Zk )I| ZI, . . .,I Z1]

 for 1= 1, ... , k are all nondecreasing.

 In view of Theorems 2 and 5, we can conclude that the function E [ V1 I XI = x,
 Y= y1, ..., Yn- = yn -II is nondecreasing in x. To simplify later proofs, we
 add the nondegeneracy assumption that this function is strictly increasing in x.
 All of our results can be shown to hold without this extra assumption.

 4. SECOND-PRICE AUCTIONS'7

 In the second-price auction game, a strategy for bidder i is a function mapping

 his value estimate xi into a bid b = bi(xi) ? 0. Since the auction is symmetric, let
 us focus our attention on the bidding decision faced by bidder 1.

 Suppose that the bidders j #& 1 adopt strategies bj. Then the highest bid among
 them will be W= maxj, Ibj(Xj) which, for fixed strategies bj, is a random
 variable. Bidder 1 will win the second-price auction if his bid b exceeds W, and
 W is the price he will pay if he wins. Thus, his decision problem is to choose a
 bid b to solve

 maxE[( V1 - W)1{W<b) lXii.
 b

 If bl(xl) solves this problem for every value of xl, then the strategy b, is called a
 best reply to b2, . . ., bn. If each bi in an n-tuple (bl, . . . , bn) is a best reply to the
 remaining n - 1 strategies, then the n-tuple is called an equilibrium point.

 Let us define a function v : R2-- *R by v(x, y) = E [ V1 I X1 = x, Y1 = y]. In view
 of (3) and Theorems 2 and 5, v is nondecreasing. Our nondegeneracy assumption
 ensures that v is strictly increasing in its first argument.

 THEOREM 6: Let b*(x) = v(x,x). Then the n-tuple of strategies (b*, . .. , b*) is
 an equilibrium point of the second-price auction.

 17Our basic analysis of the second-price auction is very similar to that given in Milgrom [17],
 although the present set-up is a bit different. Theorems 6 and 7 were first proved in that reference.
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 THEORY OF AUCTIONS 1101

 PROOF: Since b* is increasing, W = b*( Y1). So bidder l's conditional expected
 payoff when he bids b is

 E[(VI - b*(Y1))l{b*(Y,)<b) lXi = x]

 = E[E[(VI - V(YO, YO))l{b*(Y) <b) lXI, Y1] lXI x]

 = E[(v(XI, Y1) - v(Y1, Y1))l{b*(Y,)<b) lxI x]

 Xfb* v(b)[ (Xa) - v (a, a) ] fy,(a I X) da,
 -00

 where fy,( I x) is the conditional density of Y1 given X1 = x. Since v is increasing
 in its first argument, the integrand is positive for a < x and negative for a > x.
 Hence, the integral is maximized by choosing b so that b* - l(b) = x, i.e.,
 b = b*(x). This proves that b* is a best reply for bidder 1. Q.E.D.

 An important special case arises if we assume that V1 = V2= = Vn = V.
 We call this the generalized mineral rights model. (It differs from the mineral
 rights model in not requiring the bidders' estimates of V to be conditionally
 independent.) Suppose that, in this context, we introduce an (n + I)st bidder
 with an estimate Xn + 1 of the common value V. We say that Xn + 1 is a garbling of
 (X1, YI) if the joint density of (V,X1, . . ., Xn,Xn+1) can be written as g(V,
 X1, ... , Xn) * h(Xn+ I I XI, Y1). For example, if bidder n + 1 bases his estimate
 Xn+I only on information that was also available to bidder 1, this condition
 would hold.

 THEOREM 7: For the generalized mineral rights model, if Xn +I is a garbling of
 (X1, YI), then bidder n + 1 has no strategy that earns a positive expected payoff
 when bidders 1, . . . , n use (b*, . . . , b*). Consequently, in this (n + 1)-bidder

 second-price auction, the (n + 1)-tuple (b*, .. . , b*,b +1) where bn+I _= is an
 equilibrium point.

 PROOF: Let Z = max(X1, Y1). If bidder n + 1 observes Xn+I and then makes a
 winning bid b, then his conditional expected payoff is

 E[(V- b*(Z)) I Xn+ 1, { b*(Z) < b) ]

 = E[E[ V- b*(Z) IXI, YI,Xn+1 I Xn+1, {b*(Z) < b}]

 = E[ v(X1, Y1) - v(Z, Z) I Xn+ 1, {b*(Z) < b} ].

 The last equality uses the fact that E[VIX1, YI,xn+11 = E[VIXI, Y1], a conse-
 quence of the garbling assumption. Since v is nondecreasing, v(XI, Y1) - v(Z, Z)
 _, so the last expectation is nonpositive. Q.E.D.
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 1102 P. R. MILGROM AND R. J. WEBER

 Now consider how the equilibrium is affected when the seller publicly reveals
 some information XO (which is affiliated with all the other random elements of
 the model). We shall assume the seller's revelations are credible."8

 Define a function w: R3 - *R by w(x, y; z) = E [ V1 I X1 = x, Y1 = y,X0 = z]. By
 Theorems 2 and 5, w is nondecreasing. After XO is publicly announced, a new
 conditional joint density f(s1, . . . , s,,,, x1, . . . , x, xo) applies to the random
 elements of the model, and it is straightforward to verify that the conditional

 density satisfies the affiliation inequality. So, carrying out the same analysis as
 before, there is an equilibrium (b, ... , b) given by b(x; xo) = w(x, x; xo). Note
 that this time a strategy maps two variables, representing private and public
 information, into a bid. For any fixed value of XO, the equilibrium strategy is a
 function of a single variable and is similar in form to b*.

 Let RN be the expected selling price when no public information is revealed

 and let R, be the expected price when XO is made public.

 THEOREM 8: The expected selling prices are as follows:

 RN=E[v(Yl,Yl)I{Xl> YI}],

 RI =E[w(YI, YI; XO) I {XI > Y1}]

 Revealing information publicly raises revenues, that is, R, ' RN.

 PROOF: Recall that v( Y1, Y1) is the price paid when bidder 1 wins. Thus, RN is
 the expected price paid by bidder 1 when he wins. By symmetry, it is the
 expected price, regardless of the winner's identity. The same argument applies
 to RI.

 Next, note the following identities.

 v(x,y) = E[ VI IX, = x, Y, =y]

 = E[E[ VI IXI, Y1,Xo] lX, = x, Y1 =y]

 =E[w(XI,YI;X0)I XI=x, Yi=y].

 For x > y, we apply Theorems 2, 4, and 5 to get:

 v(y, y) = E[ w(Xl, YI; X0) I XI = y, Yi = Y]

 = E[w(YI, YI;X0) IXI =y, Y1 =y]

 =_ E[ w(Yi, YI; X0) I XI = X, Y, = yI

 "8This might be the case if, for example, there were some effective recourse available to the buyer
 if the seller made a false announcement, or if the seller were an institution, like an auction house,
 which valued its reputation for truthfulness.
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 THEORY OF AUCTIONS 1103

 So,

 RN =E[v(YI, YI) I {Xi > Y1}]

 - E[w(YI, YI;X0)I {XI> Y1}] = R1 Q.E.D.

 Theorem 8 indicates that publicly revealing the information X0 is better, on
 average, than revealing no information. One might wonder whether it would be
 better still to censor information sometimes, i.e., to report X0 only when it
 exceeds some critical level. Of course, if this policy of the seller were known,
 rational bidders would correctly interpret the absence of any report as a bad sign.

 There are many possible information revelation policies. If one assumes that
 the bidders know the information policy, then one can also assume without loss
 of generality that the seller always makes some report, though that report may
 consist of a blank page. Let Z be a random variable, uniformly distributed on
 [0, 1] and independent of the other variables of the model. We formulate the
 seller's report very generally as X0 = r(Xo, Z), i.e., the seller's report may depend
 both on his information and the spin of a roulette wheel. We call r the seller's
 reporting policy.

 THEOREM 9: In the second-price auction, no reporting policy leads to a higher
 expected price than the policy of always reporting XO.

 PROOF: Let r be any reporting policy and let X0 = r(Xo, Z). The conditional
 distribution of X0, given the original variables (S, X), depends only on X0. We

 denote the conditional density (if one exists) by g(Xo' I [0) and the marginal
 density by g(Xo). For any realization x4 of X0, the corresponding conditional
 joint density19 of (S, X) is f(s, x)g(x I x0)/g(x'), which satisfies the affiliation
 inequality in (s,x) since f does, by Theorem 1. Therefore, by Theorem 8,
 revealing X0 further raises expected revenues. But revealing both X0 and X0 leads
 to the same equilibrium bidding as revealing just X0, so the result follows.

 Q.E.D.

 5. ENGLISH AUCTIONS

 There are many variants of the English auction. In some, the bids are called by
 the bidders themselves, and the auction ends when no one is willing to raise the

 191f Gx,(- I X0) denotes the conditional distribution of X0 given X0, then the variables SI, . . ., Sm,
 X0,X.I, Xn always will have a density with respect to the product measure Mm x G(- I X) x
 M , where M is Lebesgue measure, and the density always will have the form f(s, x)g(x0 I x')1f(xo).
 A density with respect to any product measure suffices for our analysis, so the theorem is proved by
 our argument.
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 1104 P. R. MILGROM AND R. J. WEBER

 bid.20 In others, the auctioneer calls the bids, and a willing bidder indicates his
 assent by some slight gesture, usually in a way that preserves his anonymity.
 Cassady [2] has described yet another variant, used in Japan, in which the price
 is posted using an electronic display. In that variant, the price is raised continu-
 ously, and a bidder who wishes to be active at the current price depresses a
 button. When he releases the button, he has withdrawn from the auction. These
 three forms of the English auction correspond to three quite different games. The
 game model developed in this section corresponds most closely to the Japanese
 variant. We assume that both the price level and the number of active bidders
 are continuously displayed. We use the term "English auction" to designate this
 variant.

 In the English auction with only two bidders, each bidder's strategy can be
 completely described by a single number which specifies how high to compete
 before ceding the contest to the other bidder. The bidder selecting the higher
 number wins, and he pays a price equal to the other bidder's number. Thus, with
 only two bidders, the English and second-price auctions are strategically equiva-
 lent. When there are three or more bidders, however, the bidding behavior of
 those who drop out early in an English auction can convey information to those
 who keep bidding, and our model of the auction as a game must account for that
 possibility.

 We idealize the auction as follows. Initially, all bidders are active at a price of
 zero. As the auctioneer raises the price, bidders drop out one by one. No bidder
 who has dropped out can become active again. After any bidder quits, all
 remaining active bidders know the price at which he quit.

 A strategy for bidder i specifies whether, at any price level p, he will remain
 active or drop out, as a function of his value estimate, the number of bidders who
 have quit the bidding, and the levels at which they quit. Let k denote the number

 of bidders who have quit and let p *-Pk denote the levels at which they
 quit. Then bidder i's strategy can be described by functions bik(xi I PI, ... , Pk)
 which specify the price at which bidder i will quit if, at that point, k other

 bidders have quit at the prices PI' ... I Pk It is natural to require that
 bi k(Xi I PI .. I Pk) be at least Pk .

 Now consider the strategy b* = (b*, . . . , b*- 2) defined iteratively as follows.

 (6) b*(x) = E[ Vl XI = X, Y[ xI, ... .,Yl= Y X].
 (6) bk* (X I PI, *.*.* Pk) = E[ VI | X1 = X, Y, = x, I Yn-k-1I XI

 bk*-1(Yn-k I PI, ... Pk-1 ) Pk, ...

 bo*(Yn-1) .=P1

 20A model in which the bidders call the bids has been analyzed by Wilson [33].
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 THEORY OF AUCTIONS 1105

 The component strategies reflect a kind of myopic bidding behavior. Suppose,
 for example, that k = 0, i.e., no bidder has quit yet. Suppose, too, that the price
 has reached the level b*(y) and that bidder 1 has observed X1 = x. If bidders
 2, . . ., n were to quit instantly, then bidder 1 could infer from this behavior that

 Y= = Y,__ = y. In that case, he would estimate his payoff to be E [ V1 I XI
 = x, Y1 = y,. Y I, Yn= y] - bY * (y). By (5) and Theorem 5, that difference is
 positive if x > y and negative if x <y. Thus, bo* calls for bidder 1 to remain
 active until the price rises to the point where he would be just indifferent between
 winning and losing at that price. The other strategies b have similar interpreta-
 tions, but they assume that bidders infer whatever they can from the quitting
 prices of those who are no longer active.

 THEOREM 10: The n-tuple (b*, . .. , b*) is an equilibrium point of the English
 auction game.

 PROOF: It is straightforward to verify from (5) and (6) that each bk is
 increasing in its first argument. Hence, if bidders 2, . . . , n adopt b* and bidder 1

 wins the auction, the price he will pay is E[VI IXI =y, =yi . . . ,Yn-
 = Yn- I] wherey1, . . . Yn- I are the realizations of Y1, . . . , Yn 1. His conditional
 estimate of V1 given XI, YI, . . . , Yn-I is E[VIIXI = x, YI =Yi .... Yn-
 = Yn- I], so his conditional expected payoff is nonnegative if and only if x > Yi1
 Using b*, bidder 1 will win if and only if X1 > Y1 (recall that the event
 {X1 = Y1} is null). Hence b* is a best reply for bidder 1. Q.E.D.

 THEOREM 11: The expected price in the English auction is not less than that in
 the second-price auction.

 PROOF: This is identical to the proof of Theorem 8, except that Y2,..., Yn-I
 play the role of XO. Q.E.D.

 In effect, the English auction proceeds in two phases. In phase 1, the n - 2
 bidders with the lowest estimates reveal their signals publicly through their
 bidding behavior. Then, the last two bidders engage in a second-price auction.
 We know from Theorem 8 that the public information phase raises the expected
 selling price.

 By mimicking the proofs of Theorem 8 and 9, we obtain corresponding results
 for English auctions. Define v and W as follows.

 i5(x,y1, . . . Iyn-l) = E[ V1 1XI = x, Yi =Yi. . .. I Yn-I =Yn-l.

 W(X,YI, .. **Yn-I;Z) = E[ VI IXI = x, Y1 =YI' ... I Yn-I =Yn-1,

 Xo= z].
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 1106 P. R. MILGROM AND R. J. WEBER

 THEOREM 12: If no information is provided by the seller, the expected price is

 RN =E[5(YO, YO Y2~ .. * Yn- 1) I {XI > YI}]

 If the seller announces XO, the expected price is

 RI =E[w(Y11 YI, Y2,***. Yn-1;XO) I{XI > Yi}]

 Revealing information publicly raises revenues, that is, RE >- R .

 THEOREM 13: In the English auction, no reporting policy leads to a higher

 expected price than the policy of always reporting XO.

 6. FIRST-PRICE AUCTIONS

 We begin our analysis of first-price auctions by deriving the necessary condi-
 tions for an n-tuple (b*, . . . , b*) to be an equilibrium point, when b* is
 increasing and differentiable.21 Suppose bidders 2, . . . , n adopt the strategy b*.
 If bidder 1 then observes X1 = x and bids b, his expected payoff TJ(b; x) will be
 given by

 H(b;x) = E[(V1 - b)l{b*(Y) <b) IXI = x]

 = E[E[(V1 - b)l{b*(Y,)<b) lX1, Y] IX1 = X]

 = E[(v(XI, Y1) - b)l{b*(Y,)<b) lxi = X]

 = fS* '(b)(v(x, a) - b)fy1(a I x) da,

 where x is infimum of the support of Y1. The first-order condition for a
 maximum of FJ(b; x) is

 0= TIb(b; X)

 (v(x, b* (b)) - b)fy1(b* (b) I x)

 b*'(b*- 1(b)) - Fyl(b*- l(b) I x)

 where rIb denotes aFJ/ab and Fy is the cumulative distribution corresponding to

 the density fyI. If b* is a best reply for 1, we must have TIb(b*(x); x) = 0.
 Substituting b*(x) for b in the first-order condition and rearranging terms leads

 21This derivation of the necessary conditions follows Wilson [34]. The derivation is heuristic: in
 general, b* need not be continuous. For example, let n = 2 and take XI and X2 to be either
 independent and uniformly distributed on [0, 1] (with probability 1/2), or independent and uniform

 on [1, 2]. (Note that X1 and X2 are affiliated.) Finally, let Vi = Xi. Then b* jumps from 1/2 to 1 at
 x = 1.
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 THEORY OF AUCTIONS 1107

 to a first-order linear differential equation:22

 (7) b*'(x) = (v(x x) - b*(x)) fy,(x X)

 Condition (7) is just one of the conditions necessary for equilibrium. Another
 necessary condition is that (v(x,x) - b*(x)) be nonnegative. Otherwise, bidder
 l's expected payoff would be negative and he could do better by bidding zero. It
 is also necessary that v(x,x) - b*(x) be nonpositive. Otherwise, when X1 =x, a
 small increase in the bid from b*(x) to b*(_) + e would raise l's expected payoff
 from zero to some small positive number. These last two restrictions determine
 the boundary condition: b*(x) = v(x,x).

 THEOREM 14: The n-tuple (b*, . .. , b*) is an equilibrium of the first-price
 auction, where:

 (8) b*(x)= fxv(a,a)dL (a I x), and

 L(a x) =exp - fy;(s Is) ds) *23

 Let t(x) = v(x,x). Then b* can also be written as:

 b*(x) = v(x,x) JXL(a I x) dt (a).

 LEMMA 1: FY,(x I z)/fyI(x I z) is decreasing in z.

 PROOF: By the affiliation inequality, for any a < x and any z' < z, we have

 fy,(a I z)/fy,(x I z) < fy,(a I z')/fy,(x I z'). Integrating with respect to a over the
 range x < a < x yields the desired result. Q.E.D.

 PROOF OF THEOREM 14: Notice that L(. I x), regarded as a probability distribu-
 tion on (_, x), increases stochastically in x (that is, L (a I x) is decreasing in x).
 Since v(a, a) is increasing, b* must be increasing.

 Temporarily assume that b* is continuous in x. Then there is no loss of
 generality in assuming that b* is differentiable, since Theorem 3 permits us to
 rescale the bidders' estimates monotonically.24 Consider bidder l's best response

 22By convention, we take fy,(x I x)Fy(x I x) to be zero when x is not in the support of the
 distribution of Y1.

 23If the integral is infinite, L(a I x) is taken to be zero.
 24In this proof only, we take special care to argue without assuming that the equilibrium bidding

 strategies are continuous or differentiable. Subsequent arguments in this paper involve a variety of
 differentiability assumptions that are made solely for expositional ease.
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 1108 P. R. MILGROM AND R. J. WEBER

 problem. It is clear that he need only consider bids in the range of b*. Therefore,

 to show that b*(z) is an optimal bid when XI = z, it suffices to show that
 llb(b*(x); z) is nonnegative for x < z and nonpositive for x > z. Now,

 b(b (x); z) = b (xI) (v(z,x) - b*(x)) - b*'(x). Fy(x IZ) b*f(x) ~~~~~~fy1 (xlIz)J
 By (7), the bracketed expression is zero when x = z. Therefore, by Lemma 1

 and the monotonicity of b* and v, the bracketed expression (and therefore,

 llb(b*(x); z)) has the same sign as (z - x).
 It remains to consider the cases where b* (as defined by (8)) is discontinuous

 at some point x. That can happen only if for all positive c, the first of the
 following expressions is infinite:

 X+E fY,(sIS) d x+E fy,(slx + c)

 Ax Fy1(sls) d? Fy,(slx + d)

 lnFy,(x + e I x + E)-lnFy,(x I x + c);

 the inequality follows from Lemma 1. The final difference can be infinite only if

 Fy (x I x + c) = 0, and that in turn implies that Fy ,(x I x + c) = 0. (Otherwise,
 there would be some point z = (z2, ... , Zn) in the conditional support of
 (X2, Xn) given XI = x + c, with some zi < x. By symmetry, all of the
 permutations of z are also in the support and therefore, by affiliation, the
 component-wise minimum of these permutations is in the support. But that

 would contradict the earlier conclusion that FY,(x I x + c) = 0.) Thus, if any Xi
 exceeds x, all must.

 It now follows that the bidding game decomposes into two subgames, in one of

 which it is common knowledge that all estimates exceed x and in the other

 of which it is common knowledge that none exceed x. Taking the refinement of

 all such decompositions, we obtain a collection of subgames, in each of which b*

 is continuous. The first part of our proof then applies to each subgame sepa-

 rately. Q.E.D.

 The remaining results in this section, as well as parts of the analyses in

 Sections 7 and 8, make use of the following simple lemma.

 LEMMA 2: Let g and h be differentiable functions for which (i) g(_) 2 h (_) and

 (ii) g(x) < h(x) implies g'(x) 2 h'(x). Then g(x) 2 h(x) for all x >x.

 PROOF: If g(x) < h(x) for some x >x then, by the mean value theorem, there
 is some x. in (x, x) such that g(x&) < h(x&) and g'(x&) < h'(x&). This contradicts (ii).

 Q.E.D.

 Our first application of this lemma is in the proof of the next theorem.
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 THEORY OF AUCTIONS 1109

 THEOREM 15: The expected selling price in the second-price auction is at least as

 large as in the first-price auction.

 PROOF: Let R(x, z) denote the expected value received by bidder 1 if his own
 estimate is z and he bids as if it were x; that is, define

 R(x,z) = E[ VI1 i Y1<x) IXl = z].

 Let WM(x,z) denote the conditional expected payment made by bidder 1 in

 auction mechanism M (in the case at hand, either the first-price or second-price
 mechanism) if (i) the other bidders follow their equilibrium strategies, (ii) bidder
 l's estimate is z, (iii) he bids as if it were x, and (iv) he wins. For the first-price

 and second-price mechanisms, we have Wl(x,z) = b*(x) and W2(x,z) =
 E[v(Y1, Y1) I Y1 < X, X1 = Z].

 In mechanism M, bidder l's problem at equilibrium when X1 = z is to choose

 a bid, or equivalently to choose x, to maximize R(x, z) - WM(x, z)FyI(x I z). The
 first-order condition must hold at x = z:

 (9) 0 = R1(z,z) - Wm (z,z)FyI(z I z) - Wm (z,z) fy,(z I z),

 where R1 and Wm denote the relevant partial derivatives. The equilibrium
 boundary condition is: WM(x,x) = v(_,_).

 Clearly, W2 (x, z) = 0. From Theorem 5 it follows that W22(x, z) 2 0. Hence, by
 (9), if W2(z,z) < Wl(z,z) for some z, then dW2/dz = W2 + W2 2 WI + W2
 = dW1/dz. Therefore, by Lemma 2, W2(z,z) ? WI(z,z) for all z >x. The
 theorem follows upon noting that the expected prices in the first-price and

 second-price auctions are E [ W'(XI, X)I {X1 > Y1}] and E [ W2(X1, X1) I {X1
 > Y1}], respectively. Q.E.D.

 A similar argument is used below to establish that in a first-price auction the
 seller can raise the expected price by adopting a policy of revealing his informa-
 tion.

 THEOREM 16: In the first-price auction, a policy of publicly revealing the seller's

 information cannot lower, and may raise, the expected price.

 PROOF: Let b*(.; s) represent the equilibrium bidding strategy in the first-price

 auction after the seller reveals an informational variable XO = s. The analogue of
 equation (7) is:

 b*'(x;s) = (w(x,x;;s b )) f (x x,s)
 s)Fy(x Ix, s)

 By a variant of Lemma 1, fyI(x I x, s)/Fy,(x I x, s) is nondecreasing in s, and by
 Theorem 5, w(x, x; s) is also nondecreasing in s. The equilibrium boundary

 condition is b*(x; s) = w(x,x; s). Hence, applying Lemma 2 to the functions
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 1110 P. R. MILGROM AND R. J. WEBER

 b*(. ; s) for any two different values of s, we can conclude that b*(x; s) is
 nondecreasing in s.

 Let W*(x, z) = E [b*(x; X[) I Y1 < x, X1 = z]. By Theorem 5, W2*(x, z) > 0.
 Note that W*(x,x) = E [w(x,x; X[) I Y1 = x, X1 =x] = v(x,). If bidder 1, prior to
 learning XO but after observing X1 = z, were to commit himself to some bidding
 strategy b*(x; .), his optimal choice would be x = z (since b*(z; xo) is opti-
 mal when XO = xo). Thus, W* must satisfy (9). Hence, by Lemma 2, W*(z, z)
 > W (z, z) for all z >x; the details follow just as in the proof of Theorem 15.
 The expected prices, with and without the release of information, are E [ W*(X1,

 X1) I {X1 > Y1 }] and E [ W'(XI, X1) {X1 > Y1}]. Therefore, releasing informa-
 tion raises the expected price. Q.E.D.

 If the seller reveals only some of his information, then, conditional on that

 information, Xo, X1, . . . , Xn are still affiliated. Thus, we have the following
 analogue of Theorems 9 and 13.

 THEOREM 17: In the first-price auction, no reporting policy leads to a higher

 expected price than the policy of always reporting XO.

 There is a common thread running through Theorems 8, 11, 12, 15, and 16 that
 lends some insight into why the three auctions we have studied can be ranked by
 the expected revenues they generate, and why policies of revealing information
 raise expected prices. This thread is most easily identified by viewing the auctions
 as "revelation games" in which each bidder chooses a report x instead of a bid

 b*(x).

 No auction mechanism can determine prices directly in terms of the bidders'
 preferences and information; prices (and the allocation of the object being sold)

 can depend only on the reports that the bidders make and on the seller's
 information. However, to the extent that the price in an auction depends directly

 on variables other than the winning bidder's report, and to the extent that these

 other variables are (at equilibrium) affiliated with the winner's value estimate, the
 price is statistically linked to that estimate. The result of this linkage is that the

 expected price paid by the bidder, as a function of his estimate, increases more
 steeply in his estimate than it otherwise might. Since a winning bidder with
 estimate x expects to pay v(_,x) in all of the auctions we have analyzed, a steeper

 payment function yields higher prices (and lower bidder profits).
 In the first-price auction, for example, revealing the seller's information links

 the price to that information, even when the winning bidder's report x is held
 fixed. In the second-price auction, the price is linked to the estimate of the

 second-highest bidder, and revealing information links the price to that informa-
 tion as well. In the English auction, the price is linked to the estimates of all the
 non-winning bidders, and to the seller's estimate as well, should he reveal it. The
 first-price auction, with no linkages to the other bidders' estimates, yields the
 lowest expected price. The English auction, with linkages to all of their estimates,
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 THEORY OF AUCTIONS 1111

 yields the highest expected price. In all three auctions, revealing information

 adds a linkage and thus, in all three, it raises the expected price.

 7. RESERVE PRICES AND ENTRY FEES

 The developments in Sections 4-6 omit any mention of the seller setting a

 reserve price or charging an entry fee.25 Such devices are commonly used in
 auctions and are believed to raise the seller's revenue. Moreover, a great deal of
 attention has recently been devoted to the problem of setting reserve prices and

 entry fees optimally (Harris and Raviv [8], Maskin and Riley [11]; Matthews [13],

 Riley and Samuelson [24]).

 It is straightforward to adapt the equilibrium characterization theorems

 (Theorems 6, 10, and 14) to accommodate reserve prices. In the first-price

 auction, setting a reserve price r above v(x,x) simply alters the boundary

 condition, and the symmetric equilibrium strategy becomes

 b*(x) = r * L(x* I x) + v(a, a) dL (a I x) for x > x*,

 b*(x) < r for x < x*,

 where x* = x*(r) is called the screening level and is given by

 (10) x*(r) = inf{x IE[ VI IX i = x, Yi < x] r}.

 It is important to note that when the same reserve price r is used in a
 first-price, second-price auction, or English auction, the same set of bidders

 participates. Thus, in the second-price auction with reserve price r,26 the equilib-
 rium bidding strategy is

 b*(x) = v(x,x) for x > x*,

 b*(x) < r for x < x*.

 A formal description of equilibrium with a reserve price in an English auction

 25Actually, by permitting only nonnegative bids, we have been making the implicit assumption
 that there is a reserve price of zero. This reserve price has been "non-binding," in the sense that
 Assumption 2 (nonnegativity of Vi) ensured that no bidder would wish to abstain from participation
 in the auction.

 If an auction is conducted with no reserve price, other symmetric equilibria may appear. For

 example, consider a first-price auction in the independent private values setting, when all Vi = Xi are
 independent and uniformly distributed on (0, 1). For every k > 0 there is an equilibrium point in
 which each bidder uses the bidding strategy b(x) = (n/(n + 1)) * x - I and each has (ex ante)
 expected payoff (1 /n(n + 1)) + k. The range of the strategy function is (0, n/(n + 1)) if k = 0, and is
 (- oo, n/(n + 1) - k) if k > 0. This may explain why almost all observed auctions incorporate (at
 least implicitly) a reserve price.

 26The outcome of this auction is determined as if the seller had bid r. Thus, if only one bidder bids
 more than r, the price he pays is equal to r. It is of interest to note that, when v(x*, x*)= E[ VI IXI
 = x ,y1 = x*] > E[VI IXI = x*, Y1 < x*], at equilibrium there will be no bids in a neighborhood
 of r.
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 1112 P. R. MILGROM AND R. J. WEBER

 would be lengthy; the equilibrium strategies incorporate the inference that if a
 bidder does not participate, his valuation must be less than x*.

 With a fixed reserve price, one can again show that the English auction
 generates higher average prices than the second-price auction, which in turn
 generates higher average prices than the first-price auction. The introduction of a
 reserve price does not alter these important conclusions.

 More subtle and interesting issues arise when the seller has private informa-
 tion. If he fixes a reserve price and then reveals his information, he will generally
 affect x* and hence change the set of bidders who are willing to compete. In our
 information revelation theorems, we assumed that the reserve price was zero, so
 that revealing information would not alter the set of competitors.

 Given any reserve price r, and realization z of XO, let x*(i I z) denote the
 resulting value of x*. It is clear from expression (10) that x* is decreasing in r
 and maps onto the range of XI. Hence, there exists a reserve price r = r(z I r)
 such that x*(r I z) = x*(r(); we call r(z I r) the reserve price corresponding to z,
 given T.

 THEOREM 18: Given any reserve price T for the first-price, second-price, or
 English auction, a policy of announcing XO and setting the corresponding reserve
 price raises expected revenues.

 PROOF: Let Y* = max(YI, x*(Q)). Let v*(x, y) = E [VI IXI = x, Y* = y] and
 let w*(x, y, z) = E [ VI I = x, Y* = y, XO = z]. By Theorems 2-5, XO, XI, and
 Y* are affiliated and v* and w* are nondecreasing, so the arguments used for
 Theorems 8 and 12 still apply. The argument used in the proof of Theorem 16
 generalizes without difficulty. Q.E.D.

 As with Theorems 8, 12, and 16, Theorem 18 has the corollary that no policy
 of partially reporting the seller's information leads to a higher expected price
 than full revelation: Again, "honesty is the best policy."

 When both a reserve price r and an entry fee e are given, we more generally
 define the screening level x*(r, e) to be

 x*(r,e) = inf{xIE[(VI-r)l{y,<x} IXi = x] 2 e}.

 It is not always true that the set of bidders who will choose to pay the entry fee
 and participate in an auction consists of all those whose value estimates exceed
 the screening level. In a first-price auction, an entry fee might discourage
 participation by some bidder with a valuation x well above x*(r, e) if he

 perceives his chance of winning (Fy.(x I x)) as being slight.27

 27One such case is the following. There are two variables, X1 and X2, so that Y1 = X2. Assume
 V1 = X1. With probability 1/2, the Xi's are drawn independently from a uniform distribution on
 [0, 2] and, with probability 1/2, from a uniform distribution on [1, 2]. Then Fy,(x I x) jumps down
 from 1/2 to 1/4 as x passes up through 1. With a reserve price of zero and an entry fee of 0.32,
 x = 0.8 but some bidders with valuations exceeding 1.0 will choose not to bid.
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 THEORY OF AUCTIONS 1113

 If the set of bidders who participate at equilibrium in an auction with reserve

 price r and entry fee e does consist of those with valuations exceeding x*(r, e),

 then we say that the pair (r, e) is regular for that auction. The next result shows

 that among regular pairs with a fixed screening level, it pays to set high entry fees

 and low reserve prices, rather than the reverse.

 THEOREM 19: Fix an auction mechanism (first-price, second-price, or English),

 and suppose that the (reserve price, entry fee) pair (r, e) is regular. Let (r, e) be

 another pair with the same screening level (i.e., x*(r, e) = x*(r, e)) and with e < e.
 Then (r, e) is regular, but the expected revenue from the (r, e)-auction is less than or
 equal to that from the (r, e)-auction.

 PROOF: Let P(x, z) and P(x, z) denote the expected payments made by bidder
 1 in the (r, e)-auction and the (r, )-auction, respectively, when (i) the other
 bidders follow their equilibrium strategies, (ii) bidder l's estimate is z, and (iii) he
 bids as if his estimate were x. (Notice that P and P are not conditioned on bidder

 1 winning.) Defining R as in the proof of Theorem 15, we have the following

 equilibrium conditions: PI(z, z) = RI(z, z) = PF(z, z) for all z > x*, and P(x*, x*)
 = R(x*,x*) = P(x*,x*).

 If the two auctions are first-price auctions with equilibrium strategies b and 5,

 then P(x,z) = b(x)Fy.(x Iz) + e and P(x,z) = 5(x)Fy(x Iz) + e. Since b and b
 are solutions of the same differential equation, with b(x*) = r < r = b(x*), the
 functions cannot cross and so b < b everywhere. Also,

 P2(X,X)-P2(X,X)=[b(x)-b5(x)1 Z FyI(x I z) 2 ?,

 since the partial derivative term is negative (by affiliation). Hence, an application

 of Lemma 2 yields P(z,z) 2 P(z,z) for all z > x*.
 For the second-price or English auction, the payments made by a bidder when

 his type is z and he bids as if it were x differ only when he pays the reserve price,

 i.e., only when Y1 < x*. Therefore, P2(x,z) - P2(x, z) = (r - T)(a/az)Fy,(x* I z)
 > 0. Once again, Lemma 2 implies that P(z, z) 2 P(z, z).

 The expected payoff at equilibrium in the (r, )-auction for a bidder with
 estimate z > x* is R(z,z) - P(z,z) 2 R(z,z) - P(z,z) 0, since (r,e) is regular.
 Hence, such bidders will participate in the (r, e)-auction and the seller's expected
 revenue from each of them is less than it is in the (r, e)-auction.

 It remains to show that bidders with estimates z < x* will choose not to
 participate in the (r,e)-auction. In the proofs of Theorems 6, 10, and 14, we

 argued (implicitly) that the decision problem maxxR(x, z) - P(x, z) is quasicon-
 cave for each of the three auction forms, and that the maximum is attained at
 x = z. Those arguments remain valid in the present context; we shall not repeat
 them here. Instead, we observe this consequence of quasiconcavity: for z < x*,
 the optimal choice of x subject to the constraint x > x* is x = x*. The resulting
 expected payoff to a bidder with estimate z is R(x*, z) - P(x*, z).
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 1114 P. R. MILGROM AND R. J. WEBER

 Now, P(x*, z)-P(x*, z) = P(x*, x*)-P(x*, x*) + (r-r)[Fy,(x* l z)-
 Fy,(x*lx*)]. But P(x*,x*)=R(x*,x*)=P(x*,x*), and, by affiliation, the
 bracketed term is nonnegative. Therefore P(x*,z)?P(x*,z). Hence, the ex-

 pected profit of the bidder with estimate z is R(x*,z) - P(x*,z) < R(x*,z) -
 P(x*, z), and this last expression is nonpositive because the (r, e)-auction is
 regular. Q.E.D.

 8. RISK AVERSION

 In the model with risk-neutral bidders, we have shown that the English,
 second-price, and first-price auctions can be ranked by the expected prices they
 generate. We have also shown that in the English and second-price auctions, the

 seller benefits by establishing a policy of complete disclosure of his information.
 In this section, we investigate the robustness of those results when the bidders
 may be risk averse. For simplicity, we limLt attention to the case of zero reserve

 prices and zero entry fees.

 Consider first the independent private values model, in which Vi = Xi and
 X1, ... , Xn are independent. For this model, the first- and second-price auctions
 generate identical expected prices. Now let bidder i's payoff be u(Xi - b) when
 he wins at a price of b, where u is some increasing, concave, differentiable

 function satisfying u(O) = 0. Let b* denote the equilibrium strategy in the
 first-price auction. Then the analogue of the differential equation (7) is:

 (11) b~"(x) - u'(x - b*(x)) Fy,(x)

 (x - b* fy(x)-
 u (x)) F yl(x) '

 where the inequality follows from the concavity of u. Let by denote the
 equilibrium with risk-neutral bidders. From (11) it follows that whenever b (x)

 < bN(x), b *'(x) > b '(x); the equilibrium boundary condition is: by@) = bu*(_)
 =x. It then follows from Lemma 2 that, for x >x, bu*(x) > bN (x): risk aversion
 raises the expected selling price. It is straightforward to verify that, with Vi = Xi,
 the second-price auction equilibrium strategy is b*(x) = x, independent of risk
 attitudes. Thus, with independent private values and risk aversion, the first-price
 auction leads to higher prices than the second-price auction. In conjunction with
 our earlier result (Theorem 15), this implies that, for models that include both
 affiliation and risk aversion, the first- and second-price auctions cannot generally
 be ranked by their expected prices.

 To treat the second-price auction when bidders are risk averse and do not
 know their own valuations, it is useful to generalize the definition of the function
 v. Let v(x, y) be the unique solution of:

 E[ u(VI - v(x, y)) I XI = x, Y1 = y] = u(0).
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 THEORY OF AUCTIONS 1115

 The proof of Theorem 6 can be directly generalized to show that (b*, ... , b*) is
 an equilibrium point of the second-price auction when b*(x) = v(x, x).

 Similarly, it is useful to generalize the definition of w. Let w(x, y, z) be the

 unique solution of:

 E[u(VI - w(x, y,z)) IXl = x, Y1 = y, XO = z] = u(O).

 In proving that releasing public information raises the expected selling price in
 Section 4, we used the fact that the relation

 E[w(XI, Y1,XO) 1X1, Y1] ? v(X1, Y1)

 holds with equality when the bidders are risk neutral. Applied to risk-averse

 bidders, this inequality asserts that resolving uncertainty by releasing information
 reduces the risk premium demanded by the bidders. If the information being

 conveyed is perfect information (so that it resolves uncertainty completely), then,
 clearly, the risk premium is reduced to zero. But for risk-averse bidders, it is not
 generally true that partially resolving uncertainty reduces the risk premium. In fact,
 the class of utility functions for which any partial resolution of uncertainty tends
 to reduce the risk premium is a very narrow one.

 Let us now rephrase this issue more formally. For a given utility function u

 and a random pair (V,X), define R(x) by E[u(V- R(x))IX = x] = u(O) and
 define R by E [u( V - R)] = u(0). We shall say that revealing X raises average
 willingness to pay if E [R (X)]_ R.

 THEOREM 20: Let u be an increasing utility function. Then it is true for every
 random pair (V, X) that revealing X raises average willingness to pay if and only if

 the coefficient of absolute risk aversion - u"( )/u'(*) is a nonnegative constant.

 PROOF: We shall consider a family of random pairs (Va, X). Let X take values
 in {0, 1 } and let V< = X(Z + a), where Z is some unspecified random variable.
 Suppose X and Z are independent and P {X = 0) = P {X = 1) = 1/2. Finally,
 suppose E[u(Z)] = u(0), and normalize so that u(O) = 0.

 Fix u and let Ro be the willingness to pay for Va, when there is no information.
 Let Rat(x) be defined as in the text. Then Rot(O) = 0, Rot(1) = a, and E[Ra (X)]
 =a/2. If revealing X always increases willingness to pay, then R _ a/2. So,

 0= E[u(Va -Rta)]

 S s E u(Za+at -t a) + I U( i

 22 EaZ+2 )]+2 U 2)

 Since this holds with equality at a = O and since it must hold for all ae, positive
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 1116 P. R. MILGROM AND R. J. WEBER

 and negative, the final expression must be maximized when a = 0:

 o = E[lu'(Z) ]-ur),
 0 ? E[ u"(Z)] + u"(0).

 Now, let g(w) = u'(u - 1(w)) and let W = u(Z). By varying Z, we can obtain any
 desired random variable W on the range of u. The conclusion reached above can
 be restated as: E [W] = 0 implies E [ g(W)] = u'(O). It then follows that g(w)
 - cw + u'(0) and hence that u'(x) = cu(x) + u'(0). Hence u is linear (and we are
 done), or u(x) = A + Be CX. The inequality condition in (12) rules out B > 0;
 since u' _ 0, it follows that c 0. This proves the first assertion of the theorem.

 Next fix (V, W) and let u(x) =-exp(- ax). Then

 u(O) = E[u(V- R)]

 = E[E[exp(a(R -R(X)))u(V- R(X)) iX]]

 = E[exp(a(R -R(X)))E[ u(V- R(X)) iX]]

 = E[exp(a(R-R(X)))u(0)]

 _=u(O)exp a(k-E[R(X)])]

 It follows that R - E[R(X)] 0. Q.E.D.

 A straightforward corollary of this result is that E [w(XI, Y, X0) IX = x,
 Y, = y] _ v(x, y). This inequality can be used to generalize our various results
 concerning English and second-price auctions.

 THEOREM 21: Suppose the bidders are risk averse and have constant absolute risk
 aversion. Then (i) in the second-price and English auctions, revealing public
 information raises the expected price, (ii) among all possible information reporting
 policies for the seller in second-price and English auctions, full reporting leads to the
 highest expected price, and (iii) the expected price in the English auction is at least
 as large as in the second-price auction.

 PROOF: As in the risk-neutral developments, everything hinges on the initial
 statement about information release raising the expected price in a second-price
 auction. We shall prove only this proposition.

 Note that w is a nondecreasing function. From this fact, Theorem 5, and the
 corollary of Theorem 20 observed in the text, we have for all x > y that

 v (y, y) E[ w (XI, Yi, XO) XI = y, Y1 = y]

 =E[w(Y1, Y1,Xo) XI =y, Y1=y]

 E[ w(YI, Y1, XO) XI = x, Y1 = y]
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 THEORY OF AUCTIONS 1117

 Hence E[v(Y1, YI) I {XI > YI}] _ E[w(Y1, Y1,X0) I {XI > YI}], which is the de-
 sired result. Q.E.D.

 The proof of Theorem 21 suggests that reporting information to the bidders
 has two effects. First, it reduces each bidder's average profit by diluting his

 informational advantage. The extent of this dilution is represented by the second
 inequality in the proof. Second, when bidders have constant absolute risk
 aversion, reporting information raises the bidders' average willingness to pay.
 This is represented by the first inequality in the proof.

 Generally, partial resolution of uncertainty can either increase or reduce a
 risk-averse bidder's average willingness to pay. Since only an increase is possible

 when bidders have constant absolute risk aversion or when the resolution of

 uncertainty is complete, the cases of reduced average willingness to pay can only

 arise when the range of possible wealth outcomes from the auction is large (so
 that the bidders' coefficients of absolute risk aversion may vary substantially

 over this range) and when the unresolved uncertainty is substantial. For auctions

 conducted at auction houses, this combination of conditions is unusual. Thus,
 Theorem 21 may account for the frequent use of English auctions and the

 reporting of expert appraisals by reputable auction houses.

 9. WHERE NOW FOR AUCTION THEORY?

 The use of auctions in the conduct of human affairs has ancient roots, and the
 various forms of auctions in current use account for hundreds of billions of

 dollars of trading every year. Yet despite the age and importance of auctions, the
 theory of auctions is still poorly developed.

 One obstacle to achieving a satisfactory theory of bidding is the tremendous
 complexity of some of the environments in which auctions are conducted. For
 example, in bidding for the development of a weapons system, the intelligent
 bidder realizes that the contract price will later be subject to profitable renegoti-
 ation, when the inevitable changes are made in the specifications of the weapons

 system. This fact affects bidding behavior in subtle ways, and makes it very

 difficult to give a meaningful interpretation to bidding data.
 Most analyses of competitive bidding situations are based on the assumption

 that each auction can be treated in isolation. This assumption is sometimes
 unreasonable. For example, when the U.S. Department of the Interior auctions

 drilling rights for oil, it may offer about 200 tracts for sale simultaneously. A
 bidder submitting bids on many tracts may be as concerned about winning too
 many tracts as about winning too few. Examples suggest that an optimal bidding
 strategy in this situation may involve placing high bids on a few tracts and low
 bids on several others of comparable value (Engelbrecht-Wiggans and Weber
 [6]). Little is understood about these simultaneous auctions, or about the effects
 of the resale market in drilling rights on the equilibria in the auction games.

 Another basic issue is whether the noncooperative game formulation of auc-
 tions is a reasonable one. The analysis that we have offered seems reasonable
 when the bidders do not know each other and do not expect to meet again, but it

This content downloaded from 
            129.107.136.108 on Wed, 08 Dec 2021 15:06:18 UTC             

All use subject to https://about.jstor.org/terms



 1118 P. R. MILGROM AND R. J. WEBER

 is less reasonable, for example, as a model of auctions for timber rights on
 federal land, when the bidders (owners of lumber mills) are members of a trade
 association and bid repeatedly against each other.

 The theory of repeated games suggests that collusive behavior in a single
 auction can be the result of noncooperative behavior in a repeated bidding
 situation. That raises the question: which auction forms are most (least) subject
 to these collusive effects? Issues of collusion also arise in the study of bidding by
 syndicates of bidders. Why do large oil companies sometimes join with smaller
 companies in making bids? What effect do these syndicates have on average
 prices? What forces determine which companies join together into a bidding
 syndicate?

 Another issue that has received relatively little attention in the bidding
 literature concerns auctions for shares of a divisible object. Recent studies
 (Harris and Raviv [8], Maskin and Riley [12], Wilson [35]) indicate that such
 auctions involve a host of new problems that require careful analysis.

 Much remains to be done in the theory of auctions. A number of important
 issues, some of which are described above, simply do not arise in the auctions of
 a single object that have traditionally been studied and that we have analyzed in
 this paper (see, for example, the survey by Weber [31]). Nevertheless, the
 treatment presented here of the role of information in auctions is a first step
 along the path to understanding auctions which take place in more general
 environments.

 Northwestern University

 Manuscript received November, 1980; revision received August, 1981.

 APPENDIX ON AFFILIATION

 A general treatment of affiliation requires several new definitions. First, a subset A of Rk is called
 increasing if its indicator function 1A is nondecreasing. Second, a subset S of Rk is a sublattice if its
 indicator function Is is affiliated, i.e., if z V z' and z A z' are in S whenever z and z' are.

 Let Z = (Z1, . . , Zk) be a random k-vector with probability distribution P. Thus, P(A) = Prob(Z
 e A). We denote the intersection of the sets A and B by AB and the complement of A by A.

 DEFINITION: Z1, . . ., Zk are associated if for all increasing sets A and B, P(AB) > P(A)P(B).

 REMARK: It would be equivalent to require P(AB) > P(A)P(B) or even P(AB) < P(A)P(B).

 DEFINITION: Z1, . . ., Zk are affiliated if for all increasing sets A and B and every sublattice S,
 P(AB I S) > P(A I S)P(B I S), i.e., if the variables are associated conditional on any sublattice.

 With this definition of affiliation, Theorems 3-5 become relatively easy to prove. However, we
 shall also need to establish the equivalence of this definition and the one in Section 3 for variables
 with densities. We begin by establishing the important properties of associated variables.

 THEOREM 22: The following statements are equivalent.
 (i) Z1, . . ., Zk are associated.
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 THEORY OF AUCTIONS 1119

 (ii) For every pair of nondecreasing functions g and h,

 E[g(Z)h(Z)] > E[g(Z)] * E[h(Z)].

 (iii) For every nondecreasing function g and increasing set A,

 E[g(Z) I A] > E[g(Z)] > E[ g(Z) IA].

 PROOF: The inequality in (iii) is equivalent to requiring only (iii'): E [ g(Z) I A] ?! E [ g(Z)], since
 E[g(Z)] = P(A)E[g(Z)IA] + P(A)E[g(Z)1A].

 One can show that (ii) implies (iii') by taking h = 1A. Similarly, to show that (iii') implies (i), take
 g = 'B. To see that (i) implies (ii), suppose initially that g and h are nonnegative. Then we can
 approximate g to within 1/n by

 00

 gn(x) = n An(X)

 where An, = {x x g(x) > i/n}, and h can be similarly approximated using functions hn and increasing
 sets Bnl1 If Z , Zk are associated, then

 E[gn(Z)hn(Z)] = n -2 2 2 P(AniBnJ)
 i=l j=l

 00 00

 > n - 2 P(Ani)P(BnJ )
 1 j=1

 = E[gn(Z)]E[hn(Z)].

 Letting n - oo completes the proof for nonnegative g and h. The extension to general g and h is
 routine. Q.E.D.

 The next result is a direct corollary of Theorem 22.

 THEOREM 23: The following statements are equivalent.
 (i) Z1, . . ., Zk are affiliated.
 (ii) For every pair of nondecreasing functions g and h and every sublattice S,

 E[g(Z)h(Z) I S] > E[g(Z) I S] * E[h(Z) I S].

 (iii) For every nondecreasing function g, increasing set A, and sublattice S,

 E[g(Z) lAS] > E[g(Z) I S] > E[ g(Z) IXS].

 Theorems 3 and 4 follow easily using part (ii) of Theorem 23, and Theorem 5 is a direct
 consequence of part (iii).

 Finally, we verify that the present definition of affiliation is equivalent to the one given in Sec-
 tion 3.

 THEOREM 24: Let Z = (Z1, . . ., Zk) have joint probability density f. Then Z is affiliated if and only
 if f satisfies the affiliation inequality f(z V z')f(z A z') > f(z)f(z') for ,s-almost every (z, z') E R
 where fi denotes Lebesgue measure.

 PROOF: If k = 1, both f and Z are trivially affiliated. We proceed by induction to show that if f is
 affiliated a.e. [ [], then Z is affiliated. Suppose that the implication holds for k = m - 1, and define
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 1120 P. R. MILGROM AND R. J. WEBER

 Z- = (Z2. Zm) and z -I = (Z2. * * Zm). In the following arguments, we omit the specification
 "almost everywhere [ a]."

 Let k = m, and suppose that f is affiliated. Consider any two points z' > z1. Let fi denote the
 marginal density of Z1, and consider the function [f(z', )+ f(z, )]/[f(z1) + f(z)], which is the
 conditional density of Z1 given ZI E { z1, z'1 }. It can be routinely verified that this function is
 affiliated.28 Therefore, by the induction hypothesis, Z-I is affiliated conditional on Zl E {zE1, z).
 Notice that, since f is affiliated, the expression f(z1, z - 1)/[f(z1, z - l) + f(z', z _)] is decreasing in
 z l- Let g be any increasing function on .k. Then

 E[g(Z) I Z=ll I] f,(z 1) fz,, Zf ) +f(z,_ 7 ) I l

 = E[g(Z)g|ZZZ E {zE,z {}1,

 and it follows that E[g(Z) | Z = Z1] ? E[g(Z) l Z = zj], i.e., E[g(Z) | Z = x] is increasing in x.
 Now, let h: 11k -* II also be increasing. For any non-null sublattice S, the conditional density of Z

 given S isf(z) * 1f(z)/P(S), which is affiliated wheneverfis. Also, by the induction hypothesis, Z
 is affiliated conditional on Z.. Hence

 E[g(Z)h(Z) I S] = E[E[g(Z)h(Z) | Z1, S] | SI

 > E[E[g(Z) Iz,S] E[h(Z) Z,ZE, S] | Si

 > E[g(Z) I S] E[h(Z)I S].

 The second inequality follows from the monotonicity of E[g(Z) I Z z = x, S] and E[h(Z) ilra = x, S]
 in x. Thus we have proved that 7 is affiliated if f is.

 For the converse, the idea of the proof is to take S = { z, z', z V z', z A z' }, A = {x lIx 2 z }, and
 B = {x lIx 2 z'}, and to apply the definition of affiliation using Bayes' Theorem. This works, but is
 not rigorous because S is a null event. Instead, we will approximate 5, AS, and BS by small but
 non-null events, and will then pass to the limit.

 Let Qfl be the partition of 18k into k-cubes of the form [i1 /2n, (i1 + l)/2n) x * * * x [zk/2n, (ik + 1)
 /2i). Let Qe(z) denote the unique element of this partition containing the point z. Since Q? x
 has only countably many elements, there exists a function q: Q? x -? l8 such that (i) for every
 T E ? x Q?, q(T) > 0, and (ii) ETgQoxqoq(T) = 1. Define a probability measure v on E2k by
 v(B) = 2 TeQoXQoq(T)py(BT) (recall that jy denotes Lebesgue measure). Clearly, v is proportional to
 y on every T E Qfl x Q", for every n > 0. Let E"[.] be the expectation operator corresponding to v.

 Let Y and Y' be the projection functions from t2k to yo k defined by Y(z, z') = z and Y'(z, z') = z'.
 Y and Y' are random variables when (iff2k, V) iS viewed as a probability space. We approximate the
 vector of densities (f(z), f(z'), f(z v z), f(z A z')) by the function XS = (Xz', XA', XA7, X=) defined on
 ~2k by:

 X (z, z') = Ea [(f( Y), f( Y'), f( Y v Y'), f( y A Y')) I (, ye') e Qo(z) X Qw(z,)bi

 28The verification amounts to showing that if Wt, 2, and W3 are {0, 1)2-valued random variables
 with a joint probability distribution P satisfying the affiliation inequality, then the Joint distribution
 of W Y and W2 also satisfies the inequality. The conclusion follows from the inequalities:

 (PYa Yarrd - PiloPowo)( 2kJ - i v a b cePoii Pipm) 0 ?,

 PlT IvPrfa 2 PmouPo 1W, and Pl 10Par? O P-urP01m i
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 THEORY OF AUCTIONS 1121

 X' is a martingale in R 4, and thus for almost every (z, z'),

 lim XI(z, z') = (f(z), f(z'), f(z V z'), f(z A z'))

 (cf. Chung [3, Theorem 9.4.8]). Also, for almost every (z, z') pair, we have z1 I z', . . . Zk 4-. For
 any such pair, for sufficiently large n,

 X'(z, z') = 2nk(p( Q (Z)), p( Q (Z')), p( Q (Z V z')), P( Q'(z A z'))).

 Each cube Q'(z) has a minimal element, so we may define AI = {x I x > min Q(z)}, B = {x I x
 > min Q'(z')}, and S, = Q'(z) U Q'(z') U Q'(z V z') U Q'(z A z'). The sets AI and Bn are
 increasing, Sn is a sublattice, and for sufficiently large n the following three identities hold:

 P(A, I Sn ) = c - I (X-n + X4n),

 P(B I CS) - cI (Xn + Xn),

 nBn I Sn ) = Cn

 where Cn = Xn + X2n + Xn + X4n and each Xjn is evaluated at (z, z'). By the definition of affiliation,
 we have P(AnB, I SO) > P(An I Sn) P(Bn | Sn) or equivalently, c7- IX4n > C -2(X n + X4n)(X2n + X4n).
 Letting n -* oo yields (for almost every (z, z')):

 c- If(z V z') > c-2[f(z) +f(z V z')] . [f(z') +f(z V z')],

 where c = f(z) + f(z') + f(z V z') + f(z A z'). A rearrangement of terms yields the affiliation inequal-
 ity. Q.E.D.
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