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THE COMPUTATION OF EQUILIBRIUM PRICES: AN EXPOSITION*

Herbert E, Scarf

I. THE GENERAL EQUILIBRIUM MODEL

A demonstration of the existence of equilibrium prices for a gen-
eral Walrasian model of competitive behavior necessarily makes use of
some variant of Brouwer's fixed point theorem as an essential step in
the argument. The strategy for calculating equilibrium prices is to
render that step constructive by a numerical approximation of the fixed
point implied by Brouwer's theorem or one of its alternatives. We begin
this chapter with a brief review of the competitive model and the role
of fixed point theorems.

The typical consumer will be assumed to have a set of preferences
for commodity bundles x = (xl, sy xn) in the non-negative orthant
of n dimensional space. These preferences can be described efther by
an abstract preference relationship, > , satisfying a series of plau-
sible axioms, or by a specific utility indicator u(x) .

It is customary to assume that, prilor to production and trade,
the typical consumer will own a non-negative vector of commodities w
whose evaluation by means of market prices forms the basis for that con-~
sumer's income, More specifically if the non-negative vector of prices

= (-rrl, “eny T‘I’n) is expected to prevail then the consumer can cbtain an income

*To appear as a chapter in the Handbook of Mathematical Fconomics, edited
by Arrow and Intriligator, The research was supported by a grant from
the National Science Foundation.
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by the sale of his commodity bundle w . This income is then used by

the consumer for the purchase of an alternative bundle of commodities

in such a way as to provide him with the highest possible utility level.
CGiven a vector of prices for all of the commodities in the economy

the consumer is faced with a maximization problem: to find a vector of

commoditfes x which maximizes his utility function (or is maximal

according to his preference relationship) subject to the budget comstraint
MY < MW .

The problem faced by the consumer is clearly unchanged if the price
vector 1 18 replaced by Am, with A an arbitrary positive number.
This provides us with a degree of freedom in normalizing prices in any
fashion which happens to be convenient., For example prices can be nor-
malized soc as to lie on the unit sphere %""i = 1 (meaningless from an

economic point of view, but mathematically quite useful) or on the unit

n
simplix T m o= 1 . For definiteness we shall adopt the latter normali-
1

zation throughout most of this chapter.

Under quite acceptable assumptions, such as continuity and strict
convexity of preferences the solution to the consumer 's maximization prob-
lem will be a single-valued function x(w) which is continuous on the
unit simplex and which satisfies the identity

n n

;:"ixi(") = iﬂﬂiwi ,



stating that the consumer's entire income will be spent on the purchase

of commodities. (This is of course not meant to rule out the possibility
that the consumer may choose to save some of his current income for future
purchases--an aspect of consumer behavior which can be captured by declar-
ing that certain commod ities become available in the future).

For the purpose of computing equilibrium prices the demand func~-
tions x{m) are frequently more natural to work with than the underlying
utility functilon or preference relationship. A general equilibrium model
must be fully specified in order to obtain a numerical solution: on the
consumer side this is typically done by providing a numerical or algebraic
description of the functions x(w) . A few examples of some of the more
familiar utility functions and their associated demand functions may be

appropriate at this point.

! %n
1, u(x)-=x1 vee X, with aigo, Eai=l.

It is an elementary ohservation that a consumer with this utility func-

tion will sperd the same fraction a, of his income on the ith good,

independently of relative prices., Since his income is given by mw ,
this implies that his demand for the ith good 1s given by
a_mw

x,(m = .
i ﬂi

(There is an insignificant technical problem that these demand functions
and others which are subsequently presented exhibit a discontinuity on

the boundary of the unit simplex.)



2. u(x) = min[xllal, “eey xn/an] , with a, >0,

A consumer with preferences exhibiting such strict complementarity wishes
to purchase a commodity bundle proportional to the vector (al, .oy an) .

His demands are therefore given by

xi(n) = a,smw/ma ,

i
D
1 b-iib-1l
5.6
3. U(X, anny X)= Zﬂ X ’ With a >0’ arld b<1 .
1 1 i1 i -

This 1is the C,E,.8. utility function which includes the two previous ex-
amples for special values of the parameter b . It will be left to the

reader to verify that the demand functions xi(ﬂ) are given by

a_ mew
i

xi(ﬂ) ) -rrb ¥ ﬂlbba |
i1 3
i
A model of equilibrium will generally involve a number of consuming
units--individuals, aggregations of individuals or countries involved
in foreign trade--each of whom has a stock of assets w , prior to pro-
duction and trade, and demands which are functions of the prevailing prices

n . If the jth consumer 's assets are represented by wj and his demand

functions by xj (M , then the market demand functions are defined by

x(m = T xI(m .
h |

The market demand functions specify the total consumer demand, for the

goods and services in the economy, as a function of price.



Market demand functions cannot be arbitrarily specified if they
are derived from individual demand functions by the process of aggrega-
t ion described above. For example if the individual demand functions
are continuous, the market demand functions will be continuous as well,

Moreover the market demand functions will satisfy the identity
Mex (M) = ™MW

(If w = Sjwj ) known as the Walras law--resulting from the assumption
that the income available for consumer purchases is accounted for fully
by the sale of privately owned assets,

The market excess demand functions, representing the difference
between market demands and the supply of commodities prior to production

are defined by

E(r) = x(m) - w .
Our analysis may be summarized as follows:

1.1, [properties] The market excess demand functions will satisfy the
following conditilons
1, They are defined and continuous everywhere in the positive
orthant other than the origin.
2. They are homogeneous of degree zero, i.,e. (A% = 5(m) ,
for any positive X .

3, The Walras lLaw:

me(m) =0 .



In this form, the Walras law has an interesting geometrical inter-

pretation when prices are normelized to lie on the unit sphere. If the

FIGURE 1

excesg demand £(m) 18 drawn as a vector originating at +, the geome-
tric interpretation of the Walras law is that this vector is tangent to
the unit sphere at m . The excess demands determine, therefore, a con-
t inuous vector field on that part of the unit sphere lying in the non-
megative orthant.

A description of the consumer side of the economy, for the purposes
of the general equilibrium model, is adequately provided by the market
excess demand functions. To complete the model a specification of the
productive techniques available to the economy must alsoc be given. We
shall return to this point, after examining the pure trade model in which
production is absent and consumers simply exchange the commodities which
they initially own, For such a model the total supply is given by the
vector w and the market demand by the functions =x(v) . An equilibrium

price vector w* is one which equilibrates supply and demand for all



commod ities, We have the following formal definition which allows for
the possibility that some of the commodities have a zero price and are

in excess supply.

1.2, [definition] A non-zero price vector +* is an equilibrium for
the pure trade model if gi(n*) < 0 for all 1, and is equal to zero

when 1‘\";->0.

If all of the coordinates of m are positive then w 13 a zero
of the vector field £ on the unit sphere. The existence of a zero for
an arbitrary vector field on the sphere is a subtle topological question.
It is therefore a matter of some significance, in assessing the difficulty
of demonstrating the existence of equilibrium prices (amd in their calcu-
lation), to ask how general a vector field can be obtained by the process
of aggregating individual demand functions. This question was first studied
by Somnenschein [53], and was given a definitive answer in subsequent
papers by Mantel ([42], Debreu [ 6 ], and MacFadden, Mantel, Mas-Colell
and Richter [39], There are some technical difficulties on the boundary
of the positive orthant, but given an arbitrary continuous vector field
on the sphere and an arbitrary open subset of the positive orthant, there
will be a collection of n consumers with preferences and initial hold-
ings, whose individual demand functions sum to the preassigned vector
field on the open subset. In other words, market excess demand functions
are essentlally arbitrary aside from the conditions described in 1.1.

Walras suggested than an equilibrium price vector could be found
by a “"tdtonnement' process: the continued revision of non-equilibrium
prices on the basis of the discrepancy between supply and demand. If

n is a price vector for which Ei(ﬂ) ¥ 0, then a formalization of our



Each column of A represents a known technical mode of production, which
can be employed at an arbitrary non-negative level, Inputs 1ﬁto produc -
tion are represented by negative entries in a given column and o tputs

by positive entries. The result of using techniques 1 through k at
levels Xis evey X is a net production plan, Ax , where x = (X5 oeny xk) .
The negative entries in Ax represent a demand for factors of production
which must be contributed by consumers from their stock of initial assets
w . The positive entries represent increases in the stock of other assets,
which can then be distributed among the consumers. An equilibrium price
vector % 1s one which equilibrates the net consumer demand E(m)

with the net supply Ax . It also induces the correct selection of pro-

ductive techniques on the grounds of decentralized profit maximization.

We have the following formal definition of equilibrium.

1.3. [definition] A non-zero price vector % and a non-negative vector
of activity levels x* are in equilibrium if

L., E(mk) = Ax*

2, maA<O

3., tkAx* = 0 ,

The second of these conditions says that all potentisl activities
make a non-positive profit when evaluated by means of equilibrium prices
m , and the third condition that those activities which are actually
used at equilibrium make a profit of zero, The demonstration that equi-
librium prices and activity levels exist--umder suitable assumptions on
the matrix A --is more subtle than that of the case of pure trade,
and typically makes use of Kakutani's fixed point theorem rather than

Brouwer's theorem, The arguments apply equally well to a description of
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production given by & closed convex cone rather than an activity analysis

model,

II. BROUWER'S FIXED POINT THEOREM

Llet S be a closed, bounded, convex set in n-dimensional Euclidean
space, which is mapped into itself by the continuous mapping x = f£(x) .
Brouwer 's Theorem, asserts the existence of a fixed point, i.e. a point
for which ; = £(X) . In order to illustrate the theorem we consider
a few simple examples.

1., The § be the closed unit interval [0,1] . A continuocus
mapping of this interval into itself is defined by an ordinary continuous

function f(x) whose values also lie in the unit interval. A fixed point

FIGURE 2

of this mapping is a point where the graph (x, £(x)) intersects the
45° line from the origin, or a point where g{x) = f(x)-x 1is equal to
zero. But g(0) >0, and g(1) < 0, so that the function must be
equal to zero at some point in the unit interval. Brouwer's theorem is
a generalization of this well-known property of continuous functions to

higher dimensions.
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2, Let S be the unit simplex f{x = (%15 ooy xn)lxi > 0, 5'xj =11,

and let A be a square matrix with non-negative entries, whose column

sums are equal to unity. The mapping
f(x) = Ax

is continuOus and maps the simplex into itself, The conditions for
Brouwer 's theorem are satisfied and there will be a fixed point £ = AX .
In this particular case Brouwer's theorem implies that a non-negative
square matrix with column sums of unity must have a characteristic root
of 1 with an associated non-negative characteristic vector, a result
which can be obtained by simpler arguments.

3, In this example we show how Brouwer's theorem can be used to
demonstrate the existence of equilibrium picces for a model of exchange.
We consider prices normalized so as to lie on the unit simplex § . For
each w in §, g(ro will be the market excess demand associated with
this price. F 1s assumed to be continuous on the simplex and to satisfy
the identity m€(m) =0 .

Define a mapping as follows

"i"" max[O, Ei(ﬂ)]

£, (M = T T wex(0, gy (m1 "
3

The fact that f is continuous follows from the continuity of the market
excess demand functions. It should also be clear that £(m) 1is on the
unit simplex 1f = is. Brouwer 's theorem can therefore be applied and

we deduce the existence of a price vector 7= f(ﬁo . We shall demonstrate

that % 1s an equilibrium price for the model of exchange.
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If ¢ 18 defined to he
e =1+ T mx[O, gj(%)} >1,
3

then

cﬁi = Fri + max[0, €,(f)], or

(e-1)f, = max(0, & (W] .

But ¢ must be equal to 1, for if it were strictly larger this last

relationship would imply that

g (M) >0 for each 1 with %i >0,

violating the Walras law T ﬁiﬁi(ﬁ) =0. If ¢=1, however, it fol-

lows that T max(0, e_:j(ﬁ)] =0, or £ (f) <0 for all j,

3

We see that the existence theorem for exchange economies is an

j

immediate consequence of Brouwer's theorem, It is instructive to note
that the converse is also correct. The following argument shows that
Brouwer's theorem follows from the existence of an equilibrium price
vector for an arbitrary exchange economy.

Let x —= f(x) be a continuous mapping of the unit simplex into

itself, Define the functions

B G0 = £,(x) = Ax)xy ,

2
where Ax) = ? xjfj(x)lf xj .

Then Ei are defined and continuous everywhere on the unit simplex amd,
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by construction, satisfy the Walras Law T xiﬁi(x) = 0 . From the exis-
tence theorem for competitive equilibria, we conclude that there is an

£ with §i(ﬁ) < 0, and equal to zero if ﬁi > 0 . But then

£, < NRR

with equality if ;ei >0, If ’?1

otherwise fi(ﬁ) <0, and f would not map the unit simplex into itself.

= 0 we must also have equality, since

It follows that
£,(6) = )s.(f:)xi .

But since T fi(ﬁ) = i:ﬁi = 1 it follows that A(X) =1, and that <X
is indeed a fixed point of the mapping.

Since Brouwer's theorem and the theorem asserting the existence
of equilibrium prices are equivalent to each other, any effective numerical
procedure for computing equilibrium prices must at the same time be an

a lgorithm for computing fixed points of a continuous mapping.

III. AN ALGORITHM FOR COMPUTING FIXED POINTS

In this section we shall present our first algorithm for approxi-
mating a fixed point of a continuous mapping of the unit simplex into
itgelf. There is no loss In generality in restricting our attention to
the unit simplex. If the mapping f(x) 1is defined for a more general

closed, bounded, convex set C , we embed C 1in a larger simplex S,
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FIGURE 3

S

and define a mapping g(x) of § into itself in the following way:

1, 1f x ¢C then g(x) = £(x)

2, 1f x {_C then g(x) = £(y)
where y 1s that unique point in C which is closest, in the sense of
Euclidean distance, to x .

Since y varies continuously with x it is clear that the new
mapping sdtisfles the conditions of Brouwer's theorem and has a fixed
point £ = g(X) . But since g(f) ¢ C 1t follows that R ¢ C, and
is a fixed point of the original mapping f .

A simplex is defined to be the convex hull of its n vertices

vl, coey vt , Ll.e. the set of points of the form

x}:ajvj with a,>0, and Ta, =1,

The vertices are assumed to be linearly independent in the sense that
each vector in the simplex has one and only one representation in the
above form, The simplex, which has dimension n-l in our notationm, has

3

n faces of dimension n-2 . The face opposite the vertex v~ consists
of those vectors whose representation as & convex combination of the ver-

tices has o, = 0 .

3
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More generally the simplex has & number of sub-faces of lower di-
mension. For any subset T of (1, 2, ..., n) there i1s a face of the

simplex consisting of those vectors with @, =0 for j in T.

j

We now consider a finite collection of simplices Sl, veuy Sk

contained in the large simplex § . If no restriction 1s placed on this

collection then two of its members may have interior points in common,

FIGURE &

or their intersection may not consist of an entire face of one or the
other of them. For the purpose of demonstrating Brouwer's theorem we
shall require the collection of simplices to form what 1s known as a

"simplicial subdivision," by ruling out these forms of intersection.

3.1, [definition] A collection of simplices 51, coey Sk 1s called

a simplicial subdivision of 5§ if
1. § 1s contained in the union of the simplices Sl, vesy Sk ’

and 2. The intersection of any two simplices is either empty or a

full face of both of them.

The following figure illustrates a typical simplicial subdivision

of the simplex.



16

FIGURE 5

The method we shall adopt to demonstrate Brouwer's theorem and to
provide an effective computational procedure for approximating fixed points
makes use of a combinatorial lemma involving simplicial subdivisions of
the simplex. There are alternative computational methods, noticeably
those of Kellog, Li and Yorke {32], and Smale [52], which avoid simpli-
cial subdivisions completely and use instead the methods of differential
topology. It is not yet clear which of these techniques, which have
greater simlilarities than might appear on the surface, is superior from
a computational point of view.

To appreciate the combinatorial approach to Brouwer's theorem let
us examine the simplest case, a continuous mapping of the unit interval
into itself, A simplicial subdivision of the unit interval is given by
a moncotonic sequence of points, say v3 < v4 < e < vk (I have used
the notation v1 for the lower end point of the unit interval and v2
for the upper). 1In Figure 6 I have placed below each vertex vj an

integer label which is either 1 or 2 . The rule for associating the

integral label is to label vi with 1 1if f£(vJ) >v) and 2 1if
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FIGURE 6

f(vj) < v3 . The combinatorial lemma, which is trivial for this ome di-
mensional problem, is simply that there must exist one small interval,
in this case (v3, vé) whose two end points are differently labeled.
1f the grid were very fine, this combinatorial lemma would permit us
to select two points, very close together, for which f(x) -x has oppo-
gsite signs. Any point in the interval will serve as an approximate fixed
point of the mapping, with the degree of approximation (the closeness of
x to f(x) ) controlled by the fineness of the grid, and the modulus
of continuity of £ . Of course, a proof of the existence of a true rather
than approximate fixed point involves continued refinement of the grid,
and the selection of a convergent subsequence of approximants.

Our first generalization of this elementary combinmatorial observa-
tion will involve the special class of simplicial subdivisions specified

in the following definition.
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3.2, [definition] A simplicial subdivision of the simplex

s = {x|x = (X5 «ov xn)lxi >0, Tx, = 1} will be said to be restricted

if no vertices of the subdivision, other than the n unit vectors, lie

on the boundary of § .,

An example of a restricted simplicial subdivision is given by the

following figure.

V2= (0,0, 1)

vi=(1,0,0) vZ=(0,1,0)

FIGURE 7

Let us consider a restricted subdivision of § , with vl, ceey V
represent ing the first n unit vectors, and with remaining vertices
v“+1, cesy vk . We shall assume that each vertex of the subdivision has
associated with it an integer label L(vj) selected from the set
(, 2, ..., n) . When, in & moment, we apply our argument to Brouwer 's
theorem, the label associated with a given vertex will depend on the con-
tinuous mapping £(x) . For the present, however, the labels will be

completely arbitrary aside from the condition that L(vj) = j for

j=1, 2, ..., n . In other words the only vertices whose labels are

n
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prescribed in advance are those on the boundary of § .
The remarkable combinatorial lemma which lies behind Brouwer's

theorem is the following

3.3. [lemma] Let the simplicial subdivision be restricted, and let the
integer labels L(vj) be arbitrary members of the set (1, 2, ..., n)
aside from the comdition that L(vj) =31 for =1, 2, ..., n. Then
there exists at least one simplex in the simplicial subdivision a1l of

whose labels are distinct.

Avoiding for the moment the question of why one would want to find
a simplex with distincﬁ labels, we.shall demonstrate the existence of such
a simplex by an explicit computational procédure based on an argument
which first appears in lLemke and Howson [38] and Lemke [37].

We begin by considering that unique simplex in the subdivision

2 3 n
whose vertices are the n-1 unit vectors v , v, ..., v and a single

other vertex, say vl The vertices vz, v3, eeny v" will have the
labels 2, 3, ..., n ., If the vertex vj is labeled 1 the algorithm
terminates immediately with a completely labeled simplex. Otherwise

L(vj) will be one of the integers 2, 3, ..,, n . We proceed by eliminat-
ing that vertex whoge label agrees with L(vj) , arriving at & new simplex
in the subdivision. Again we determine the label associated with the

new vertex which has just been introduced. If this label is 1 , we
terminate; otherwise the process continues by eliminating that old ver-
tex in the subdivision whose label agrees with that of the vertex just
introduced.

At each stage of the algorithm we wili be faced with a simplex in

the subdivision whose n vertices bear the n-1 1labels 2, 3, ,.., n .
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A pair of the vertices, one of which has just been introduced, will have
a common label, We continue by removing that member of this pair which
has not just been introduced.

Figure 8 illustrates a typical example of a path of gimplices fol-

lowed by the algorithm.

FIGURE 8

There are a finite number of simplices in the subdivision. We
shall demonstrate that the algorithm never returns to a simplex which it
previously encounters. Assuming this to be correct the algorithm must
terminate after a finite number of iterations. But termination can ounly
occur 1f we have reached a simplex all of whose labels are different,
or if we arrive at a simplex n-1 of whose vertices lie on the boundary
of S, with the remaining vertex about to be removed. Such a boundary
simplex would, however, have to contain the vertices vz, ver, V', since

if the vertex vl appears in a simplex encountered in the algorithm the

label 1 would have been obtained, and the algorithm would have terminated.
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We see, therefore, that a proof that the algorithm terminates in
a finite number of iterations, with a simplex whose labels are distinct,
consists in showing that the algorithm never returns to the same simplex.
Consider the first simplex which is revisited. If it is not the initial
simplex it can be arrived at in one of two possible ways--through one or

another of the adjacent simplices with n-~1 distinct labels. But both

FIGURE 9

of these adjacent simplices would have been encountered during the first
visit and our simplex is therefore not the first simplex to be revisited.
A similar argument demonstrates that the initial simplex (with vertices
vz, v3, tvey v" and one other vertex) is not the first simplex to be
revisited. This concludes the proof of Lemma 3.3.

The customary proofs of Brouwer's theorem make use of a combina-
torial lemma known as Sperner's lemma which is a generalization of 3.3
to arbitrary simplicial subdivisions of the simplex. Consider now a
simplicial subdivision many of whose vertices lie on the boundary of S .
The vertices w.rj will again be labeled with integer labels L(vj)
selected from the set (1, 2, ..., n) . The vertices which are interior

to § will have arbitrary labels. 1In order to guarantee the existence

of a simplex all of whose labels are distinct the vertices on the
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FIGURE 10

boundary faces of S will have labels which are restricted according

to the following theorem.

3.4. ([Sperner's lemma] Let v be an arbitrary vertex in the subdivi-
sion and asgsume that JAI(v) 1is one of the Indices 1 for which vy >0,

Then there exists a simplex in the subdivision with distinct labels,

The assumption of Sperner's lemma is that a vertex on a face of
§ generated by a subset of the unit vectors must have a label correspond-
ing to one of these unit vectors, The assumption 1s illustrated in Figure
10, in which the shaded simplex is completely labeled.

Sperner 's lenma may be demonstrated from Lemma 3.3 by the follow-
ing simple argument. We embed the unit simplex in a larger simplex §*
with vertices sl, ceey s" . We then extend the simplicial subdivision

of § to a restricted simplicial subdivision of §' by introducing a

number of simplices obtained in the following way: take an arbitrary
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FIGURE 11

subset T of (1, 2, ..., n) with t < n members. Consider a collec-
tion of n-t vertices on the face of § defined by X, = 0 for 1¢T,
and which lie in a single simplex of the subdivision of § . These n-t
vertices Iin 8 are augmented by the t vertices si for 1 ¢ T in
order to define a simplex in the larger subdivision.

Lemma 3,3 will be applied to the subdivision of §' . We wmust
associate a distinct label with each of the new vertices sl, cany s"
and we wish to do this in such a fashion that the completely labeled
simplex obtained by applying 3.3 will contain nome of the new vertices.

Let us define .E(si) to be equal to 1+1 modulc n . In other
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words L(sl) = 2, £(82) =3, ..., L(sn) = 1 . A completely labeled sim-
plex may then contain the vertices si for 1 in T, and n-t other
vertices on the face X, = O for { ¢ T . Since these remaining vertices
will, by the assumption of Sperner's lemma, have labels different from
the members of T it follows that the collection of vertices si in
the completely labeled simplex must bear all of the labels in T . This
is in contradiction to Z(si) = {+1 modulo n , wunless T 1is the empty
set and the completely labeled simplex is & member of the original simpli-
cial subdtvision of s .

Having demonstrated Sperner's lemma by means of an explicit compu-
tational procedure we turn now to Brouwer's theorem. Let us consider
a continuocus mapping x = £(x) of the unit simplex into itself. The

mapping is specified by n functions fi(x) , for L =1, ..., n which

are defined on the unit simplex, continucus and satisfy
fi(x) >0, for 1 =1, ..., n, and

> fi(x) =1,

A simplicial subdivision of the simplex is given, with vertices
vl, eney vn, vn+1, ceny vk . We assume that none of these vertices are
fixed points of the mapping f , since otherwise Brouwer's theorem

would be trivially correct., It follows that for each vertex v we

must have

v, > fi(v)

1

for at least one index 1 . We define the label associated with the vertex

v to be one of these indices. If the vertex lles on the boundary of
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the simplex, with say vj = 0 , then the label associated with v must
be different from j . The assumptions of Sperner's lemma are satisfied
and the algorithm on which our proof of Sperner’s lemma is based may be
used to determine a completely labeled simplex.

If the simplicial subdivision has a very fine mesh, in the sense
that the distance between any pailr of points in the same simplex is quite
small, then any point in the completely labeled simplex will be close
to its image and serve as an approximate fixed point of the mapping.

In order to demomstrate Brouwer's theorem coumpletely we must consider
a sequence of subdivisions whose mesh tends to zero., Each such subdivi-
sion will yield a completely labeled simplex, and as a consequence of the
compactness of the unit simplex there is a convergent subsequence of com-
pletely labeled simplices all of whose vertices tend to a single point
x* ., (This is, of course, the non-comstructive step in demonstrating
Brouwer 's theorem, rather than providing an approximate fixed point.)

The point x* 1s the limit of points bearing all of the labels 1, 2, ...,

Since f 1is continuous it follows that

* *
Xy Z_fi(x Yy for all 1.

But this can only happen if xi = fi(x*) , for i=1, ..., n.
This concludes the proof of Brouwer's theorem.

Let us now show that the existence of equilibrium prices for a
model of exchange follows directly from Sperner's lemma without using
Brouwer 's theorem as an intermediary tool. We consider the continuous
excees demand functions gl(n), sy &n(ﬂ) defined on the unit price

simplex

»
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§= {m= ()5 e, nn)lni;;o, T o= 11,

and satisfying the Walras law

T ﬂiﬁi(ﬂ) =0,

S 1is subjected to a simplicial subdivision of fine mesh, with vertices

ﬁl, saey np, ﬂp+1, cesy ﬁk . We shall label a vertex w of this subdi-

vision with an integer 1 for which !i <0.

In order to satisfy the hypothesis of Sperner's lemma we must show,
that for any price vector m , there is at least one coordinate with
™

with 3.4, But this is certainly correct since otherwise every coordinate

>0 and Ei(nﬁ < 0 ; this will provide us with a labeling consistent

i with m >0 would have Ei(ﬂ) >0, violating the Walras law.

We may therefore conclude that there is a simplex with distinct
labels. 1If the subdivisions are refined we mey select a subsequence of
these completely labeled simplices whose vertices tend, in the limit, to
a price vector * ., Since the excess demand functions are cont {nuous
Ei(ﬂ*) < 0 for all {1, and v 1is indeed an equilibrium price vector.

We shall conclude this section by demonstrating an altermative
combinatorial lemma, which may be viewed as a dual form of Spermer 's
lemma. As before we consider a simplicial subdivision of the simplex
$ many of whose vertices lie on the boundary. The vertices vj which
are interior to the simplex will be given an arbitrary integer label
L(vj) selected from the set (i, 2, ..., n) . As distinct from Sperner 's
lemma, however, a vertex on the boundary will be given an integer label

assoclated with one of its coordinates which is equal to zero.
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1 or 2

2or 3 3 3 3 1 or 3

FIGURE 12

In order to guarantee the existence of a completely labeled simplex,
the subdivision must be sufficiently fine. For example 1f there is only
one simplex in the subdivision, the simplex §, itself, then the vertices
can clearly be labeled, consistently with the above rule, and with some

label omitted.

3.5. [lemma] Assume that no simplex in the subdivision has a non-empty inter-

sectionwith every face x,=0, Let £(v) beanarbitrarymember of the set

i
{1, 2, ..., n) 1f v 1isa vertexwhich is interior to §. If v 1is onthe
boundary then £(v) 18 equal to one of the indices {1 for which vy= 0. Then

there exists at least one simplex all of whose labels are distinct.

As in the proof of Sperner's lemma, we embed § 1in a larger simplex
§' with vertices 31, ey s" . The simplicial subdivision is extended
to a restricted subdivision as before, i.e. we consider n-t vertices on

the face defined by x;, = 0 for 1 in some index set T (with t = [T} ),
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and which 1ie in a single simplex of the original subdivision. We then
augment these vertices by the t vertices si for 1 e¢T.
The vertices sl, oosy 8" will be labeled according to the rule
E(si) = i , differing from the rule used in the proof of Sperner's lemma.
Lemma 3.3 is then applied to this restricted subdivision so as to produce
a completely labeled simplex. In order to demonstrate 3.5 we must show
n

that none of the vertices sl, «esy 8 are contained in the completely

labelled simplex,

Assume, to the contrary that the simplex contains s"L for 1 eT,

and n-t vertices of a simplex in the original subdivision lying on the
face X; = 0 for 1 ¢T . Since si bears the label i, the n-t
vertices must bear all of the labels in T . But these vertices all

lie on the boundary of S, and their reason for bearing a given label
must be that the corresponding coordinate is equal to 0 . It follows
that the convex hull of these mn-t vertices has a non-empty intersection
with each face x = 0, for 4i=1, 2, ,.., n . This contradicts the
assumption of 3.5.

Lemma 3.5 may be used as a substitute for Spernmer's lemma in prov-
ing Brouwer's theorem, or in demonstrating the existence of equilibrium
prices in a model of exchange. In the latter problem a price vector
which is a vertex of the subdivision interior to S 1is given a label
i for which Ei(ﬂ) is maximal. The price vectors on the boundary re-
ceive a label corresponding to a zero coordinate. A completely labeled
simplex is then found for each of a sequence of subdivisions whose mesh
tends to zero, Consider a subsequence of completely labeled simplices
all of whose vertices tend to the common price vector k= (ﬂf, ey ﬂ:) .

For any coordinate 1 with rq > 0 we must have gi(n*) > Ej(ﬁ*) for
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all 3 . It follows that Ei(ﬂ*) are all equal to some common value

¢ for those i with > 0, and that gi(ﬂ*) <c if w=0. But

i i ’
from the Walras law,

0=rsde(F)=c,

and +* {8 indeed an equilibrium price vector.

IV, THE NON-RETRACTION THEOREM

Brouwer's theorem is frequently demonstrated by an appeal to a
well known topological theorem which asserts that there is no continuous
mapplng of the unit simplex which carries all points in the simplex into
the boundary, and which maps each boundary point into itself. It will
be instructive for us to see the relationship between these two theorems
and to interpret our combinatorial lemma 3.3 as an example of the non-
retraction theorem.

To see that Brouwer's theorem follows from the non-retraction theorem
let x = £(x) be a continuous mapping of the unit simplex into itself.
If the mapping has no fixed points we can define a continuous retraction

to the boundary of § in the following way.

x £(x)

FIGURE 13
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For each x draw the straight line originating at the ilmage f(x)
and passing through x . The straight line will intersect the boundary
of the simplex at a point which we call g(x) . Clearly g{(x) 1is a con-
tinuous function of x , and for any x on the boundary of the simplex
g(x) = x ; g 1is therefore a continuous retraction of x onto the boun-
dary. Since this camnot be, the original mapping must have a fixed point.

Conversely Brouwer's theorem may be used to demonstrate the non
existence of a continuous retraction g . We simply compose g with a
continuous mapping of the boundary of the simplex onto itself which has
no fixed points. (For example the mapping (xl, Xy eves xn) -

(xn, X1y ooy xn-l) .) The composite mapping will have no fixed points
and therefore contradict Brouwer's theorem.

' Now let us return to the situation described in lemma 3.3. The
unit simplex is given a restricted simplicial subdivision with vertices
vl, vosy vn, vn+1, voey vk . All of these vertices, aside from the first
n , are assumed to be strictly interior to the simplex., 1In addition
each vertex 18 given an integer label £(v) , which is selected without
restriction from the set (1, 2, ..., n) , aside from the requirement
that £(v1) =§ for j=1, ..., n.

These integer labels may be used to define a continuous piece-wise
linear mapping g(x) of the unit simplex into itself. For each vertex
v in the subdivision we define g(v) = VLCV) ;» 1in other words to be
that one of the first n vertices whose label agrees with that of v .
We then extend the mapping linearly throughout each simplex in the sub-

division. If a simplex in the subdivision has vertices

S PR 3
V O, VT, dae, ¥ then a point in the simplex has the form
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x = v + Qv + .0 F a v 3

with oy 20, To= 1 . We then define

j i i
g(x) = o (v by + 0,8 (v 2y 4+ it a g ") .

The mapping g 1s clearly continuous, and as a consequence of the

agssumption that the subdivision is restricted, g(x)

1H

x for every boun-
dary point of the simplex. This follows from the observation that a boun-
dary point of S is a convex combination of a subset of the first n
vectors, each of which is mapped into itself by g .

If Lemma 3.3 were false, no simplex in the subdivision would have
a full set of labels. But the n vertices of a simplex for which, say,
the label 1 is missing would all be mapped, under g , iInto that face
of the boundary of § given by X, = 0, Every point on such a simplex
would also be mapped, by our construction, into the same face., We see
therefore that the absence of 2 simplex with a complete set of labels
permits us to construct a continuous piece-wise linear retraction of the
simplex into itself.

The constructive argument given for Lemma 3.3 may also be inter-
preted in terms of g(x) , as first suggested by Hirsch [27]., Let ¢
be a vector on the boundary of S, whose first coordinate is zero, and
whose remaining coordinates are strictly positive. We shall demonstrate
that there exists a continuous path x(t) which is linear in each simplex
of the subdivision of the simpliex through which it passes and which
satisfies g(x(t)) = ¢ . Moreover the path will have one end point at

¢, the other end point in a completely labeled simplex and trace out
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precisely that sequence of simplices which appear in the proof of 3.3,

FIGURE 14

The simplices arising in 3.3 have the property that their =n ver-
tices bear the n-1 labels 2, 3, ..., n . One of these labels will
appear on two distinct vertices, Two faces of the simplex can be con-
structed by dropping either one of these two vertices; the n-l vertices
on each of these faces will have a full set of labels 2, 3, ..., n.

It follows that there is an interior point on each of these two faces for
which g(x) = c . Since the mapping is linear the straight line segment
connecting these two points will also satisfy g(x) =c .

This continuous plece-wise linear path starts at the boundary point
¢ and passes through a seq ence of simplices bearing the n-1 labels
2, 3, ..., n . It terminates upon reaching a completely labeled simplex
since such a simplex would have no other face on which g(x) = ¢ has 2
solution., This does in fact provide an alternative proof for Lemma 3.3
since 1f there were no completely labeled simplex the path could never
terminate.

The relationship between fixed point theorems and the solution
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of systems of equations will be explored later in this chapter.

V. A SPECTFIC SUBDIVISION

The algorithm described in Section III approximates a fixed point
of a continuous mapping by moving systematically through 2 sequence of
simplices in the simplicial subdivision, At each iteration we are given
a particular simplex with vertices, say, vjl, caey vjn . Depending on
the particular assignment of Integer labels a specific vertex in the
simplex is removed; we move to that unique simplex in the subdivision
which has n-1 vertices in common with the remaining vertices of the
original simplex. If the method is to be implemented effectively on a
computer the simplicial subdivision must be such that this replacement
operation is easy to carry out. Moreover the vertices of the simplicial
subdivision must be scattered with some regularity throughout the unit
simplex so that the degree of approximation is independent of the region
of the simplex in which the approximate fixed point happens to lie. The
particular subdivision, which was brought to the attention of researchers
in this field by Hansen [23] and Kuhn [35] solves these two problems ad-
mirably.

We begin our discussion by describing this particular simplicial
subdivision for n dimensional Euclidean space. The n unit vectors
will be denoted by e, e, ..., e . With this notation a simplex will
have otl vertices vo, vl, veny vt , which will consist of the points

in R" with integral coordinates.
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5.1. [definition] A typical simplex in the subdivision will be defined
by an integral point b (called the base point) and a pefmutation

(o), eoey :pn) of the integers 1, 2, ..., n . The vertices are then

given by

The following figure illustrates this simplicial subdivision for

the plane., The shaded simplex has the base point b = (1, 0) and the

FIGURE 15
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permutation (¢i’ ¢h) = (2,1) , 1Its vertices consist therefore of

vo = b = (1,0)
vl =v 4+ e2 = (1,1)
v2 = vl + e1 = (2,1) .

There are two distinct types of simplices in the plane: one for each

of the two permutations of (1,2). 1In general there will be n! distinct
simplices with every simplex in the subdivision equivalent under trans-
lation to one of them. Figure 16 illustrates the six distinct simplices

for n=3,

FIGURE 16

Let us consider a simplex with vertices



u .
<

[
<

and iInquire about the replacement for a given vertex Vj ; for the moment

we assume that 0 < j < n . The new simplex will contain the vertices
0 -
v, vl, ceey vj 1 . In order to bring this about it is sufficient to
have the same base point b and to have the new permutation &51, ch, ey c?:n

agree with the old as far as its first j-1 members are concermed, i.e.

-~

o TS R ARSI T Rl TS
In order not to have vJ in the new simplex we must have c'bj # cpj .

?5 . T+l

3+l -1 + e . Since v

But wv =V

3+1

+ e must remain in the new

simplex it follows that (cpj, cpj+1) = (cpj+1, cpj) . In other words the
adjacent simplex with the same vertices, other than v':I , 18 found by
taking the same base point b and the permutation in which mj and

i

are transposed. The replacement v 1s then given by

P4+1

]

i-1 +VJ+1 -y,

This is a remarkably simple description of the replacement which can be

programmed for the computer with great ease.
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0
If v is being replaced, then we consider the new base point

b = vl , and the permutation

(‘51: {62’ veey C?)n) = (CPZJ veey P fD]_)

resulting in the vertices

P ap=yt
& ®
ol =40 4+ e l=vlte 2 _ v2
. ) P _ . ®
N 1 + 2 +el L vt 1, e t =y , and
) ®
3“ = Gn-l + e R vn + e 1 .

We see that in this case the replacement for vo is given by

T T
A similar argument showa that the replacement for vi s given

by vl + vn-1 - v® . These rules may be summarized by the following theorem.

5.2, [theorem] Let the vertices of a simplex In the simplicial subdivi-

sion be given by vo, vl, ey v , according to 5.1. The replacement

1

for an arbitrary vertex v- is given by

11, S

v v -y,

with the superscripts interpreted modulo n .

In practice we store the vertices of the current simplex as columns
in a matrix. When a given column is removed it is replaced by the sum

of its two adjacent columns minus itself, with the interpretation that
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columms O and n are adjacent. The following examples illustrate this

remark.

1 2 1 1 J

From the point of view of numerical cowmputation, nothing more than
this explicit rule for the replacement operation is really required.
To be complete, however, it may be useful to present the details of an
argument which verifies that we have indeed constructed a simplicial sub-
division of R" . We begin by showing that an arbitrary vector

X = (xl, seay xn) is contained in at least one simplex of the subdivision.
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5.3. [theorem] A necessary amd sufficient condition that x be contained
in the simplex defined by the base 0 and the permutation Dy eeer @

is that

If x 1s a convex combination of the vertices vo, vl, ceey V"

defined by 5.1, with b =0, then

n i o,
x= o, (Ze ")
3=0 J =1
n oo, n
= ZTe (Z%),
=1 =4
n
with aj =20, :'3aj =1, It follows that
0
n
x, = Ta,,
Dy j=i 3
and therefore
X - X =, >0 for 4=1, ..., n-1,
wz CPM_]_ z — 2 E 2

n
Also x =¢q_ > 0 and in addition 1 > E:a£ = x . We must therefore

have

On the other hamd, if this inequality is satisfied then defining
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al = xwl - xwﬁl fOI’ !l = 1’ vowy n-l
o =x , amd
n wn

will provide us with a set of weights which represents x as a convex
combination of the vertices vo, ceny v? . This demonstrates theorem 5.3.
We see that an arbitrary vector in the unit cube will be contained
in at least one simplex. By adopting a different base point a simplex
can be found which contains an arbitrary vector in R" .
Each of the nl permutations o, ..., ®, defines a simplex in

the subdivision lying inside of the unit cube, to consist of those vectors

with

1 e 2x_ >0,

v

22X 22X >
T % n

A vector is interior to a particular simplex if all of the weights aj
are strictly positive, i.e. if all of the above inequalities are strict.
It follows therefore that no two simplices in the subdivision have interior
points in common.

In order to demonstrate that we have a simplicial subdivision we
must show that the intersection of any two simplicies is a full face of
both of them. A face of one of our simplices 1s obtained by setting
a particular subset of the a's equal to zero and letting the remaining
a's range over all non-negative values summing to 1 , This is equiva-
lent to insisting that a particular subset of the nt+l inequalities

L2x, 2%, 2 eee 2X =0

® ) n
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be equalities.

The intersection of two simplices in the unit cube, one defined
by the permutation ¢, ..., © and the other by &_31, ceny c?;n , will
consist of those vectors in the unit cube which simultaneocusly satisfy

the above inequalities and

].Zx:- 2 Xa 2>
el %

For example if n=4, o= (4,3,2,1) and &= (3,2,4,1) then the in-
tersection consists of those vectors in the cube which simultaneously

satisfy

l2x, 2% 2%,

v
s
v
o
m
B

12x3 2%, 2%,

v
"

v
o

Together these imply

defining a full subface of each simplex. This argument, when posed in

general terms, demonstrates the following theorem.

5.4. |[theorem] The collection of simplices defined by 5.1 is a simpli-

cial subdivision of R® .

In order to implement our constructive approach to fixed point

theorems, we require & simplicial subdivision of the unit simplex,

n
S=(x= (xo, erey xn)lxiao, Exi= 11,

o
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and with two vectors in the same simplex close to each other. We shall
construct such a gsimplicial subdivision with vertices (kO/D, klln,,.., kn/D)
where D 18 a large positive integer and ko, ss ey kn non-negative in-
tegers summing to D . To do this we simply modify the definition given

in 5.1 by letting the base point b be an integral vector in Rn+l whose
coordinates sum to D , and by redefining el crey e® to be the n

2

vectors in Rn+1 given by

e = (1, -1, 0, ..., 0)

o
n

(0, 1, -l, ssay 0)

e®=(, 0, 0, ..., 1, -1) .

The simplices defined by

n
will have all of their vertices on the plane I kj =D, and will form
0

a simplicial subdivision of this plane since they are obtained from our
previous subdivision of R" by a linear transformation.

We notice that the ith coordinate of any two vertices of the same
simplex are either equal or differ by 1 . This implies that nome of
the coordinate hyperplanes X, = 0 intersect any of the simplices in

an interior point; we can therefore select those simplices which are

unambiguously in the non-negative orthant. After division by D this
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provides us with a simplicial subdivision of the unit simplex with the
property that two vectors in the same simplex x and =x' satisfy
|y -%x;| < 1/ for all i .

It should be noticed that the replacement operation described in
5.2 holds, in precisely the same form, for this simplicial subdivision.

A sequence of replacements is illustrated in the following figure.

FIGURE 17

In this figure D = &4 ; the numerators of the vertices in the

sequence of simplices are as follows
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VI. A NUMERICAL EXAMPLE

In this section we shall give an example of a general equilibrium
model which we shall solve by the use of Lemmas 3.4 and 3.5 and the par-
ticular simplicial subdivision of the last section., OQur previous discus-
sion of Sperner's lemma involved embedding the unit simplex in a larger
simplex and extending the simplicial subdivision to a restricted subdivi-
sion of the larger simplex (see Figure 11). Since the new subdivision
will not be of the type described in the previous section, the very ele-
mentary replacement operation camnot be employed without some modifica-
tion. Before presenting the numerical example I shall describe Kuhn's
method [35] for initiating the algorithm, which avoids this difficulty
and, in addition, permits us to start our calculation at any boundary
point of the simplex.

n
Let the unit simplex S = {x = (X, ..., x )|x, >0, Tx, =1}
1 n’ 'L = i=1 i

be given a simplicial subdivision of the type described in the previous

section. We select a large positive integer D and consider as vertices
in the subdivision the points (klln, cesy kh/D) with k;, ..., kn non-
negative integers summing to D ., The numerators of the vertices of any

particular simplex in the subdivision can be written as the columns in

an n xn matrix

1 n |
k1 o aw kl
K = . .
i Kt (K
n n o

The arguments of the previous section imply that the columns of K can be
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ordered in such a way that W= Wy e ; Where ei is a vector
whose (i-l)St coordinate is +1 , whose ith coordinate is -1 and
whose remaining coordinates are 0 ., Moreover Dgy seey @O is a permu-
tation of the set (2, ..., n) . In other words each column is identi-
cal with its predecessor (interpreted module =n ) except for the entries
in two Successive rows, the first of which is a single unit higher and the
gecond a single unit lower than the entries in the preceeding column.

The vertices kj/D are given an integer label z(kj) taken from
the set (1, 2, ..., n) and subject to the requirement that a vector
receive a label correspomding to one of its positive coordinates. Let us
attempt to initiate our search for a completely labeled simplex at a point

o, k;, ceny kﬁ) on that face of the simplex whose 1% coordinate is 0 .

FIGURE 18
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We begin by extending the simplex to include those vertices whose
first coordinate is given by kl = -1 , These additional vertices will
be given an integer label, from the set (2, ..., n) , 1in such a way that
there is a unique simplex in the extended subdivision, which consists of

a single vertex with kl =0, (n-l1) vertices with k. = -1, and with

1
the latter set of vertices bearing all of the labels 2, ..., n .

6.1. [labeling rule] A vertex given by (-1, k2, caey kn) y with

n
ki >0, for 1 =2, ..., n and T kj = D+1 , will be labeled with
2
the first integer for which ki > k: .
The columns of the matrix
-l R ""1 ~1 0 _1
& * * *
k2 ky h+l Iy

car u?r*
S
+
cae b?r*
ase f*

T

i K+l K K*
n

represent a simplex in this extended subdivision. The first n-1 wvectors
bear the labels n, n-1, ..., 2 ; the final vector bears a label different
from 1 ., The algorithm can be initiated at this simplex and can only

run into difficulty if it encounters another simplex

- -
-1 Py -1 0
1 n-1 n
ky ks ky
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whose first n-l columns bear all of the labels n, ..., 2, say in
that particular order. For this to be true, however, we must have

] * _
kn-j+1 > kn-j+l for j =1, ,eey n~1,

Since no two entries in the same row of this matrix differ by more than

unity

kiak‘; for j=1, ..., n-1 and 1 =2, ..., n .

n n
But T ki = T kI + 1, and it follows that the second matrix is iden-
i=2 i=2
tical to the one initiating the algorithm.
Let us now consider an example of an exchange economy involving
5 types of consumers and 10 commodities. The ith consumer will own,

prior to trade, a specific vector wi , as given by the following table:

Initial Stock of Commodities
Consumer
1 0.6 0.2 0.2 20,0 0.1 2,0 3,0 5.0 5.0 15.0
2 0.2 11.0 12,0 13.0 14.0 15.0 6.0 5.0 5.0 9.0
3 0.4 9.0 8.0 7.0 6.0 5.0 4,0 5,0 7.0 12,0
4 1.0 5.0 5.0 5.0 5.0 5.0 5.0 8.0 3.0 17.0

5 8.0 1.0 22,0 10,0 0.3 0.9 5.1 0,1 6,2 11.0

The 1th consumer's demand functions will be derived from a utility
function
10 1-1/b
u(x) = Za}_/bxi i .

1
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The following table describes the parameters aj for each consumer.

Util ity Parameters

Consumer
1 1.0 1.0 3.6 o0.1 0.1 1.2 2.0 1,0 1.0 .07
2 1.0 1.0 l..¢ 1.0 1.0 1,0 1,0 1,0 1.0 1.0
3 9.9 0.1 5.0 0,2 6.0 0,2 8.0 1,0 1.0 0.2
4 1.0 2,0 3.0 4,0 5.0 6.0 7.0 8.0 9.0 10.0
5 1.0 13,0 1.0 9.0 4.0 0,9 8.0 1.0 2,0 10.0

The parameters b are given by

b
1 2.0
2 1.3
3 3.0
4 0.2
5 0.6

The problem was solved by selecting D = 200, and initilating the
algorithm at the center of the face X, = 0 . After 6063 iterations the
following matrix, whose columns are the numerators of the vertices of a

completely labeled simplex, was found.
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39 39 39 39 40 39 39 39 39 39
22 22 22 22 22 23 22 22 22 22
19 19 19 15 19 19 20 19 19 19
8 8 8 8 8 8 8 9 8 8
23 23 23 23 23 23 23 23 24 23
15 15 15 15 15 15 15 15 15 16
24 23 23 23 23 23 23 23 23 23
21 22 21 21 21 21 21 21 21 21
20 20 21 20 20 20 20 20 20 20
9 9 9 10 9 9 9 9 9 ?J

Each of these columns, after division by 200, may be used as an approximate
equilibrium price vector, yielding a vector of excess demands which is
fairly close to zero. A better approximation is obtained by averaging

these prices, using a variation of Newton's method, to yield
m= (.187, .109, .099, .043, ,117, .077, .117, .102, .099, .049) .

At this price vector the excess demands are equal to zero for two decimal
places.

The algorithm underlying Lemma 3.5 can also be used to solve this
problem. In this latter algorithm a vertex of the subdivision kj/D
receives a label corresponding to one of its zero coordinmates if it is
on the boundary of the unit simplex, and otherwise a label corresponding
to that commodity with the largest excess demand. To be specific we shall

agree on the following convention.
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6.2. [labeling rule for the second algorithm] The label associated with
a vertex on the boundary of the simplex will be the first coordinate which

is equal to zero.

Our earlier arguments for this version of the algorithm involved
embedding the unit simplex in a larger simplex to which the simplicial
subdivision is extended. The particular form of our simplicial subdivi-
sion, however, permits us to work directly with the unit simplex and to
show that the algorithm never leads us outside of the simplex.

let us define d =D -n+ 1. The columns of the following matrix

represents a simplex in the subdivision:

B N
d d+1 d+1 ... d+1 d
1 0 1 1 1
1 1 0 1 1
1 1 1 0 0
0 0 0 0 1
N i
Labels 4] 2 3 ses N=1 n-1

According to our labeling rule, the label 1 does not appear, all
of the remaining labels do appear, and the label n-1 is associated with
the last two columns. If the th column is removed we are carried out-
side of the unit simplex; we begin the algorithm, therefore, by removing
columm n-1 ,

The algorithm can only run into difficulty if we encounter another
matrix which contains a row (0, 0, 0, ..., 0, 1) and if the last columm

ig to be removed because it shares a label with one of the other columns,
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If, however, this row is the 1th row in the matrix, and i < n , then

each of the first n-1 columns will receive a label < i . The label

n can only appear in the last column, which, consequently, will not be

removed .,

We can therefore assume that the row (0, 0, 0, . ey 0, 1) 1is the nth
row in the matrix. If the last column is to be removed, the first n-1
columns of the matrix will bear the labels 2, 3, ..., n, and since
each one of these columns is on the boundary of the simplex, the corres-
pording label will be borne because it is the first coordinate equal to
zero in that column. It follows that each row of the matrix, other than
the first, must have a zero entry, and therefore that these rows are com-
posed entirely of zeros and ones,

The column bearing the label n must then be given by

i.e., the first column in our initial matrix.

The column bearing the label 2 must have at least two zero entries
in it, one in the an row, and one in the last. gSince the entries in rows
2, 3, ..., n are zero or one, if there were a third zero entry it would
follow that the entry in row 1 would be > d+2 , Since this is impossible

we see that the column bearing the label 2 must be the second column in
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our original matrix.

If this argument is continued, we see that the first n-1 columns
of the matrix leading us outside of the simplex must be identical with
those of our initial matrix. But this face can be completed to a simplex
in the subdivision only by the addition of the last column of the original
matrix. It follows that an exit from the unit simplex can only occur by
returning to the initial simplex; this is impossible from the general
arguments of Section III.

when this version of the algorithm was applied to the previous
example, again with D = 200 , termination was achieved in 2996 {teratioms,

with the completely labeled simplex whose numerators are displayed below.

36 36 36 35 36 36 36 36 36 36
22 22 22 22 2y 22 222 22 22 22
20 20 20 20 20 19 20 20 20 20

9 9 9 9 9 9 8 9 9 9
23 23 23 23 23 23 23 22 23 23
16 16 16 16 16 16 16 16 15 16
26, 2% 26 24 24 24 24 2% 24 23
20 21 21 21 21 21 21 21 21 21
20 19 20 20 20 20 20 20 20 20

10 10 9 10 10 10 10 10 10 10
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The more rapid termination of this version of the algorithm is entirely
attributable to the fact that the vertex (1, 0, ..., 0) is a better
approximation to the true equilibrium price than the vector initiating
the previous algorithm, and not to any inherent superiority of this ver-
sion.

Both algorithms require a fairly substantial amount of computation
in order to yield a modest accuracy. In the next several sections we
shall describe a number of variations of the basic algorithm which provide
a dramatic improvement iIn computational speed, in addition to extending

the class of problems to which these methods can be applied.

VII. VECTOR LABELS

The algorithms with which we have been concerned associate with
each vertex of a simplicial subdivision an integer label selected from
the set (1, 2, ..., n) . When applied, for example, to determining equi-
1ibrium prices for a model of exchange the excess demands §1(f0, eeny En(n)
are evaluated, and the associated label corresponds, say, to that commo-
dity with the largest excess demand.

It is clearly inefficient from a computational point of view to
replace the vector of excess demands, whose evaluation may in itself be
quite time consuming, by a single integer. The vector labeling procedures
to be discussed in this section permit us to utjilize all of the informa~
tion in the excess demand vector with the expectation of greater accuracy
in less computing time. 1In addition they are applicable to a large class
of problems, including for example the approximation of a fixed point

implied by Kakutani's theorem, to which the earlier methods cannot readily
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be applied.

Let us consider, as before, a restricted simplicial subdivision
n _ml k
v

of the unit simplex, with vertices vl, vaey Vo, 3y esey VO,

FIGURE 19

Each vertex vj will have associated with it a label L(vj) s
which is a vector in n dimensional space. In the applications of the
vector labeling algorithms these labels will depend on the particular
problem being solved. For the moment, however, the labels are arbitrary,
aside from the stipulation that the unit vectors defining the simplex
receive the labels L(vj) = vl for Jj=1, 2, ..., n . We shall also
be given, in advance, a specific positive vector b in R" .

Qur previous algorithms attempted to determine a simplex in the
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ER j

subdivision, with vertices v 1, V 'y esey V " and whose labels

3 3
(v 1), A(v 2), vy (v n) were distinct. By a solution to the vector
labeling problem we mean the determination of a simplex with vertices
j1 jn
v

» sesy vV, for which the system of linear equations

) 2!
le (V )+"°+Yj

]
v ™y =0,
n

gt The following theorem pro-

have a non-negative solution yj 3 seey ¥
1 n

vides sufficient conditions on the labels L(vj) for the problem to have

a solution.

7.1. [theorem] Consider a restricted subdivision of the unit simplex
with vertices vl, ey vn, vn+1, veoy vk . Each vertex vJ has asso-
ciated with it a label L(vj) N R® ; the first n vectors have as labels

L(vj) = vj . Assume that

K o aeed

i=1
and yj >0 for =1, ..., k 1implies yj =0 for all j . Then for
any positive vector b ¢ R" , there is a simplex in the subdivision with

J i

i n
vertices v , ..., v , such that

3y
ZYj v ") =b
1 I

has a non-negative solution.
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Theorem 7.1 has an interesting geometric interpretation which il-
luminates the method we shall provide for determining a correct simplex.
Let us define a mapping g(xl, . xn) from the non-negative orthant

of R" into R" in the following way

7.2. [definition] g(x) 1s defined to be the unique mapping satisfying
1. g(vj) = L(vj) for each vertex in the subdivision,
2, g(x) 1is linear in each simplex in the subdivision,
3. g(x) 1s homogeneous of degree 1, 1i.e. g(Ax) = Ag(x) for

A>O .

To determine g(x) for any non-negative x (different from O )
we find that A for which Ax 1is on the unit simplex, and therefore
h 3
contained in a particular simplex with vertices v 1, seay V T | We then
write
i 3

AX = yj v + ... + yJ v »
1 n

with y > 0 and summing to 1 , and define

jl jn
g(dax) =y, v )+ ..o +y V).
j1 In
With this interpretation we see that Theorem 7.1 is equivalent to assert-
ing the existence of a vector x* with g(x*) =b . The validity of
this assertion is a consequence of the following two properties which

- are immediate from the definition of g(x) .
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7.3. [properties]
1. g(x)

2. g(x) <0 implies x =10,

x for x on the boundary of the positive orthant,

The mapping g(x) 1is piece-wise linear. The non-negative orthant
of R" is partitioned into a finite set of polyhedral cones-~each one
of which has n extreme rays through the origin--and such that g 1is
linear in each cone.

let P = R: x [0,1] , the product of the non-negative orthant
and the closed unit interval. The set P 1s naturally subdivided into

a finite number of 'wedges'" as the following figure indicates for n = 2 .

FIGURE 2

We shall extend g to a mapping G of the set P intoc n space

in such a way that G 1s linear in each wedge.

7.4, [definition] Let c¢ be a vector in R ; strictly larger than

b 1in each coordinate. For (xl, ceey Xos t) ¢ P we define

G(x,t) = g(x) + tc .
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With this definition a sclution to the vector labeling problem is

a vector x* for which G(x*, 0) = b , The mapping G will permit us

to trace out the one dimensional family of solutions to G{x,t} =b and

to show that there is at least one member of the family with t =0 .,

The boundary of the set P congists of a number of hyperplanes:
the two hyperplanes given by t = 0 and t =1, and the n hyperplanes
defined by X, = 0 . Let us ask whether there are any solutions to
G(x,t) = b on the boundary of P ~-other than t =0 .

A solution on the upper boundary would require g(x) + ¢ = b and
since ¢ > b this implies g(x) < 0, contrary to the second property
in 7.3. To examine the solutions on that part of the boundary defined
by X, = 0, we make use of the first property in 7.3, i.e, that g(x) = x

on the boundary of the non-negative orthant. For such points G(x,t) =D

is equivalent to x + tc = b , These equations have a unique solution

FIGURE 21

obtained by selecting that index, say i¥* , for which (bi/ci) is minimal,
gsetting t = bi*/ci* and x = b-ct .

We see that there is a unique solution to the equations G(x,t) = b
on the boundary of P , other than that part of the boundary on which

t = 0 . The algorithm for finding x* consists simply of following the
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plecewise linear path defined by G(x,t) = b from this particular boun-
dary point until it intersects a point on the boundary with t =0 ,
Each wedge is defined by a simplex in the subdivision with ver-
] h|

tices v l, vesy V L ¥

] ]
X = yjlv 1 + .00 F yj v P , then
n

h
L(v n) .

jl
g(x) = yj v Y+ ... +y
1 n

3

In this wedge the equations G(x,t) = b therefore take the form

j1 jn
yj!.(v )+...+yj£.(v ) +tc=b,
i n

with yj >0 and 0<t< 1. The path enters the wedge on a particular
i

boundary face of the wedge for which one of the y variables is equal

to zero and exits when another variable is equal to zero. The precise
determination of these two faces can be facilitated by adopting the ter-
minology of linear programming. Let us define a matrix L with n rows
and with ktl columns, where k 1is the number of vertices in the simpli-
cial subdivision. The jth column of L (for j < k) is the vector
L(vj) . Column k+1 is defined to be c .

Assume, to be specific, that the path enters the wedge at a point

where yj = (0 , This corresponds to the statement that cclumns
1

(jz, ceey jn’ k+l) form a feasible basis for the system of linear equa-

tions Ly = b . The path will exit at a point where yj > 0 and some
1

other variable is set equal to zero; but this is precisely the same as
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]
bringing the column A(v 1) into the feasible basis and removing one of

the columns in the basis by an ordinary linear programming pivot step.

J
If the column £A(v i) is removed, the adjacent wedge is found by replac-

ji j1 jn
ing the vertex v in the simplex defined by v 7, ..., v . If the

(lc+1)at column is removed the algorithm terminates since at this point
we obtain a solution with t = 0 ,

To summarize, at each stage of the algorithm we are given a spe-

jl jn

cific simplex with vertices v °, ..., v = . The colums of L associated
with n-1 of these vertices and the vector ¢ form a feasible basis for

Ly = b . We proceed by bringing into the basis the column associlated

with the missing vertex, replacing the vertex whose column has been eli-

ninated from the feasible basis and continuing. The initial configura-

n i*

tion is the simplex vl, veey V. with v absent and say v' included,
since these n-1 vertices form a feasible basis along with columm ¢ .
The algorithm terminates when column c¢ 1is removed from the feasible
basis by the pivot step.

To be completely tidy about our argument for Theorem 7.1, two ob-
servations are in order. First of all the pivot steps which are required
can always be carried out, For if not the path would contaiﬁ an infinite
half-line In a single wedge. The variable t would necessarily be con-
stant along this line so that g(x) would be constant along a half-line
extending to infinity, violating the second property of 7.3. Secondly
any degeneracy in the system Ly = b must be avoided by one of the de-
vices of linear programming. Degeneracy means that the exit from a given

wedge may lead to more than one adjacent wedge with a bifurcation of the

plecewise linear path.
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FIGURE 22

It should also be remarked that the parameter t need not be mono-
tonic along the path, and that the set of solutions to G(x,t) = b may
contain plecewise linear components other than the ome comstructed by our
algorithm. These matters are discussed in detail in [14].

In order to utilize the vector labeling algorithm it must be adapted
to the regular simplicial subdivision introduced in Section V. We do this
by associating with a vertex v , on the boundary of the unit simplex,
the vector label £Z(v) equal to the ith unit vector in R" if vy

igs the first coordinate equal to zero, The algorithm begins, as in Sec~

tion VI with the simplex, the numerators of whose vertices are given by

d d+1 ... d+l d

1 0 1 1

1 1 1 1

1 1 0 0

0 0 0 1
labels e" e2 s e“-1 en-l s

and whose associated vector labels are all unit vectors. The vector labels

agsociated with the first (un-1) vertices form a feasible basis, along
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with the vector ¢ , for the system Ly =b , if c¢ is selected so
that bllc1 S-bi/ci . The first step is to pivot into the basis the vec-
tor associated with the last column. We remove the vertex asgociated
with colum n-1 , find the new simplex and continue. The arguments of
Section VI may be used to show that we never depart from the unit simplex
and terminate after a finite number of iterations with a simplex whose

asgoclated vector labels form a feasible basis for Ly = b .

VIII. THE GENERAL EQUILIBRIUM MODEL WITH PRODUCTION

The methods of the last section provide an exceptionally flexible
technique for the numerical solution of a wide variety of problems. They
can be used to approximate equilibrium prices in a gemneral Walrasian model
--with or without production--to approximate fixed points of an upper
semi-continuous point to set mapping; to solve non-linear programming
problems and to determine a vector in the core of an n person game.
Limitations of space make it impossible to describe anything other than
the application of vector labeling methods to the determination of equi-
librium prices, and even in this example we shall be forced to restrict
our attention to one of the many approaches which have been suggested.
The reader who is curious about other applications can consult [49] or
other items in the bibliography at the end of the paper.

Consider a general equilibrium model specified by a strictly posi-
tive vector w of assets prior to productiom, a set of market demand
functions x(m) (continuous, homogeneous of degree 1 , and satisfying

the Walras law wx(m) = mw ), and an activity analysis matrix
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'1 . te 0 s alj )
0 0 azj .o

A= - . . .
0 -1 anj

We make the conventional assumption that Ay >0, y > 0, implies

y =0, Aprice vector m and a non-negative vector of activity levels
y* will be a solution to the general equilibrium problem if
1. x(r) =w + Ay* , and
2, WA<O0,
The following assignment of vector labels to the vertices of a
gimplicial subdivision of the price simplex will provide an approximate

solution.

8.1, [Labeling Rule]. Let w be a vertex of the simplicial subdivision.
If 7w is on the boundary of the simplex then Z(m) is the ith unit
vector where 1 is the first coordinate of m equal to zero. If n

is interior to the simplex we find that column al in the activity analysis

j>0, then A(w =-aj.

matrix for which n-aj is maximal, If m-a
1f «n-.\aj ﬁO , then &(m = x(n) . Moreover, the vector b 1is defined
to be w .

In order to apply 7.1 we must verify that the vector labels E(nj)

sat{sfy the comdition that z yjz(ﬂj) <0, y, >0 implies yj =0

3
for a1l § . This can easily be shown to be a consequence of the assump-
tion made about the activity analysis matrix plus the fact that for each

price vector 7, x{(n) >0, and is positive for at least one coordinate.

when the algorithm is applied we determine a simplex with vertices
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j1 jn
T, +eey M . Several of these vertices will have associated vector
labels which are the market demand functions evaluated at the correspond-
ing price; the remaining vertices have labels which are the negatives
of certain columns in the activity analysis matrix. With an obvious change

in notation the equations Ly = b can be written as
F} . £
)‘:ij(‘n‘]) - Zyza <w .

The labeling rule 8.1 permits us to make the following statement: 1In

the above inequality yj > 0 1f at prices nj all activities make a
profit <0, and yi > 0 if for some vertex of the final simplex at

is the activity which makes the largest profit, and it is positive. More-
over the ith row will be an equality unless some vertex of the final
simplex has its ith coordinate equal to zero.

It may be shown that the activity levels yi and a suitable aver-
age of the prices in the final simplex are an approximate equilibrium in
the sense that the two defining properties are approximately satisfied.
This is a rather tedious argument, however, which can be circumvented
by imagining that the problem has been solved for an infinite sequence
of grids whose mesh tends to zero. We then select a subsequence of
solutions, whose vertices tend to a price vector % and whose activity

levels tend to a vector y* ., The above inequalities become
* 4
y*x(ft*')-EyLa <w.

The labeling rule now provides us with the following information.
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8.2. [consequence of labeling rule]

1. If y*>0 then A< O.

2, If y’; > 0 then a? 1s a column which maximizes profit at
prices ™ , and ﬁ*a"' >0.

3. If Tq > 0 then the ith row in the above inequality is,

in fact, an equality.

In order to show that * and {y'? form a competitive equilibrium
we begin by demonstrating that y* >0,

If y*=0, we see that -T y‘iazgw and as a consequence of 3:

-E yiﬂ*-ﬂz = #.w -

But this is impossible since the right hand side is positive and the left
non-positive. We see that y* > 0 and therefore A< 0 . In conjunc-
tion with 2 we can now argue that ﬂ"‘-a"z = 0 for any activity with

y’z >0, 1If follows that Eyiﬂ*-az = 0, and as a consequence

yro.x (1) = meew .

Making use of the Walras law, y* is therefore equal to 1, and our in-

equalities become

x(m) <w + Tyiat,

with equality if the 1th price is positive, This concludes the argu-

ment that % , y* are an equilibrium solution.
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In order to illustrate this algorithm we consider an example, dis-
cussed in detail in [47], of a general equilibrium model with production,
There are six commodities which can be described as follows:

1, Capital available at the end of the period.

2. Capital available at the beginning of the period.
3. Skilled labor.

4, Unskilled labor.

5. Nondurable consumer goods.

6, Durable consumer goods.

The activity analysis model of production is given by the follow-
ing matrix, in which the six colums representing disposal activities

have been omitted,

Activities
Commod ity 7 8 9 10 11 12 13 14
1 4 4 1.6 1.6 1.6 9 7 8
2 -5,3 -5 -2 -2 -2 -1 4 -5
3 -2 -1 -2 ~4 -1 0 -3 =2
4 -1 -6 -3 -1 -8 0 <1 -8
5 0 0 6 8 7 0 o 0
6 4 3.5 0 0 0 0 0 0

In addition to the specification of production possibilities, we
agssume that there are five consumers who, at the beginning of the period
own positive quantities of goods 2, 3, 4, 6 according to the following

table.
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Commodity
Consumer 2 3 4 6
1 3 5 .1 1
2 o1 .1 7 2
3 2 6 .1 1.5
4 1 .1 8 1
5 6 .1 o3 2

Each consumer will be assumed to have a C,E.S. utility function,

of the type used in Section VI and with the following set of parameters.

Utility Parameters

Consumer
1 4 0 0.2 0 2 3.6
2 0.4 0 0 0.6 4 1
3 2 0 0.5 0 2 1.5
4 5 0 0 0.2 5 4,5
5 3 0 0 0.2 4 2

The parameters b are given by

Consumer b
1 1.2
2 1.6
3 .8
4 )
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To solve this problem, a denominator D = 200 was selected, and
the labeling rule 8.1 was used. After approximately 2200 iterations the
simplex whose numerators are given by the colummns of the following matrix

was obtained.

4 bh 4h 44 44 45
47 48 48 48 48 47
35 34 35 35 35 35
12 12 11 12 12 12
22 22 22 21 22 22

40 40 40 40 39 39

Five of these six columns have associated vector labels which are
the negatives of activities 7, 9, 10, 11 and 13, The corresponding weights
y5 can be used as approximations to the equilibrium activity levels,

In order to obtain an approximate equilibrium price vector the columms

were averaged,

Equilibrium Prices

,220833  .238333  ,174167 .059167 ,109167  .198333

These prices were used to calculate the following table of profit-

abilities:



Activity Level Profit
7 0.468253 0, 006000
8 0.0 -0,143333
9 3.127146 0.005833
10 0.188899 -0, 005833
11 0.165613 -0.006667
12 0.0 -0,039583
13 0,365860 0,010833
14 0.0 -0,246667

and to evaluate the consumer market demand functions:

Commod ity Demand Supply
1 11.188389 10.004686
2 0.0 1,191501
3 1,099712 2,090414
4 2.731755 3.970645
5 23,079518 21,433357
6 9,705318 9.373014

70

As can be seen the approximation is not exceptionally accurate; in
particular the discrepancy between supply and demand is fairly large for
certain commodities. An improvement in accuracy can be obtained by select-
ing a much finer grid but this is a very expensive procedure since it
requires us to initiate the algorithm at a vertex of the simplex and to
discard the information we have already obtained as to the approximate

location of the equilibrium price vector, Alternatively there are numerical
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methods --essentially adaptations of Newton's method to systems of non-
linear inequalities--which can be used to improve the current approxima-
tion. But neither of these approaches are remotely as good as the al-

gorithms of Merrill and Eaves which are described in the next sectiom.
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IX. THE ALGORITHMS OF MERRILL AND EAVES

The computational methods we have discussed in the previous sec-
tions have two major drawbacks. First of all they require the algorithm
to be initiated at a vertex of the unit simplex--or as in Kuhn's version
of integer labeling at a boundary point of the simplex. If an answer
is obtained with a fixed grid, whose accuracy 1s inadequate for the prob-
lem at hand, the algorithm must be restarted with a finer grid and the
results of the previous calculations discarded completely. The algorithms
introduced by Merrill [43] and Eaves [ 11] permit the computation tobe initiated
at an arbitrary point on the simplex and allow a continual refinement of
the grid. They yield a vast improvement in computational speed over the
earlier algorithms which require a fixed simplicial decompositicnm, and
are used in virtually all practical applications of fixed point methods.
Merrill's method, which is essentially identical to the "sandwich”
method subsequently introduced by Kuhn [36], is particularlysimple todescribe.
In order to introduce the basic idea of Merrill's method, let us consider
the case in which the unit simplex is l1-dimensional and where the basic
problem is to be solved by integer labeling techniques. The interval
{(xl, xz)lxi >0, x,+x, = 11 is subdivided with some preassigned grid
size D . The vertices in the subdivision will be of the form (k1/D, kz/D)
with k. and k. non-negative integers summing to D . The numerators

1 2
of the vertices of a typical simplex in the subdivision will be given by
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The vertex defined by (0,D) will be given the label 1 and (D,0) the
label 2 . The customary integer labeling methods starts at one of these
extreme vertices and moves into the simplex until we first encounter a
vertex with the other label,

let us imagine that we have an initial guess as to where the true
answer lies, given by the vector (kT/D, k;/D) s with k{ s k; non-
negative integers adding to D . Merrill's algorithm incorporates this
additional information by drawing the simplex %k +k, = D«1 , and sub-

1 2
dividing the resulting two dimensional figure.

L]

FIGURE 23

In Figure 23, D = &6 , and the integer labels on the upper simplex
are agsumed to be derived from the problem at hand. The integer labels
on the lower gimplex will be based on the initial guess (kt,

in this particular example we assume to be (3,3) . On the lower level

k’;) which

the pair (kl’ kz) will be given the label {1 if i 1is the first coor-

dinate for which k, < k‘; .
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Merrill's algorithm moves through a sequence of two-dimensional

simplices, each defined by three verticea. We begin at the aimplex

* * *
kl kl- 1 kl

* % *
kz k2 k2 1

two of whose vertices are on the artificilal level and one vertex on the
original simplex. The initial simplexhas beenconstructed insuch away that
the two vertices on the artificial level bear the labels 1 and 2,
one of which is shared with the vector (k;, k;) . We remove that vertex
on the artificial level with the doubled label and continue until we are
forced to exit through the original face of the "sandwich." At that
point we have found a completely labeled simplex whose labels derive
from the original problem., If the accuracy which has been achieved is not
adequate we repeat the calculation, with say a doubled grid size, and
with the new guess given by a choice of one of the vertices in the completely
labeled simplex. Since the grid size grows exponmentially we can expect
a high degree of precision in a relatively small number of iterations.

The layer which is subdivided is part of a two dimensional simplex,
obtained by introducing an additional coordinate k, =D -k, - k., .

1 2
with this notation the initial simplex may be represented by

0 1 1

* * _ *
k7 ki-1 kj

* * *
k, L ky -1

This permits us to make use of the regular simplicial subdivision based
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2
on the vertices (ko, kl, kz) with T ki =D, and in particular to

0

expliot the simplicity of the replacement step. Of course, vectors on
the artificial level will have ko = 1, and those on the original level

ko =0,

let us generalize these observafions, by considering a problem of
size n, and by making use of vector labeling. We are concerned with
the set of non-negative integers (kl, coey kn) summing to D . Fach
such vector has associated with it a vector label &(k) in R" y derived
from the problem at hand, and satisfying the comdition that A(k) 1is
the ith unit vector in R" 4if ki is the first coordinate equal to
zero. We wish to determine & simplex in the subdivision, such that a
nonunegaﬁive linear combination of the associated vector labels equals
a preassigned positive vector b . In addition, we are given an initial
guess (k;_’, seey k’:l) as to the solution.

The set of vertices is enlarged by considering an additional coor-

dinate k., and the regular simplicial decomposition based on the set

0
n
of vertices (ko, kl’ ey kn) with ki >0, g:ki = D . Only those

vertices with ko = 0, 1 are relevant for the computation and these are
assoclated with vector labels in Rn (not Rm-1 ) according to the fol-

lowing rule.

9.1. [labeling rule for Merrill's algorithm] A vector k = (k., kl, orey kn)
will, if k, = 0, receive the label .t(kl, ceny kn) o If ky=1 the
vector label 1is the ith unit vector in Rn if i 1is the first coordinate

*
for which ki < ki .

The initfal simplex is given by the columns of the following

{(n+l) x (1) matrix
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0 1 A |

s * _ *

kl kl 1 kl

K K¥-1
Ln n n

If the rows and columns of this matrix are indexed from 0, ..., n, we

gee that columms 1, ..., n have as vector labels the n unit vectors

in R" . These vector labels form a feasible basis for the system Ly = b ,
The vector label associated with the zeroth column derives from the original
problem,

The first step of the algorithm is to introduce this latter vector
into the feasible basis, by a pivot step. One of the other vectors is
eliminated and its replacement found by determining an adjacent simplex.
The vector label associated with the new vertex is brought into the feas-
ible basis and we continue.

The algorithm terminates when the simplex comtains n wvectors whose
coordinate is 0 (i.e. vectors whose labels come from the original prob-
lem) and a single vector whose zeroth coordinate is 1 and whose associated
column has just been removed from the feasible basis by a pivot step,

The labels associated with these n vectors therefore form a feasible
basis for Ly = b , and we have obtained a solution to the original
problem, If the accuracy is not adequate the algorithm is repeated with
a higher value of D ,

The argument for the second algorithm of Section VI can be used to
show that we never depart from the "sandwich'" other than through the top
face. Demonstrating that the algorithm cannot cycle is also & simple

application of the types of analysis used in previcus sections.
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Merrill's method may be viewed in terms of homotopy theory. We
take the product of the unit simplex and the closed unit interval [0,1]
and subject it to a simplicial subdivision all of whose vertices lie on
one of the two bounding planes. We construct a pilecewise linear mapping
of this product into the unit simplex which approximates the true mapping
on the face Xy = 0 . On the face Xy = 1 the mapping is chosen so as

to have a unique fixed point. Merrill's method essentially traces the

fixed point from one face to another,

)

gy P

FIGURE 24

Eaves' method, on the other hand, involves a simplicial decomposi-
tion of the product of the unit simplex and the half line [0,®) with the

grid becoming finer as the coordinate X, increases. Eave's method has

- ]

~
-

-H_
A Y
hY
\
LS
~
-

FIGURE 25
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the distinct advantage that the vector labels obtained at the previous
level are retained. This means that the Jacobian of the mapping is util-
ized rather than a single estimate of the fixed p;int. Eaves ' method
does, however, require the construction of & simplicial decomposition

of the product space with exponentially decreasing grid size and this

is rather complicated to work with,

In applying Merrill's algorithm to the general equilibrium model
of the last section we began with a small value of D and an initial
estimate of k* = (9, 9, 8, 8, 8) . The grid size was then tripled a
total of nine successive times. In roughly 2000 iterations--essentially
the same as that required by a fixed grid size of 200~-the following simplex

was obtained.

e —

216827 216827 216827 216827 216827 216828
247077 247077 247077 247078 247078 247077
158471 158472 158472 158471 158471 158471
54073 54072 54072 54072 54073 54073
104398 104398 104399 104399 104398 104398

203304 203304 203303 203303 203303 203303

. —

Any of these columms can be taken as an estimate of the equilibrium price

vector, after division by the sum of the entries in the column

Equilibrium Prices

.220319  ,251057 . 161024 .054943 .106080  ,206578

These prices may then be used to calculate the profits in the following
table In which the activity levels are derived from the weights in the

final feasible basis,



Activity Level Profit
7 0.463533 -0,000003
8 0.0 -0,141668
9 3.939607 -0,000001
10 0,006050 ~-0,000002
11 0.0 -0.007615
12 0.0 -0,052769
13 0.438389 -0, 000006
14 0.0 -0,254323

79

The final table illustrates the relationship between supply and
demand baged on these prices and activity levels., As can be seen the
degree of approximation has been substantially improved--with no increase

in computational cost--over the answer based on a fixed grid size.

Commod ity Demand Supply
1 11,234238 11.235904
2 0.0 -0,001595
3 1.155703 1,154355
4 2.974338 2,973208
5 23,682987 23.686038
6 9,354235 9.354134
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