
SOME TOPICS IN TWO-PERSON GAMES 
L- S. Shapley

INTRODUCTION

This note reports on half-a-dozen loosely related excursions into 
the theory of finite, two-person games, both zero-sum and non-zero-sum. The 
connecting thread is a general predilection for results that do not depend 
upon the full linear structure of the real numbers. Thus, most of our theor
ems and examples are invariant under order-preserving transformations applied 
to the payoff spaces, while a few (in § 1) are invariant under the group of 
transformations that commute with multiplication by — 1.

We should make it clear that we are not interested in "ordinal" 
utility, as such, but rather the ordinal properties of "cardinal" utility.
The former would require a conceptual reorientation which we do not wish to 
undertake here. Nevertheless, the ordinalist may find useful ideas in this 
paper.

Rather than summarize the whole paper here, we shall merely take a 
sample; for a more synoptic view the reader is invited to scan the section 
headings. Consider first the matrix game shown in the margin.
The solution is easily found as soon as we recognize that the
game is symmetric in the players. Indeed, if we map each
player's it 1̂ strategy into the other's i+lst (mod 4), we 
merely reverse the signs of the payoffs. It follows that the value is 0
and that there is a solution of the form (a,b,a,b), (b,a,b,a). (See § 1.)

Next, consider the class of matrix games in which the payoffs are 
ordered like those in the matrix at left (next page). In all these games, 
player I's third strategy is never playable, although it is not dominated in 
the usual sense. To verify this, observe that if the value of the 2-by-2
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subgame in the upper left comer is greater than "3" the third 
row is dominated by a linear combination of the first two rows, 
while if it is less than "7" the third column can be dropped, 
and then the third row. (See § 3.)

Finally, consider the non-zero-sum game with outcome matrix as shown 
at right. Player I rates the outcomes A > B > C; player II 
rates them B > A > C. If we apply the algorithm of "fictitious 
play" to this game, a strange thing happens. Rather than con
verging to the unique equilibrium point (at which all probabilities are equal), 
the sequence of mixed-strategy pairs generated by the algorithm oscillates 
around it, keeping a finite distance away. (See § 5.)

The five main sections of this paper are essentially independent, 
both logically and topically. Our reason for combining them into a single 
paper is the hope that they will appeal to a single audience. Much of this 
work has already appeared in short RAND Memoranda [15], and some of it has 
been cited in the published literature [5], [11]. In reworking this material, 
however, we have added many new results.

§ 1. SYMMETRIC GAMES

1.1. Discussion
It is easy to see that a two-person zero-sum game can be symmetric 

in the players without having a skew-symmetric payoff matrix. "Matching 
Pennies" is a simple example; another is shown at the right; and 
another is given in the Introduction. The point is, of course, 
that an automorphism of the game that permutes the players can 
simultaneously shuffle the labels of the pure strategies. It would be inter
esting to know something about the abstract structure of such automorphisms.*

As a first step, we shall show that the matrix of a symmetric game 
can be decomposed into an array of square blocks in such a way that (a) each 
block has constant diagonals (in one direction), (b) the array as a whole is 
skew-symmetric in a certain sense, and (c) the size of each block is a power

The narrow "skew-symmetric" definition is most often seen in the liter
ature (e.g., [19], [10], [7]). But Nash uses the more general form in [13]; 
see also [19], p. 166.
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of 2. This is illustrated at left for the 3-by-3 example 
given above.

The "power of 2" property, (c), is quite interesting. It 
tells us, for example, that the 6-by-6 game illustrated below, 

which is obviously symmetric and has constant diagonals, can nevertheless be 
decomposed into smaller blocks. The 4-by-4 and 8-by-8 analogues of this

1 3 2
1 1 -1 1
3 -1 1 1
2 -1 -1 0

matrix, on the other hand, do not decompose.
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1.2. The Main Theorem
Let A, B, ... denote n-by-n game matrices (n fixed throughout), 

and let P, Q, R, ... denote permutation matrices of the same size. Primes 
will denote transposition, which is equivalent to inversion for permutation 
matrices. We define the following matrix properties:

equivalence: A = B <------> A = PBQ' for some P, Q.
symmetry: A e 2 <----- > A == —A 1 .
conjugates: P Q <------> P = RQR' for some R.

Certain subclasses of 2, will also be of interest:

A e 2 (P,Q) <----- > B = —PB1Q 1 for some B = A.

These subclasses exhaust 2 , but are not disjoint. Indeed, we have

LEMMA 1. If PQ w RS then 2(P,Q) = 2(R,S).
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PROOF. Given PQ = TRSTr and A = —PA'Q1, we require B = A such 
that B = —RB'S'. As it happens,, B = T'AP'TR serves the purpose. Indeed, 
since P r = QTS'R'T', we have

B = T '(—PA'Q')(QTS1R'T')TR 
= -T'PA'TS'
= - (T1 AP1 T) ' S1 
= -RB 'S'.

Note that Z(P,Q) depends only on PQ. If we define 2(P) = 2(P,I), 
where I is the identity, then Lemma 1 may be restated:

LEMMA l1. If P ~ Q then Z(P) = 2(Q).

It can be shown that the converse is valid. Since two permutations 
are conjugate if and only if their cyclic factors have matching periods, 
there is thus a one-to-one correspondence between the classes 2(P) and the 
partitions of n. This stronger result is not used in what follows.

LEMMA 2. If Q is an odd power of P then 2(Q) 3 2 (P)-

21,4-1PROOF. Suppose A = —PA' . We must show that A e Z(P ) for 
all k. But A = —P(—PA1 )' = PAP1; hence A = PkAP'k = -  Pk+1A'P,k. There
fore A € Z(Pk+1, Pk) = Z(p2k+1).

THEOREM 1.1. Every symmetric game A e 2 is equivalent
to a game B satisfying B = —RB' for some permutation
R, the order of which is a power of 2.

PROOF. Let A e 2(P). The order of P can be represented in the
k c kform c2 , with c odd. Then the order of P will be 2 . By Lemma 2,

A e 2(PC). Thus Pc will serve as the R of the theorem. Q.E.D.

1.3. Block Decomposition
The decomposition into blocks can now be described. By proper choice
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of B, we can give R the form:

R = (1 2 3 A^)(A j+l . . . X j+7v2) ••• (••• n),

where the periods A^ are powers of 2. B now breaks up into a square array
of A^-by-A^ blocks ant* the equation B = —RB' implies (and is implied
by) the structure set forth in the following theorem. The proof is straight
forward.

THEOREM 1.2. Let A = min(A , A ). The block BN l~i v' |jv
has constant diagonals, in the sense that numbers

. .., exist such that for ij in that block,*

b^j = if i — j = h (mod A ) .

(If A^ A^, then B breaks up into identical square
sub-blocks of size A . )  In the symmetrically located
block B the same numbers appear; we have

b y  = -PA_h+1 if i - j = h (mod A).

In particular, along the main diagonal of the array 
(\d = v ) ,  we have for h = 1, . . ., A.

COROLLARY 1. Indecomposable symmetric n-by-n games 
exist only for n a power of 2.

COROLLARY 2. Every symmetric game of odd size has a 
zero in its payoff matrix.

1.4. Solutions
To solve a symmetric game we may (a) replace the B^v by their

TF---------------
We write ij for the ordered pair (i, j).



average values, (b) solve the resulting skew-symmetric matrix,* and (c) 
distribute the mixed-strategy probabilities for each block equally among its 
constituent pure strategies.** Not every solution of the 
original can be obtained in this way, however. In the game 
at the right, for example, (0, 2/3, 1/3, 0) is a basic 
(extreme) optimal strategy of each player.
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1.5. Symmetric Nonzero-sum Games
There is a direct extension to nonzero-sum games. Let us call the 

matrix pairs (A^, A 2) and (B^, B2) equivalent if, for some P, Q, both 
A^ = PB-^Q1 and A 2 = PI^Q' • Let us call (A^, A symmetric if (A^, 
and (A^ A^) are equivalent. Then the following counterpart to Theorem 1.1 
can be established by essentially the same proof:

THEOREM 1.3. Every symmetric nonzero-sum games (A-̂ , A 
is equivalent to a game of the form (B^, B2) = (RB^ RB^)
for some permutation R of order a power of 2.

The description of the block decomposition remains much as before, 
though the "main diagonal" loses some of its special significance. Corollary 
1 remains valid, but not Corollary 2.

§ 2. SOME THEOREMS ABOUT SADDLEPOINTS

2.1. A Condition for the Existence of a Saddlepoint

THEOREM 2.1. If A is the matrix of a zero-sum two-
person game, and if every 2-by-2 submatrix of A has a
saddlepoint, then A has a saddlepoint.

PROOF. Let val[A] = v. Let j be the index of a column having 
the minimum number, n, of entries greater than v. Suppose tt > 0; then, for

See Kaplansky [10] and Gale, Kuhn, and Tucker [7].
** See for example, Gale, Kuhn, and Tucker [8], application (e).
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some i we have a ^  > v. Since the value of the game is only v, we must 
have â .. , < v for some j ' . But the column indexed by j f has at least 
7r entries greater than v, too many to be paired off against the 7T— 1 re
maining entries > v of the other column. Thus., for some i' we have 
ai'j' ^ v — ai'j’ Since the 2-by-2 submatrix:

j j'
i 
i'
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has no saddlepoint, the assumption tt > 0 was incorrect. Hence there is a 
column with no entries greater than v. Similarly there is a row with no 
entries less than v. Q.E.D.

2.2. Detached Rows and Columns
The hypothesis of Theorem 2.1 actually imposes a very special

t hture on the matrix A. Let us say that the p row of A is detached

max a . < max min a ...
j  PJ “ i t*  j 1J

Similarly, the column is detached if

min a . > min max a ...
i lq J i 1J

Detachment obviously implies domination. For 2-by-2 matrices, the existence 
of a detached row or column is equivalent to the existence of a saddlepoint.

THEOREM 2.2. If every 2-by-2 submatrix of A has a 
saddlepoint, then A has a detached row or column.

PROOF. By Theorem 2.1, both A and A' (its transpose) have
saddlepoints. Hence there is a column of A with no entries greater than
val[A], as well as a column of A (row of A 1) with no entries less than 
val[A']. If val[A] < val[A'], then these columns are distinct, and the 
latter is a detached column. Similarly, if val[A] > val[A'], there is a

struc-
if

> V < v
< v > V



detached row. If val[A] = val[A'] = v, then there is either a detached row 
or column, or a saddlepoint pq common to both A and A 1. In the latter 
case, a^j = a ^  = v, all i,j, and we can use the fact that the submatrix 
obtained by deleting row p and column q has a saddlepoint to show that 
either p or q is detached, depending on whether the value of the submatrix 
is > v or < v. Q.E.D.

2.3. A Generalization
Theorem 2.1 can be generalized, after a fashion. Let us say that a 

matrix is "in general position" if no two collinear entries are equal.

THEOREM 2.3. Let A be an m-by-n matrix in general 
position, and let 2 < r < m, 2 < s < n. If every r-by-s
submatrix of A has a saddlepoint, then A has a saddle-
po int.

PROOF. It suffices to prove the case where r = m > 2 and
s = n— 1 > 2; the rest will follow by induction and symmetry. Let A4 denote

___
A with the q column deleted. Let i j be the location of the saddlepointq q
of A4 (which is unique, since A is in general position). If all of the
jq's are distinct, for q = 1, ..., n, then every column of A will contain
one of the points i j . Since each a. . is a column maximum, one of themQ Q  1 14 4  qJ qwill be the maximum of the whole matrix. On the other hand, it must also be 
the (strict) minimum of its row in A4, which contains at least two entries. 
This impossibility implies that the Jq's are nQt aH  distinct. Let = j
q f  t- Then it is apparent that the point iqjq = itj t is a saddlepoint of 
A. Q.E.D.

At right we illustrate what can happen if two collinear 
entries are equal. Every 3-by-2 submatrix has a saddlepoint, 
but not the full matrix.
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§ 3. ORDER MATRICES

1 0 - 1  
- 2  0 2 

2 - 1 3

3.1. Definitions. The Saddle
By a line of a matrix we shall mean either a row or a column. Two



numerical matrices of the same size will be called order equivalent if the
elements of corresponding lines are ordered alike. An order matrix, ft, is
an equivalence class of order-equivalent numerical matrices. Abstractly, it
may be regarded as a partial ordering < on the set I (ft) of all index

  Ct
pairs ij, with the property that collinear points are always comparable,
while noncollinear points are never comparable, except as a result of trans
itivity.

If K c I (ft) is a set of index pairs, we shall write K-̂  for the
set of first members, ^  for the set of second members, and K for K-̂  x
In other words, is the smallest set of rows, the smallest set of
columns, and K the smallest submatrix, that covers K. If K = K then K
is rectangular.

A generalized saddle point (GSP) of an order matrix ft is a rectan
gular set K c= I (ft) such that (1) for each i  ̂ K-̂  there is a p e
with pj > ij for all j e K9, and (2) for each j  ̂ K9 there is a q e K9  Ct __ z z
with iq < ij for all i e K-. . * (Note the strict inequalities.) A GSP that 

Ct
contains no other GSP is called a saddle.

THEOREM 3.1. Every order matrix has a unique saddle.

The proof consists in showing that the intersection of two GSP's is 
a GSP. Let K and L be two GSPs of ft. Then certainly K 0 L f  <j>, since
K and L must both carry the optimal mixed strategies of any numerical
matrix belonging to ft.** It will suffice to show that for each i  ̂ K-̂
there is a p in K-̂  ft with pj > ij for all j e ^  H L2* But we can
find a p 1 e K-̂  with that property, since K is a GSP. If p' £ L-̂ , then
we can find a p" e L-̂  with p"j > p 1 j for all j e K2 H If p" £ K^,
then p,M e K-ĵ can be found bearing the same relation to p", etc. The
strict inequalities ensure that the sequence terminates. That is, there is a
row in n L-̂  that majorizes row i on L2. Q.E.D.

The saddle of ft will be denoted by S(ft). It contains everything

Compare [5], pp. 41-42.
** Bass [1] found a way to prove K fl L =f (|) directly, without reference
to optimal strategies.

TWO-PERSON GAMES 9



relevant to the solutions of the numerical games A belonging to ft. In 
particular, it contains Bohnenblust1s "essential" submatrix* and the Shapley- 
Snow "kernels."**

We may define a weak GSP by using nonstrict inequalities >, <. The
a  a

intersection of two weak GSP's need not be a weak GSP. However, as Bass has 
shown, the intersection of a weak GSP with the saddle is a weak GSP.

3-2. Residuals
A one-element saddle is an ordinary (strict) saddlepoint, and is 

easy to find, even in a very large matrix. Identification of the saddle in 
general may be more tedious. The next theorem, based on an ingenious idea of 
Harlan Mills, provides us a rapid method of generating points in the saddle,
and thereby substantially reduces the search. (See also § 3.5.)

LEMMA 1. (Mills) Let Ct be an order matrix with at 
least two columns, let pq be maximal with respect 
to <, and let 0tq be obtained from Ct by deleting

a
column q.*** Then S(Ctq) c S(Ct).

PROOF. Write S for S(Ct) and Sq for S1 x (S2 — {q}). If
q £ then Sq is at once seen to be a GSP of Ctq . If q € S2* then
p e S^ by maximality. To show that Sq is a GSP of Ctq, note that the row
condition is satisfied for Sq, just as for S, while the column condition 
fails only if column q was used (in Ct) to minorize some column outside S2* 
But this is impossible, by the maximality of pq. Thus Sq is always a GSP
of Ctq . Hence S(Ctq) c Sq c S.

A similar lemma holds concerning the deletion of rows containing 
minimal elements.

The following lemma is easily established; we omit the proof.

LEMMA 2. If (B is obtained from Ct by deletion of 
a strictly majorized row or a strictly minorized column,

* See [2], p. 52; also [9], p. 44.
** See [17], p. 32.
*** I.e., delete column q from any A e Ct, then use order equivalence.

10 SHAPLEY
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then S ((B) c S(a).

Now consider a sequence of nonvoid order matrices Cfc, Ot^^, , .
each obtained from the preceding by deleting a column containing a maximal
point, or a row containing a minimal point, or a strictly majorized row, or 
a strictly minorized column. If (J is an m-by-n matrix, then ($(m+n 2)
1-by-l. The point so defined is called a residual of Cfc. Let R(Ofc) denote
the set of all residuals of Cfc- Our lemmas, together with the fact that the 
saddle is rectangular, give us the following result;

THEOREM 3.2. R((i) c R(a) £  s (®>-

3.3. Examples
Let us illustrate the residual concept.
(a) In the order matrix of "Matching Pennies" (at left), every entry 

is either maximal or minimal. By the maximality of 11 we can strike out the
first column, then the first row goes by the minimality of 12, and 
22 is a residual. The three other sequences give us 11, 12, and 

21 as residuals. Thus R(Cfc) = R(Cfc) = S(Cfc) = I (Cfc).
(b) More generally, let Cfc be a square matrix with a "detached"

diagonal; for example let ii be maximal with respect to <, for all i.
Ct

Then for each i, we can delete all columns except i by Lemma 1, and then
by row deletions obtain ii as a residual. Hence R(d) = S(Cfc) = I(<3t) •

(c) We first conjectured [15b] that deletions of the first type 
(Lemma 1) would always suffice to determine the saddle. This 
was disproved by Bass [1] with the 4-by-4 example at right, 
which has no residuals "of the first type" in the top row.
But if, for example, we strike out column 3, then row 3 goes 
by domination (Lemma 2), and the resulting 3-by-3 game has a detached diagonal 
making 11 a residual by (b) above. (All residuals are circled.)

(d) Thus, a new counterexample is needed to show that R(Cfc) 4 S(Cfc)
is possible. It is provided by the example described in the
Introduction, which we reproduce here with residuals circled. As
we shall see later, it is no coincidence that the residuals avoid
the "unplayable" third row.

© @®

2 3 6

© ©  5

0 ®  2 ©  
@ © 0 1 4
2 @ ©  4 

© @ © 0

1 -1 
-1 1



3.4. Minimax and Maximin Points
A minimax point of a numerical matrix is a column maximum of smallest 

value. A maximin point is a row minimum of largest value. Since noncollinear 
comparisons are usually involved, these terms are not well defined for order 
matrices. Nevertheless, we have the following:

THEOREM 3.3. The minimax and maximin points of any 
numerical matrix A e ft are residuals of Ct.

PROOF. Let pq be a minimax point of some A e ft. If A has more 
than one column, then it will have a maximum in some column other than q, 
and the corresponding location in ft will be maximal. Delete this column
and pq is still minimax. In this way we may strip the matrix down to just
the single column q, and then by row deletions obtain pq as a residual.
The proof for maximin points is similar.

Bass [1] has shown that every weak GSP contains a minimax point and 
a maximin point.

3.5- An Algorithm
The following method for determining the saddle was suggested by 

Mills (see [1], p. 3): Start with any submatrix known to be contained
in the saddle (for example, a single residual). For h = 0, 1, given
Kh c S(ft), construct Kh+1 by adjoining either (a) a new row that is maximal
(i.e., not strictly majorized) in I-̂ ft) * K2, or (b) a new column that is
minimal in x I2(ft). Then Kh+1 c S(ft). If neither (a) nor (b) is
possible, then K*1 = S(ft).

3.6. The Center
Let C-̂ (A) denote the set of "active" strategies for the first 

player in A, i.e., those that appear with positive probability in some solu
tion. Similarly, C2(A) for the second player. Let C(A) = C^(A) x C2(A). 
Then the set

12 SHAPLEY
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Aeft
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will be called the center of &.* The center is contained in the 0 4 2
saddle. It is not necessarily rectangular, as may be seen from 4 0 3
the example at the right (center shaded). I 2 5

Example (d) of § 3.3 suggests that a point which never occurs in op
timal play cannot be a residual, i.e., that R(Cfc) c C(Ct). This is not always
® d > ©  true. For example, a matrix not "in general position" can cause 
• 3 (§) (1) trouble, as at left. Another difficulty is more 1 @) (4)n 5
basic. In the matrix at right, columns 4 and 5 serve to 7 ® ^
establish that "10" < "13" and "15" < "18". These relations ( p @  @ 1 9  17 
make row 1 unplayable, despite the presence of residuals.* CEK01^ ̂  ^

Accordingly, we modify the order matrix concept for the sequences 
that define R(Ct) (see § 3.2), retaining noncollinear comparisons 

from Ct whenever applicable. The new relations can destroy maximal or mini
mal elements, but not create them; hence a restricted residual set R^(G) £ R(Ct) 
results. Our aim is to prove that R^(&) £ C(Ct), for (jfc in general position.

LEMMA 3. If pq e C(A) then every neighborhood of A 
contains a B having a unique solution and such that 
pq e C(B).

PROOF. If pq e C(A) then a "basic" (extremal) solution (x°, y°) 
of A exists with x° > 0, y° > 0. We may assume that val[A] = v =)= 0. By
the Shapley-Snow theorem on basic solutions [17], a nonsingular submatrix A
can be found for which (x°, y°) is an "equalizer":

x°A = y°Af = vi, whence x° = vlA y° = vlA1

(Dots indicate suppression of indices not appearing in A; 1 is a vector of. 2
l1s.) Given e > 0, define B = A — (e/v)A . If e is sufficiently small,
we can invert B, as follows:

B_1 = A-1 + (e/v)I + 0(e2).

_
Proof: If row 1 is active, then so is row 2, by an easy domination argu

ment. Let d = (7—15, 1—10, 10—7, 15—1). Then ^ d ^  = 0, and we verify that 
Z^a^jd^ > 0 for each j. Hence, any x with x-̂ , X2 > 0 can be improved.



Then B has an equalizer solution proportional to (x°, y°) + e(l, 1) +
20(e ). This is all-positive for small e, and hence unique.*

We now replace A by B in the original matrix. Since the value 
and solution of B differ only slightly from those of A, it is easy to 
perturb the rows and columns outside the submatrix so as to make them irrele
vant. The full matrix now has a unique solution, and p and q are still 
active. Q.E.D.

LEMMA 4. Let A have at least two columns, let A^ 
result from A by deleting column q, and let A(uu)
result from A by adding uu to the entry at pq.
Then lim val[A(uu)] = val[A^].

uu-*00

PROOF. Let x° be optimal in A^. Given e > 0, choose x such
that ||x — x°|| < e and x^ > 0. Then

xA(uu) > (v— ea, v—ea, • ••* — a+uux̂ , ..., v— ea),

(q^ component)

where v = val[A^] and a = max^.|a.jj|. Thus, for uu large, x guarantees 
the first player at least v — ea in the game A(uu). Hence we have

v — ea < val[A(uu)] < v. Q.E.D.

The following lemmas involve the "modified" order matrix concept, in
that > and > may include relations not derivable by collinear comparison.

Ct (B

LEMMA 5. Let Ct be in general position; let pq be
maximal in >; and let the elements of (B be the ele

ct
ments of ft with column q deleted.** Then C((B) £  C(ft).

* Another B, suggested by 0. Gross, is given by

bu  = a i j  -  W u  -  V j a i j  + 2
with (x, y) all-positive but close to (x°, y°).
** Contrast (B with the ft̂  of Lemma 1.

14 SHAPLEY



PROOF. Take rs e C((B). Using Lemma 3 and the fact that Ct is in 
general position, find A e Ct such that the associated Aq € (B has a unique 
solution (x*, y*) with x* > 0 and y* > 0. Define the functions

f(x) = min Z a..x., g(y) = max Z a..y..
jfq  1 J i  3fq J J

Since f(x) is polyhedral (piecewise linear) and has a unique maximum at x*, 
there exists a > 0 such that

(3.1) f(x) < val[Aq ] — a||x* — x||

for all mixed-strategy vectors x. Similarly, there exists f3 > 0 such that

(3.2) g(y) > val[Aq ] + P||y* - y||

TWO-PERSON GAMES 15

for all mixed-strategy vectors y with y^ = 0 .
Now let A(uu) be obtained from A by adding uu > 0 to the element

apq* and let (x(uu), y(uu)) be any solution of A(uu). Then certainly
val[A(uu)] < f(x(uu)), and we have by (3.1)

a||x* — x (uu) || < val[Aq ] — val[A(uu)].

By Lemma 4, x(uu) -» x* as uu -* ®; hence xr (uu) is positive for large uu.
The corresponding statement for yg (uu) is a bit harder to prove.

First we observe that

2 a^y^ (uu) + uuŷ (uu) < val A(uu) < a,

where a = max^ |a^ | . Hence

yq(uu) < 2a/uu.

Then we have



val[A(uu)] = maxi 2 a ^  (uu)ŷ  (uu) > maxi 2 a ^ y ^ w )

= max. aijyj(m) + a.syq (w) + (a±q - ais)yq (u>)]

> maxj^ [ 2 a ^ y ^ m )  + aisyq (w)] - 2ayq (w)

> g ( y '  (w) )  -  4a2/u>,

where y ' (uu) is like y(uu) except for y (̂uu) = 0 and y^ (uu) = yg (^) + y^C^)- 
Hence, by (3.2)

val[A(uu)] > val[A^] + P||y* — y 1 (uo)|| — 4a^/uu,

and y ' (uu) converges to y*, by Lemma 4. Since yq(w) "* 0* we have
y (uj) - y* > 0. Thus both r and s are active in A(uu) for large uu.
But A(uu) e Cfc for all positive uu. Hence rs e C(Ct). Q.E.D.

LEMMA 6. If ®  is obtained from Ct by the deletion (as 
in Lemma 5) of a strictly majorized row or a strictly 
minorized column, then C((B) £ C(Ct).

PROOF. A strictly dominated strategy can never be active.

THEOREM 3-4. If Ct is in general position, then 
R# (Ct) c C(O).

PROOF. The theorem follows directly from Lemma 5 (and its "row" 
counterpart), Lemma 6, and the definition of restricted residual.

3.7. The Antisaddle
We close this part with a simple result concerning antisaddlepoints, 

i.e., saddlepoints of the negative matrix.

THEOREM 3.5. A strict antisaddlepoint of Ct cannot 
be in the center, unless Ct is 1-by-l.
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PROOF. Suppose S(-<2) = {pq} c C(<$). Take A e Ct such that 
pq e C(A), and let A be the submatrix of A defined by C(A). Then A 
has an equalizer solution,, which solves —A as well. But —A has a strict 
saddlepoint at pq, and hence a unique, pure-strategy solution. Therefore 
A is 1-by-l and pq is a saddlepoint of A as well as of —A, strict in 
both cases. This is possible only if A is 1-by-l. Q.E.D.
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Weak antisaddlepoints are sometimes found in the 0* 0 0 -1
center , as shown (starred) in the accompanying examples. The 0 I  -a 1
I B P smaller matrix has a saddlepoint; the larger one i i i i i 1
0 2 (which is symmetric in the sense of § 1) does not. 1 -1 -1 0

Similar reasoning can be used to establish the following more gener
al result, which applies however only to numerical matrices:

THEOREM 3.6. If S(A) c C(-A) then S(A) = C(-A).

§ 4. INSTANTANEOUS GAMES

4.1. Games of Almost-perfect Information
There is a class of games of timing, typified by the so-called 

"noisy duels" ([3], p. 128-134; also [11], Vol. II), in which the payoff 
depends discontinuously upon the order in which certain actions occur, but is 
a continuous function of the occurrence times, given the sequence of events. 
The (finite) set of actions available to a player at any moment may depend on 
what has gone before; in any case the players are informed at all times of all 
all previous history. Except for the possibility of simultaneous action, a 
solution in pure strategies would be indicated. This possibility, however, 
not only makes mixed strategies necessary in general, but even affects the 
existence of a value. Indeed, there are some surprisingly simple indetermin
ate (valueless) games of this type, perhaps worthy of a place beside the 
examples of Ville ([5], p. 115) and of Sion and Wolfe ([18]). (See below,
Fig. 1.)

Simultaneity is not a serious problem in the middle of the game, 
since either player can avoid it at negligible cost by altering his timing 
by a small random amount. But this tactic may not work at the beginning or 
end of the game, since the random displacement would be in a fixed direction.



In order to focus on the problem of determinateness, in games of timing with 
almost-perfect information, we shall assume that there is a "critical instant" 
at the beginning of the game. The players will be motivated (by the payoffs) 
to take some action either at t = 0 or immediately thereafter. We thereby 
reduce the infinite game in extensive form to an essentially finite, "instan
taneous" game, whose payoffs are defined by the values of the subgames that 
result after the first action, or pair of simultaneous actions.

One of our results (Theorem 4.4) states that an instantaneous game 
has a value provided that the payoff in the event of simultaneous actions 
lies between the payoffs for the same actions performed singly. Another 
result (Theorem 4.5) shows how to assign a formal value to the game when the 
true value does not exist.

4.2. Some Indeterminate Noisy Duels
Two gunfighters are crouched behind barriers, where they can neither 

see nor be seen. If they stand up at the same instant, we may assume that 
their chances are equal if they both shoot at once, or if they both hold 
their fire. If only one fires, that one wins. If one stands up without 
shooting, and finds the other still down, then he can take control of the 
situation, and eventually win. But if the one under cover hears the other 
stand up and fire, then he can stand up and take control before his opponent 
has time to reload.

This (with apologies to the real world!) is an example of an inde
terminate noisy duel. The critical moment is at the beginning of the time 
interval, since to wait an appreciable amount of time is definitely bad 
strategy. The situation at t = 0 can be represented by the following 
matrix:

Stand up 
shooting
Stand up 
quiet

Wait —
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Stand up Stand up „ . 
shooting quiet 1

0 +1 -1

-1 0 +1

+1 -1 ®



Here "(g)" is meant to suggest "repeat" or "replay," as in a recursive
game (see § 4.4 below).

Let us test for a value. In the minorant game, in which player I 
openly commits himself to a particular (mixed) strategy, the outcome (g) is 
worth no more than — 1, because player II, knowing the probable duration of 
the other's "wait," will almost always succeed in acting first. Setting 
(g) = — 1 and solving, we find that the value is — 1/9- By symmetry, the 
value of the majorant game is +1/9. Hence the duel is indeterminate.

An even simpler example is shown at right. The minorant value is
zero; the majorant value is 1/3. Any matrix order-equivalent to
this one (see § 3) also represents a game without a value, if we 
interpret "(g)" as a number between 0 and 1 in determining 
order equivalence.

The above can be viewed as a game on two unit squares, with discon
tinuities along the diagonals (Fig. 1).
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-1 y / +1 / /
II +r -r

/  0 /  0
I

Figure 1.

4.3. The General Case
Let M(cp) denote the following m+l-by-n+1 array:

"act"

"wait"

"act" "wait"
a~i -| ... an11 In

a , a ml mn

aio

am0

a01 a0n cp

1
-1

-1
1

0 ®



Here cp is either a real number or the symbol (5) . The game represented by 
M( (R) ) is said to be instantaneous if
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(4.1) min an . < max a.n .
jfO UJ i=f0 lU

This condition puts a premium on immediate action. Without it, at least one 
player would be willing to delay, and other elements of the original game of 
timing (from which we assume the data in M( (§) ) to have been drawn) would 
become significant in the selection and timing of the first action. We shall 
be concerned henceforth only with the instantaneous case.

The minorant and majorant games have the matrices

M-, = M(min an .) and M 0 = M(max a.n),
l j+0 UJ 2 i=j=0 lU

respectively. Let their values be v^ and V 2 > and their sets of optimal 
strategies X-̂  and X2 (for player I) and and Y2 (for player II).
Obviously,

(4.2) min an . < vn < v 9 < max a.n .
j=f0 Uj 1 Z i+0 lU

If v-̂  < V 2 the game is indeterminate; if v^ = V2 the game is determinate
and the optimal strategies for the two players correspond exactly to the
elements of X-̂  and Y2* respectively.

THEOREM 4.1. A necessary and sufficient condition for 
the instantaneous game M( ®  ) to be determinate is 
that X-̂  c X2 and ^2 — ^ V

PROOF. Necessity. Any strategy guaranteeing v^ to player I in 
will guarantee him at least as much in M^- Therefore, v^ = implies 

Xi c X2. Similarly, Y2 <= Y^.
Sufficiency. Let X-̂  c Y2 Sz and suppose v^ < V2* Take 

x e Xx- Then, since x is optimal in M 2, we have



m
E  xiaij > v 2 > vr  j = 1, ..., n. 
i=0

Hence no j =(= 0 can be active in M-̂ . Hence Y-̂  consists of the single 
strategy "wait." The same holds for by inclusion, and for X2 and X p
by symmetry. Hence and M 2 have saddlepoints at "wait-wait," contra
dicting (4.1). Q.E.D.

THEOREM 4.2. A necessary condition for the instantan
eous game M( (R) ) to be determinate is that "wait" is
unplayable (i.e., not active) for at least one player
in at least one of M^, M 2*

PROOF. Let v^ = v 2 ’ anc* ta^e x e X^, y e Y2- Then x e X2 and 
y e Y^, by Theorem 4.1, and we have

° = v2 - Vl = xM2y - xMjy = xQy0 (max a .0 - min aQj).

By (4.1), XqYq = 0. Since x and y may be chosen independently, it follows 
that either Xq vanishes identically for x e X^, or Yq vanishes identi
cally for y e Y2* Q.E.D.

THEOREM 4.3. A sufficient condition for the instantan
eous game M( (R) ) to be determinate is that "wait" is
unplayable for both players in at least one of M^, M 2*

PROOF. Under the hypothesis, val[M(a)] is independent of a.

The conditions given so far are somewhat impractical, since the 
values of the games M-̂ , M 2 are at least as easy to find as the optimal 
strategies. The condition in the next theorem is free from this drawback, 
and it also has a simple heuristic interpretation, namely: if two actions
occur simultaneously, the result is intermediate in value between the results 
of either action performed separately.
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THEOREM 4.4. If (4.1) holds, and,if, for all i =)= 0, 
j + 0.

(4.3) min(ai0, aQj) < a±j < max(a.0, aQj),

then M( (R) ) is determinate.

PROOF. Let i*, i* be such that a.*.n = max a.n, an .* = min an ..i*0 .+0 10 Oj* j+Q Oj
Let I be the set of i f 0 such that a^Q > aQj*> and J the set of
j =|= 0 such that a^^ < a^*Q* Then by (4.1), i* e I and j* e J, so that 
neither I nor J nor their complements are empty. Take jeJ and iel. 
If i f 0 then we have

ai0 < a0j* ^ a0j ^ ai*0'

by the definitions of I, j*, and J, respectively. Applying the "between
ness" condition (4.3) twice, we obtain

a . . < a n . <a.*.. ij ^ O3 -  i*j

Thus, for every i £ I (including i = 0), a^. < a^*j holds for all jej. 
Similarly, for every jej, a^. > a^j* holds for all iel. This means that 
Ixj is a weak generalized saddlepoint of M(a) (see § 3.1). Hence 
val[M(a)] is independent of a. Q.E.D.

4.4. A Way of Resolving the Indeterminacy
One may wish to assign a formal value to the instantaneous game 

M( (R) ) when no true value exists. A way to do this —  perhaps the only 
"fair" way —  is to pursue the analogy with stochastic or recursive games
[16], [6], and attempt to solve the equation

(4-4) a =val[M(a)].
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In effect, we replace the time continuum by a discrete, well-ordered set of 
points, making simultaneity after t = 0 a significant possibility. We



shall see that condition (4.1), which characterizes "instantaneous" games, is 
intimately related to the existence of a unique solution to (4.4).
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THEOREM 4.5. If M( (R)) is an instantaneous game, 
then (4.4) has a unique solution a = v, and we have
v!  < v < v 2 -

PROOF. Uniqueness. Let (4.4) have two solutions v < v. Let x
be optimal in M(v) for player I and let y be optimal in M(v) for player
II. Then xM(v)y > v and xM(v)y < v. Subtracting, we obtain

v - v < x (M(v) - M (v) )y = xQy0 (v - v) .

Hence Xq = Yg = Ij and x and y are pure. Thus, for all i f 0, j f 0,

a0j > v > v > a.0.

This contradicts (4.1).
Existence. The function F(a) = val[M(a)] is monotonic nondecreas

ing. Hence, by (4.2), we have

F(min aQ .) < F(vJ;
j+o °J 1

in other words v^ — F(v^) < 0. Similarly, v ^ — FC^) > 0. But a — F(a)
is continuous; hence it has a zero in [v^, ^ 2 ’] ’ Q.E.D.

COROLLARY. In the determinate case, v is equal to
the true value.

We note that if (4.1) is not satisfied, then all values in the 
interval [max a^Q, min aQ^] are solutions of (4.4), and no others.

From the fact that F(a) and a — F(a) are both monotonic nonde
creasing functions, it follows that the sequence b, F(b), F(F(b)), ... (b 
arbitrary) converges monotonically to a solution of (4.4). This can be use
ful in making sharper numerical estimates; e.g., we have F(v^) < v < F(v2)j



etc.
In the first indeterminate game of § 4.2 we have v = 0, by symmetry. 

In the second example we also have v = 0; thus, the first player's advantage 
in this game, such as it is, vanishes if time is made discrete. This feature, 
also present in the order-equivalent variants, shows that strict inequality 
need not hold in Theorem 4.5 for indeterminate games.

§ 5. FICTITIOUS PLAY IN NON-ZERO-SUM GAMES

5.1. Discussion
The method of fictitious play (FP) resembles a multistage learning 

process. At each stage, it is assumed that the players choose a strategy 
that would yield the optimum result if employed against all past choices of 
their opponents. Various conventions can be adopted with regard to the first 
move, indifferent alternatives, simultaneous vs. alternating moves, and 
weighting of past choices. The method can meaningfully be applied to any 
finite game, and to many infinite games as well. (See [3], [4], [5] pp. 82- 
85, and [14].)

It was once conjectured that the mixed strategies defined by the 
accumulated choices of the players would always converge to the equilibrium 
point of the game, or, in the event of nonuniqueness, to a set of mutually 
compatible equilibrium points. This is the natural generalization of 
Robinson's theorem [14] for the zero-sum two-person case; it was recently 
verified by Miyasawa [12] for the special case of two players with two pure 
strategies apiece.

The trouble begins, as we shall see, as soon as we add a third stra
tegy for each player. It appears, intuitively, that this size is necessary
to produce enough variety; if FP is to fail, the game must contain elements 
of both coordination and competition. Our counterexamples include a whole 
class of order-equivalent games, and thus do not depend on numerical quirks in 
the payoff matrices; nor are they sensitive to the minor technicalities of 
the FP algorithm. It is clear that games with more players, or with more
strategies per player, can exhibit the same kind of misbehavior.
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5.2. A Class of Nonconvergent Examples
We shall elaborate slightly on the game described in the Introduc

tion, to eliminate any question of "degeneracy.” The payoff matrices are 
shown at right. We assume that a^ > b^ > c^ and 
ai ^ ^ ^i* ^or i B 1) 2, 3. It follows that the
game is not constant-sum. It is easily shown that 
the equilibrium point must be completely mixed (all 
strategies active), and hence unique.

For simplicity, we shall assume that the FP choices are made sim
ultaneously, and that the first choice pair is 11. Consider any occurrence 
of 11 in the FP sequence. The next choice of player I will certainly be 
1 again, since that strategy will have become more desirable. Player II will 
either stay with 1, or shift to 3. Eventually, in fact, he must shift to 
3, since Thus, after each run of 11 we will find a run of 13.
By a similar argument, this will be followed by a run of 33, and then runs 
of 32, 22, 21, 11, ..., in a never-ending cycle.

Suppose that a run of 11 is just about to begin. Let X represent 
the current "accumulated-choices" vector for player I (thus, is the number
of times he has chosen row i), and let Y be the same for player II. Let 
H denote the current "comparative-payoffs" vector for player I (thus, H-̂  = 
Yiai + '̂ ■<2̂ 2 + ^3^3* etc.). Since he is about to choose 1, we have

Hi == max(Hp # 2 ’ % )  ■

Let there occur r ^  choices of 11, followed by r-^ choices of 13. Then 
I's new comparative payoffs are

Hi H1 + rllal + r13b3’

H 2 H2 + rllbl + r13c3’

H3 H3 + rllcl + r13a3'

Since he shifts to 3 at this point, we must have > H p  But < H p
hence > H-ĵ — H p  and we have
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al ~ C1 
r13 ^ a3 - b3 rll*

Let r33 be the length of the 33 run that follows. By analogous reasoning 
we have

al ” Y1 
r33 ^ a3 - P3 r13"

Repeating the argument four times more, we obtain

/ 3 (a. - c .) (a. - y.)\
(5-1) rh  - Viix <a± - bi)(ai - p . ) J rll’

where r ^  denotes the length of the next 11 run. Since the constant in
(5.1) is greater than 1, the runs of 11 increase in length exponentially 
(or faster). The same rate of increase occurs for the other choice pairs. 
Hence the ratios X ^ / X y  Y^/Yy  i j, do not converge. In particular, the
normalized strategy vectors x = X/2 X^, y = Y/2 Y^ do not converge to the
unique equilibirum point strategies.

It can be shown that x and y, in their respective strategy spaces 
approach limit cycles which do not contain the equilibrium point strategies. 
Hence there is no convergence to an equilibrium point even through subse
quences .

The argument we have given is independent of the tie-breaking rule. 
With minor modifications it can also handle the case of alternating moves, as 
well as the case of nonintegral run lengths. The latter implies that the 
differential-equation version of FP (see [3]) will also fail to converge to 
the solution.

5.3. An Example
We have computed the limit cycles for the numerical example shown at 

right. The payoffs do not satisfy the strict inequali
ties assumed in the preceding proof, and the constant in 
the estimate (5-1) is exactly 1. A more refined analy
sis, however, shows that the run lengths do increase
exponentially; in fact, the ratio of r|-̂  to r ^  tends in the limit to

1 0  0 
0 1 0  
0 0 1 

I

0 0 1 
1 0  0 
0 1 0  

II
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9^ where 0 = 1.466 is a root of 0  ̂— 0  ̂= 1.
The limit cycles in the separate strategy spaces are illustrated in 

Fig. 2. In the product space they form a hexagon; typical vertices are

(•) (l, e4, e2; e3, e3, e>/c,

(■) (04 , 04 , 02; e5, 03, e)/ce, etc.,

where C is a normalizing constant. The unique equilibrium point is

(O) (1, 1, 1; 1, 1, 1 )/3•

Figure 2
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