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We define a multidimensional analogue of a single-peaked preference and
generalize the notion of a median voter scheme. Every onto strategy-proof social
choice function on a single-peaked domain is a generalized median voter scheme.
Since a single-peaked preference can be identified unequivocally with its bliss point,
one can view a social choice function as an Arrowian social welfare function. We
show that a social choice function is strategy-proof iff, viewed as a social welfare
function, it satisfies a monotonicity property. Finally, we investigate strategic
decision making in hierarchical committees. Journal of Economic Literature
Classification Numbers: C72, D71. € 1993 Academic Press, Inc.

1. INTRODUCTION

In this paper we study muitidimensional generalizations of two familiar
concepts from social choice theory, median voter schemes and single-
peaked preferences, in connection with the problem of designing
strategy-proof social choice mechanisms, We prove that when preferences
are multidimensional single-peaked, surjective social choice functions are
strategy-proof if and only if they are generalized median voter schemes.
We also show that these generalized median voter schemes can be nicely
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decomposed into simple rules, each of which involves the application of
median voting to a three-person committee.

When designing criteria for assigning social outcomes to individual
preference profiles, it would be interesting to fulfill the following two
requirements: the members of society must find it in their interest to truth-
fully reveal their preferences, and some amount of social compromise
should be achieved. The classic result of Gibbard and Satterthwaite
(see Gibbard [5], and Satterthwaite [8]) establishes the difficulty of
simultaneously meeting both of these objectives. Specifically, the Gibbard--
Satterthwaite Theorem states that if the image of a social choice function
has at least three elements and each member of the society can have any
preference ordering over the alternatives (which are then at least three)
then the social choice function is either dictatorial or fails strategy-
proofness. That is, for any non-dictatorial social choice function there
is some situation in which at least one member of society benefits from
misrepresenting his preferences.

Since it is impossible to accommodate truthfulness and compromise in
completely general situations, it becomes natural to investigate the
possibility of designing strategy-proof social choice functions on more
restricted domains. Domains can be restricted by the nature of the
alternatives under consideration and by the class of preferences on such
alternatives that are considered admissible for agents who participate in the
decision-making process. We concentrate on decision problems where the
set of alternatives can be represented as the cartesian product of / finite
integer intervals, B, B,, .., B,. An l-tuple 2 = (a,, ..., 2,) describes an alter-
native by specifying the values of all variables of social interest. This
description of alternatives as /-tuples of real values is quite standard, and
it is appropriate to model many interesting decision problems. For exam-
ple, each interval may correspond to an issue within a political platform,
or to one relevant feature among those describing alternative public pro-
jects. Values within an interval would then stand for different positions on
the corresponding issue, or for different specifications of the project with
respect to the feature in question. A seemingly different kind of problem
admitting the same representation for alternatives is that of selecting new
members to a club from a collection of / candidates, or which set of new
bills should be passed during a legislation. Here the alternatives would be
the vertices of the {0, 1}’ cube, where a 1 in the jth dimension would repre-
sent the decision to admit the jth candidate, or pass the jth bill, and a 0
would represent the decision to reject the jth candidate or bill. Implicitly,
we are assuming that any combination of admisible values for each
criterion is itself admissible. This means, for example, that any combination
of individually feasible specifications for a public project must itself
describe a possible project.
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The one-dimensional case (i.e., /=1) is the context in which single-
peaked preferences are originally defined. Let the set of alternatives be
B={a, a+1,.., b}, for some integers a and b. Then a strict preference
P over B is said to be single-peaked if there exists a point a, P's
most preferred outcome, such that |x—y| =|a— f|+ |8 — 7| implies B is
preferred to y. Thus, each single-peaked preference has a unique favorite
outcome, called its bliss point, and any move away from the favorite
outcome leads to less preferred alternatives. Note that this requirement
does not restrict the ranking of two alternatives § and y, when f<a<y.
Alternatively, the array could represent political platforms or choices of
location.

In many problems, one dimension will not be rich enough to describe the
alternatives. More generally, we could view the set of alternatives as a
multidimensional grid, with the alternatives at the nodes and with each
edge of length one. The distance between any two alternatives a and f is
the length of any shortest path between a and . This is just the city
block metric, induced by the L,-norm. A preference with bliss point « is
multidimensional single-peaked if for any two alternatives f and y with
between « and v (i.e., with § on a shortest path from « to y), § is preferred
to ;.

Our characterization of strategy-proof social choice functions over multi-
dimensional single-peaked preferences (Theorem 3) is based on a number
of different steps, each of which is interesting on its own. We first show that
a strategy-proof social choice function can only depend on the bliss points
of voters, if the range of the function is itself a cartesian product of inter-
vals. Social choice functions that depend only on the bliss points of agents
are called voting schemes.

Next we show that each strategy-proof voting scheme on our domains is
separable. That is, it can be decomposed into / strategy-proof voting
schemes, one for each dimension of the array of alternatives. Conversely,
any choice of ! strategy-proof voting schemes will uniquely define a
strategy-proof social choice function whose range is a cartesian product.

The last step of our characterization of strategy-proof voting schemes
generalizes the notion of median voter scheme. Consider the one-dimen-
stonal case and the ordinary median voter scheme. Let the number of
agents be 2k + 1. For any 4, a coalition of £ + 1 agents with bliss points less
than or equal to « can guarantee an outcome less than or equal to a.
Hence, any group of agents consisting of at least k + 1 agents is called a
winning coalition at x. In our generalization, we call an arbitrary collection
of agents a winning coalition at « if they can guarantee an outcome no
greater than o« whenever all their bliss points are no greater than x. We
show that every strategy-proof voting scheme is uniquely identified by a
system of winning coalitions, containing the winning coalitions at each
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outcome x. For any profile of preferences, the outcome is the smallest
aiternative f such that the collection of voters with bliss point less than or
equal to f§ is a winning coalition at f.

In Section 3, we exploit the dual interpretation of elements of the
I-dimensional box, as outcomes and single-peaked preferences with the
corresponding bliss point, to investigate the relationship between social
choice functions and social welfare functions. Specifically, we interpret each
subbox of the given multidimensional box as a potential choice problem
that society might encounter and view a social welfare function as a map-
ping that specifies for every profile of preferences a rule for making each of
those choices. For a fixed subbox we view the implied choices from this
subbox, given the profile of individual preferences and the social welfare
function, as a social choice function. We prove that the rule for choosing
from the entire box is strategy-proof if and only if the rule for choosing
from every subbox is strategy-proof. Finally, given the dual interpretation
of mappings from n-tuples of bliss points to outcomes (or bliss points) as
social functions (scf’s) and social welfare functions (swf’s), we establish the
equivalence of strategy-proofness and the non-negative response property,
which is a condition slightly stronger than Arrow’s independence of
irrelevant alternatives.

In Section 4, we further utilize the duality between scf’s and swf’s to
analyze decentralized decision-making rules and committees. Take m
voting schemes that map » profiles of preferences (bliss points) to outcomes
(bliss points) and take another voting scheme which maps the resulting
profile of m bliss points to bliss points. In this manner we obtain a single
voting scheme from profiles of n bliss points to outcomes. We call every
such voting scheme a combination of voting schemes. We show that if each
of the initial voting schemes from » profiles to bliss points is strategy-proof
and the final voting scheme from m profiles to outcomes is strategy-proof,
then the combination is strategy-proof. We interpret each initial stage
voting scheme as a committee and the outcome of such voting schemes
as the representative of the committee. Thus, committees choose repre-
sentatives, and these representatives vote in other committees to choose
representatives, etc. We show that every strategy-proof voting scheme can be
decomposed (or decentralized) into a hierarchy of three-person committees
such that the voting rule in each committee is the (ordinary) median voter
rule.

There are three papers closely related to ours. Moulin [7] provides an
extensive treatment of strategy-proof social choice functions over one-
dimensional single-peaked preferences. He confines attention to voting
schemes and provides two separate characterizations of strategy-proof
voting schemes, one for the anonymous case and one for the general case.
His characterization also provides an alternative decomposition result for
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the one-dimensional case, resembling our committee-tree structure. Border
and Jordan [3] deal with the case in which the set of alternatives is R’ and
study a variety of domain restrictions. None of their domain restrictions
correspond exactly to our notion of a single-peaked preference. For certain
domain restrictions they obtain results similar to our Theorem t and
Theorem 2 (separability); for other restrictions, they show that dictator-
ships or constants are the only strategy-proof social choice functions.
We provide a more extensive comparison between the results of these two
papers and ours in Section 5. Finally, Barbera, Sonnenschein and Zhou
[2] deal with the problem we mentioned above. A given society is faced
with the problem of deciding on / separate issues. Each decision entails
acceptance or rejection. They require that preferences be separable and
provide a characterization result for their binary framework. This
corresponds to a special case of our representation theorem of social choice
functions in terms of generalized median voter schemes. Similar to our first
theorem, they also prove that voting schemes are unrestrictive in their
setting.

Earlier work by Kramer [6] and Shepsle [9] on majority voting and
generalizations of the majority rule also relate to our work. Kramer
provides the definition of a voting rule (due to Farquharson [4]). Their
voting rules are a subclass of our generalized median voter schemes. An
implication of Kramer’s results is that voting rules are strategy-proof; we
prove the converse.

Shepsle [9] expands the analysis of Kramer [6] by allowing for more
institutional detail. He defines the notion of a preference-induced equi-
librium which essentially corresponds to the notion of a majority winner. He
utilizes the added institutional detail to provide a weaker notion of equi-
librium, which he calls a structure-induced equilibrium. In the particular
example that he analyzes in detail, he defines an outcome to be a structure-
induced equilibrium if, by deviating only on one dimension, no agent is
able to obtain a better outcome.' Thus, the product of the median of each
dimension turns out to be a structure-induced equilibrium. Since only
deviations in one dimension are considered, Shepsle does not (and need
not) impose the requirement that the most preferred outcome along any
dimension is independent of the outcomes of the other dimensions (ie.,
what we call multidimensional single-peakedness). Hence, his theorems
only require strict quasi-concavity. As a result, the median voter scheme is
not strategy-proof on the domain of preferences considered by Shepsle [9]
(see Theorem 6).

! This follows from what Shepsle calls “the jurisdictional arrangement consisting of the basis
vectors” and the “germaneness rule for amendments.”
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2. VOTING SCHEMES AND SINGLE-PEAKED PREFERENCES

For a finite set X, # X denotes its cardinality (i.e., the number of
elements contained in X). Z denotes the set of integer numbers, and N
denotes the set of nonnegative integers. Subsets of Z', where /e N, />0, are
considered as metric subspaces of R’ with the L -norm:

/
fal ==Y la,|  for any ae R’

i=1

DEeFINITION, A (strict) preference on A (the set of social alternatives) is
a relation P on A satisfying

(1) completeness: for all «, e A, either aPfi or BPa;
(2) antisymmetry: a, fe A, aPf and BPx imply a=§;
(3) transitivity: for all &, f, ye A, P and Py imply aPy.

For each preference P on A, t(P) denotes the outcome (or social alter-
native)} most preferred by P:a=t(P) iff aPf for all fe 4; z(P) is called the
“top” of P, or the bliss point of P. Clearly, 7(P) is well defined for every
strict preference P.

DerFNITION.  For integers a<b, [a, b] will denote the integer interval
{a, a+ 1, .., b}. An I-dimensional box B is a cartesian product of / integer
intervals: B=X/_, B;, where B,=[a,, b,] and a,<b,. A subbox of B is
any box A4 contained in B.

DEFINITION. A strict preference’ on a box B is multidimensional single-
peaked with bliss point a € B iff t(P)=a, and Py for all B, y € B satisfying
lle =yl = fle = B + 1B —yll.

Note that any multidimensional single-peaked preference on the
{-dimensional box B is identified by the property that its restriction to any
lower dimension subbox is also a single-peaked preference. Furthermore,
the bliss point of the restriction corresponds to the projection of the bliss
point to the subbox. For example, let P be a single-peaked preference on
B and consider the subbox A4 := {x} x B, x --- x B,, where x€ B,. Suppose
o is P’s bliss point. Then the restriction of P to A is single-peaked and
has bliss point (x, «,, .., «,). Similarly, if B'< B is an arbitrary subbox
of B, then the restriction of P to B has bliss point a', where

2Qur results can be extended to include non-strict preferences, provided that single-
peakedness is redefined as follows: P is single-peaked if there exists a such that for all f#7,
fla—yll = fa— Bl + 18—yl implies that fPy and not (yPf). Obviously, such an « is unique.
The notation however would become cumbersome.
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o' =argming, » [[@ — BI|. These are easy to prove but important facts, which
will be used below. In particular, they are the basis for Corollary 1, and
they support the remarks in Section 3 regarding social welfare functions.

Quasi-concavity and separability are other restrictions that have been
imposed on preferences. Note that our definition of a single-peaked
preference does not require additive separability (or even the weaker
notion of separability used in Border and Jordan [3]). For example, let
a=(1,5), f=(1,0), y=(1,10), £=(2,0), and 5= (2, 10). There exists a
single-peaked preference P with bliss point a such that Py and yP¢ (see
Lemma 1). However, additive separability (or even separability) requires
that BPy iff £Py. Also note that multidimensional single-peakedness when
applied to R” neither implies quasi-concavity nor is implied by quasi-
concavity. However, the set of separable strictly quasi-concave preferences
is a strict subset of multidimensional single-peaked preferences.’

We identify each outcome « in a box B with the preference class P(«x) of
all single-peaked preferences on B with bliss point 2. In our analysis, we
restrict attention to the collection P:={J,_, P(z) of all single-peaked
preferences on the box B. Obviously the collection P depends on the box
B, but it will always be clear from the context which box B is referred by
P. Throughout this paper, B always denotes an /-dimensional box and P
denotes its corresponding collection of single-peaked preferences. Elements
of the box are called the alternatives or outcomes. A profile is a preference
n-tuple. A social choice function is a rule that assigns an outcome to each
preference profile.

DEeFINITION. A social choice function (scf) is a map ¢: P”" — B.

We now turn to strategy-proofness, a main requirement that one
wants to impose on social choice functions. A social choice function is
strategy-proof if it is always optimal for all voters to reveal their own
preferences, rather than manipulating the social outcome by strategically
misrepresenting them at some profiles.

DEFINITION.  ¢@: P"— B is a strategy-proof (sp)scf (spscf) if for ail P;,
Py, ... P,eP, (P, .., Pi .., P,) Po(P,, .. P, .., P,)

Any function f: B” — B represents a (unique) social choice function
¢: P"— B with set of players N := {1, .., n}, defined as follows:

o(P, .., P)i=f(a', .., 2") for all P,eP(a’) and ie N.

? Provided we extend the notion of a single-peaked preference to R” so that we can speak
of quasi-concavity.
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Clearly, a general scf ¢: P” — B does not always admit such a representa-
tion because it is possible, for example, that for some P;eP and profile
(P,,... P,)eP” with P, and P} in the same preference class P(a),

(p(Pl! ey P").—,é (p(P’l’ weey Pn)'

Consider the following example: B= {0, 1}2, n=3, and ¢:P’> B
corresponds to majority rule between (0,0) and (1, I). Suppose ©(P,)=
(0,0), 1(P;)=(1, 1), and (0, 1) P,{1, 1) P,{0, O) P,(1, 0) while (0, 1) P{(0, 0)
Pi(1, 1) Pi(1, 0). Clearly 7(P,)=t(P))=(0, 1) and @(P,, P,, P;)=(1, 1) #
(0, 0)= (P}, P,, P;). However, this is not possible if ¢ is strategy-proof
and its range is a subbox of B (see Theorem 1 and its Corollary below).

DEFINITION. A scf ¢: P" — B is a voting scheme® if there exists a function
f: B" — B that represents it. That is,

o(P,, ., P,):=f(t(P,), .. 1(P,)) forall (P,,.,P,)eP"

The identification of a function f: B" — B with its corresponding voting
scheme ¢: P"— B is done routinely. We say, for example, that f is a sp
voting scheme if ¢ is sp.

Hereafter, for any profile a=(a',..,a")eB", & =(a],.., a)e B
denotes the profile of the jth coordinates. Thus, superindices always refer
to players, while subindices refer to coordinates. The following technical
lemma will facilitate much of the subsequent analysis. The proof is
straightforward and is omitted.

LEmMMma 1. (1) Let P, P e P(x) and A be a subbox of B. Then P, P’
have the same most preferred element in A. The restriction of P to any sub-
box A is also single-peaked. Moreover, f is P’s most preferred element in A
if and only if lla—yl = la— Bl + IB—7ll for all yed. (2) If Ja—7l <
e — BIl + |B—7ll, there exists Pe P(a) such that yPB.

Lemma | provides a number of important properties of single-peaked
preferences which we utilize in subsequent arguments.

When we study surjective scf’s, Theorem 1 below shows that it is non-
restrictive to confine attention to voting schemes only. The first main result
in Moulin [ 7] characterizes Pareto efficient voting schemes on the domain
of single-peaked preferences over a one-dimensional set of alternatives.
Clearly, efficiency implies surjectivity. Therefore, Theorem 1 shows that
Moulin’s characterization result is more general and applies to all efficient

* Gibbard [5] calls any social choice function a voting scheme. We restrict the use of the
latter to refer to a social choice function which only depends on the preferences’ bliss points.
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spscl’s.® A similar result is proved by Border and Jordan [3] and Barbera,
Sonnenschein, and Zhou [2] for slightly different domain restrictions.

THEOREM 1. Let B be an I-dimensional box. If the scf ¢: P" — B is sp and
onto, then @ is a voting scheme.

Proof. See Appendix.

Exploiting the properties of single-peaked preferences further, a stronger
version of Theorem | can be attained, relaxing the conditions on the range
of the scf; this is stated in the following corollary.

COROLLARY 1. Let B be an I-dimensional box. If the range of the
spscf @: P" — B is a subbox of B, then ¢ is a voting scheme.

Proof. Let A=¢@(P"). By assumption, A4 is a subbox. It follows
immediately from part 1 of Lemma | that the restriction to 4 of any single-
peaked preference on B is single-peaked. Since ¢ is sp, if the restrictions of
P, P'eP to A coincide, then @(P, P ,)=@(P, P ;) for all P ,eP" "
Thus, ¢ can be viewed as an onto spscf form the set of single-peaked
preferences over A into A. Theorem 1 then implies the desired conclusion.

QE.D.

Throughout this paper we often invoke the close relationship between
the L,-norm, single-peaked preferences, and sp voting schemes. Lemma 2 is
straightforward given the definition of joint multidimensional single-
peakedness and part 2 of Lemma 1 above.

Lemma 2. f:B"—>B is sp iff for all 4€B", feB, and i€eN,
o' — f(B, o M=l — N + /(@) = f(B, 2 )

Theorem 2 below states that the jth coordinate of the outcome of a sp
voting scheme depends only on the jth coordinate of the bliss points of the
profile’s preferences. Hence, a full characterization of sp voting schemes can
be obtained by the characterization of one-dimensional sp voting schemes.
This separability result constitutes the second step toward our characteriza-
tion result.

THEOREM 2 (Separability). Let B=X'_, B,. Then f:B"— B is sp iff

7
Jor each je L :={l1,..,1} there exist f;: B} - B, such that

(1) f(3),=f{3,) forall 5=(a' ., a")eB"; and
(2) / is sp.

* However, in joint multidimensional single-peaked domains, there are no Pareto efficient
and strategy-proof mechanisms other than the dictatorial. This observation is also made by
Border and Jordan [3] and Barbera, Sonnenschein, and Zhou [2] in related contexts.
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Proof. We only prove necessity; sufficiency is easy to verify. First note
that (1) is equivalent to

fla),=f(f), whenever &=J, (1)
Clearly (1') implies (1) below
S,y =f(B.y""),  for all i, whenever a,=§,. (1)

To see that (1) 1mp11es {1’) and hence is equivalent to (1°), for any & and
B satisfying 4, = B construct §(0), §(1), .., f(n) as follows Set 7(0) =4 and
sequentially replace the preferences in & with those of j, one-by-one, so
that y(n) = [i Applying (1") at each step yields f(§(k));= f(F(k + 1)), for all
k=01, — 1, and hence f(d), —f(ﬂ)

To prove that strategy-proofness lmphes (1", let o' = f(a,7" ) and
B =f(B,y "). Assume by contradiction that o, = f; and «; # ;. First, con-
sider the case in which ||f— B+ I —2'|| > ||,B—a Il Then by part 2 of
Lemma 1, there exists Pe P(f) such that o' PB’, which contradicts f being
sp. I 18—+ 1B —all=If—l, then |B,— B}l + 18] ~ajl =18~ 2].
Since «;=f;, |2,— B}l + 1B/ —«/| =|a,—a;|. This implies that |o; —a/] +
loa; — B/l = la;— B/l + 1B — /| + |aj — B]1 > |a;— B]] since u;# ;. But then
floo —a'f| + lo" — B’ > e — B'll, and a symmetric argument to the one made
for the case |[f— '+ B —o'| > [ — [ above yields a contradiction to
the strategy-proofness.

To show, for example, that f, 1s sp, let 7€ B” and a, fi € B be such that
for all k#i and j#1, y¥=a,=p, As before, let o' =f(x, 7 ‘) and
B'=/(By ') Since f is sp, la—a'll + o’ =Bl =a—fl, and thus
lay —oy] + |y — f}] = |2, — B, which establishes that f, is sp by Lemma 2.

Q.E.D.

Since spscf’s must be voting schemes, and sp voting schemes can be
decomposed into / one-dimensional sp voting schemes, it will suffice to
characterize the latter. Our representation is an extension of median voter
schemes; we now reexamine this familiar class of scf’s on the domain of
single-peaked preferences® over a one-dimensional box B=[a, b]. Let
n=2k + 1 be any positive odd number. It is easy to see that associated with
every d e B”, there is a unique median value u(@)e B. This median value
can be defined in three equivalent ways:

(1) p(&):=argmin, 37_, la'—x].
(2) u(@):=Psuchthat #{i|a'<f}<kand #{ija'>p}<
(3) w(@) :=min{x| #{ila'<x}zk+1}.

© An early study of single-peaked preferences and group decision making can be found in
Black [3a].
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The equivalence of the three definitions and the fact that the median is well
defined for any & e B", whenever # is odd, 1s well known and simple to
verify. It is casy to see that the median u: B" — B, viewed as a voting
scheme, is sp. For our purposes, the most useful definition of the median
is {(3) above. Note that according with this definition, the median is the
smallest value x for which the number of bliss points at or to the left of this
value is no less than k + 1. Loosely speaking, the median voter scheme
highlights the following feature of any sp voting scheme: every agent i/
whose bliss point a' is to the left of x “pulls” the outcome away from x + 1,
and toward his own bliss point. Starting with x =5, note that the size of
the coalition exerting force to pull x to the left diminishes as x decreases.
As we move x to the left, eventually we find a value of x such that the
number of bliss points o' < x is at least k + 1, but the number of bliss points
a’< x— 1 is less than & + 1. This x is the median.’

Lemma 3 states that this characterization of the median is the
appropriate one to describe general sp voting schemes. The lemma
generalizes the median voter scheme described above in two ways: first, it
allows for the possibility that the scf is not anynomous, in the sense that
different agents need not have the same influence over the outcomes
(hence, in terms of the above description, different agents may “exert”
different levels of force in pulling the outcome to the left); second, different
alternatives may receive a differential treatment—neutrality may fail. That
is, the amount of force needed to pull the outcome below x may be different
than the amount required to pull it below y. Lemma 3 establishes that
modulo these two modifications, a voting scheme is sp iff it is a
(generalized) median voter scheme. A few definitions are needed to make
these changes precise.

DEFINITION.  Let B= [a, b] be a one-dimensional box and N= {1, .., n}.
A left-coalition system on B is a correspondence €: B— 2" (ie., €()is a
collection of coalitions for each ¢ e B) satisfying the following conditions:

(1) if CeG(¢) and Cc D, then De@(&);
(2) ifp>¢and Ce€(&), then CeC(n); and
3) €B)=2"~

C is a (left) winning coalition at & if Ce@(E). There is a unique right-
coalition system Q©: B— 2" associated with each left-coalition €: B - 2":

CeQ(&)iff C=NCeC(¢).

" This particular description of the median could just as well have been stated in terms of
the bliss points being to the right of x. Indeed, one could present an alternative definition (3)
based on the cardinality of the set {i | a'>x}.



GENERALIZED MEDIAN VOTER SCHEMES 273

Left-coalition systems can be used to induce voting schemes in a natural
way. For each de B" and ¢e B, let C(&; &) :={ie N|a'< &} be the coali-
tion to the left of &.

DerFINITION. Let B=1[a, b] be an integer interval and € be a left-
coalition system on B. The voting scheme f: B" — B, defined as follows:

S@)=min{¢| C(& &)e €()}, (*)

is called the generalized median voter scheme (GMVS) induced by €. When
B=X’,=, B, is an [-dimensional box, the voting scheme f:B"— B is a
GMVS if f=(f,..f) and each f, is the GMVS induced by some
left-coalition system &, in B,.

Observe that by (*) two different left coalition systems always define
different voting schemes. Hence, any GMVS f induces a unique family of
coalition systems {€}’_, (ie., f is the GMVS defined by €))

Comparing (*) to the third definition of the median, we conclude that
(@) =pu(a) if and only if f is induced by €, where C(a)={CcN|
#C 2k + 1} for all . This is our motivation for calling a scf defined by (*)
a GMVS: a winning coalition of players (ie., Ce§(x)) can guarantee an
outcome no greater than o whenever their bliss points are no greater than
a, irrespective of the preferences of the remaining agents. Moreover, the
outcome is the lowest integer £ such that there exists some winning
coalition of voters who prefer an outcome & or less.

Lemma 3 below establishes that every sp voting scheme 1s a GMVS.

LEMMA 3. Let B=[a, b]l be an integer interval. A voting scheme
f: B"— B is strategy-proof iff it is a GMV'S.

Proof. Let @ be a left-coalition system in B and f: B" — B be defined by
(*). Pick any ieN, o ‘eB"" ', and B, yeB. Let &:=f(f,« ') and
i7:=f(y,a ‘). Suppose y<pB. Then C{{y,x ‘};8)=>C{(B, « ');d) for all
de B, and C({y, 2" ");0)=C(B, 2~ '); &) for all & B\[y, B). Therefore, if
E2B, n=¢; and if E<B, n< (. In either case, |B—¢|+|E—nl=|B—nl.
Now assume 7= f. Then C((y, 2 );8)= C((B, « '); ) for all e B, and
C({(y. ¢ ):0)=C((B, o );8) for all & B\[B, y). Therefore, if E<f, n=2¢;
and if {20, n=¢& Again, |-+ 1E—n|=1f—nl. By Lemma 2, this
shows that f is sp.

To establish the converse, assume f is sp and for each £ € B define

C(&):={CaN|f(a)<&for some de B” with a' g & for ie C
and a'> ¢ for i¢g C}.
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We prove that this family is a left-coalition system. Let &€ B, Ce §(£), and
ﬁe B" be such that /< ¢ for all ie C. We first show that f(ﬁ)s{. By
contradiction, suppose _/'(ﬁ)>§. Let de B” be such that o/ <& for ie N,
a'>¢ for i¢ N, and f(&@) <& To simplify the notation, w.o.l.g. assume that
C=1{1,.., k). Starting with profile f, sequentially change ' to a’ for each
i <k. If at some point the outcome switches to an alternative less than or
equal to £, we would have a contradiction. Indeed, if for some m <k,

g = S0 B B> €
and
5.:f(al am+1 ﬂm+2 /}")Sé

then there exists Pe P(f™ ') with 6Py (recall that f™* ' < ¢). But a player
m+ 1 with such a preference would prefer to vote like a player with a
1 m

preference in P(x”*') when his opponent’s profile is (a, .. a”,
g2, ..., "), and f would not be sp. Therefore,

flal, ok B L B> 6

Starting with profile (a', .., &%, g**', .., "), sequentially switch f’ to «
for each i > k. Since f(%) < ¢, eventually the outcome will switch to a point
less than or equal to & Hence, for some m >k,

pi= Aol B L B> &
and
di=fla', L am gL B <L

Since 2™ "' > ¢, there exists Pe P(x”* ') such that yP3. A player m + 1 with
such a preference would prefer to vote like a player with a preference in
P(f” ') when his opponent’s profile is (', ... ™ B7*2 .., #”). This con-
tradicts the fact that f is sp.

Suppose ¢ € B, ﬁe B" and C(f; &) ¢ €(&). We now show that f(f)> & If
C(&)= &, then f(B)> & Otherwise, let Ce€(&) be a minimal coalition
containing C(f; ¢), and let e B” with f(%)<¢, ' <& for all ie C and
a'> ¢ for all i¢ C. Again, assume w.lo.g. that C= {1, .., k}. Starting with
profile §, sequentially switch §' to o for each i< k. Since f(%)<¢, there
exists m < k such that

f(oz‘, . &m, ﬂm+ I’ - ,B")>€ and f(a', . Qm+ I, Bm+2, . ﬁn) < é

This contradicts the fact that 7 is sp. Therefore f(f)< ¢ ifl C(f;&)e (<),
QED.
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It is easy to verify that the image of a one-dimensional GMVS is a one-
dimensional subbox. Clearly, products of subboxes are subboxes. Hence, it
follows from Corollary 1, Theorem 2, and Lemma 3 that a spscf is a
separable voting scheme if and only if its image is a subbox.

Remark. For future reference (see the proof of Lemma 6) we record the
following observation. Pick any ie N, a ‘e B" "', and B, ye B, and let
E:=f(B,a"") and n := f(7,a'). In the proof of part (1) we have shown
that if § < ¢, then

n=¢ forall y< B and n=¢ for all y> f3,
while if §> ¢, then
n=C¢forally=p and n<&forall y<g

We summarize the results of this section in the following theorem.

THEOREM 3. Suppose the range of the scf ¢:P"— B is a subbox of B.
Then, ¢ is sp iff it is a multidimensional GMVS.

Theorem 3 provides a convenient tool to ascertain properties of spscf’s.
For example, this particular characterization provides relatively simple
proofs of Theorems 5 and 7 below.,

3. SociAL WELFARE FUNCTIONS

In this section we study the problem of preference aggregation in
multidimensional single-peaked domains. So far we have concentrated
exclusively on assigning a (social) outcome to each profile of preferences.
In many problems, one would like a rule for choosing a social outcome
among the feasible alternatives before learning the constraints on the
feasible set. Thus the object of investigation is a set B, a collection P of
preferences on B, and a mapping F:P"— P. Such a function F will be
called a social welfare function (swf). For each preference profile, F picks
a social ordering, which after learning the constraints on the feasible set is
used to select the social outcome. We address two issues. Given that the
agents know the procedure to select a final outcome, do they have correct
incentives to truthfully reveal their preferences for every possible feasible
set? Theorem4 below shows that in multidimensional single-peaked
domains, if the collection of feasible sets is the collection of all subboxes of
an /-dimensional box, this stronger strategy-proofness requirement entails
no new restriction. That is, if the scf defined by the most preferred outcome
of F(F) is sp, then, for any subbox A, the scf defined by the most preferred
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outcome of F(P) in 4 is sp. The second issue involves the relationship
between the normative considerations that have motivated Arrow’s
General Possibility Theorem [1] and the normative and strategic
considerations underlying the Gibbard-Satterthwaite Theorem [5, 8]. This
issue¢ is addressed by Theorem 5. A precise statement and analysis of
Theorem 5 require a few definitions.

For the definitions below, let B denote any collection of subsets of some
arbitrary set B, and P denote a collection of preferences on B.

DerFmNITION.  F: P” — P satisfies unanimity if whenever there is x such
that xP, y for all {x, »}e®B and ie N, then xF(P)y for all {x, y}eB.

DEeFINITION.  F is dictatorial if there exists /7 such that for all {x, v} e B,

not yP,x implies not yF(P)x.

DEFINITION.  F satisfies independence of irrelevant alternatives (I1A) if
for {x, y) € B and any two profiles P and P', (xP, y <> xP|y for all ie N)
implies (xF(P) y = xF(P') y). A slightly stronger condition, obtained from
ITA by replacing “<«” with “=" will be called non-negative response
(NNR).

Observe that if B includes all two-element subsets of B, then Arrow’s
celebrated theorem establishes that if F satisfies unanimity and IIA then it
is dictorial. In the current framework we have modified Arrow’s restrictions
to allow for the possibility that the set of binary comparisons for which the
conditions apply may be a strict subset of the set of all possible pairs. This
is motivated by our desire to view the swf as a rule for making decisions in
every relevant contingency and to restrict the feasible sets to the collection
of all subboxes. Note that for any single-peaked preference P, it is enough
to know how P compares contiguous pairs (i.e., pairs such that {x, y} is
a subbox) to know how P would choose from every subbox A. Hence if the
problem is one of choosing from every subbox, then preferences over all
contiguous pairs are the relevant binary comparisons.

For the remainder of this section we concentrate exclusively on the case
in which B is an /-dimensional box, P is the set of all multidimensional
single-peaked preferences, and ‘B is the set of all subboxes of B. Recall that
A =X’,.=I A, is a subbox of B, if for each j, 4, is an integer subinterval of
B,. By Lemma I, two single-peaked preferences with the same bliss point
have the same most preferred element in every subbox. Since the bliss point
of a single-peaked preference uniquely determines the most preferred
outcome in each subbox, we can write F:P" — B instead of F:P" — P,
Lemma 4 below states that if F satisfies IIA then it must be sensitive only
to the bliss points of the preferences in the profile P. Therefore, we can view
a swf F satisfying 11A as a map from B” into B. Such a swf will be called
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a representative voter scheme. The relationship between a representative
voter scheme F and the corresponding swf is obviously analogous to the
relationship between a voting scheme and the corresponding scf. Note that
for every A €B the representative voter scheme F defines a voting scheme
f4, where f,(%) is defined to be the most preferred outcome of F(&) in A.
Theorem 4 below shows that F viewed as a voting scheme (i.e., f3) is sp iff
/4 1s sp for all A€ B. That is, it is a dominant strategy for all agents to
report truthfully across all possible realizations of other agents’ preferences
and across all possible realizations of society’s costraints.

LEMMA 4. Let~F: P" — B be a swf satisfving I1A. Then, F(P)= F(P') for
any two profiles P and P’ such that ©(P,) = t(P}) for all i.

Since for a swf F satisfying [1A, F(P) depends only on (t(P ), ... T(P,))
it will be convenient to adopt the following notation. For any x, », 2€ B,
we write xay if xPy for all PeP(x).

THEOREM 4, Let F: B" — B be a representative voter scheme. Then, F
viewed as a voting scheme is sp iff the voting scheme [, is sp for each subbox
AeB.

Proof. Suppose f, is sp for each AeB. Then f; is sp, and since
F(3) = fg(4) for each 4 € B", Fis a sp voting scheme. Conversely, assume F
is a sp voting scheme. Let € B" and i be arbitrary. W.l.o.g. we can assume
that F(3) is greater than or equal to «' in every dimension. Then
Fla ', gy —2'| = | Fla ', 'Y — F(3)|| + || F(&) — 2’| for each B'e B. Thus,
F(x ', p) is greater than or equal to F(&) in every dimension. Hence,
fdx Y, B), the unique minimizer of ||Fla ', f)—x| over xed, is
greater than or equal to f,(&), the unique minimizer of |[F(&)— x|| over
x€ A, in every dimension. Thus, || f(x %, By — | = | f, (o ', BY = f (@) +
| £{(%)— '], which by Lemma2 establishes that f,(&)a'f (x * B%), as
desired. Q.E.D.

We now turn to the issue of relating Arrow’s normative conditions on
swf's to strategy-proofness. Arrow’s General Possibility Theorem estab-
lishes that on unrestricted domains no swf can respect [IA, choose the
unambiguously most preferred social outcome when one exists, and still
achieve some level of compromise across the members of society. The
intuitive appeal of I1A is clear. Nevertheless, Arrow’s Theorem shows that
in unrestricted domains one can not insist on IIA without confronting
obviously less attractive consequences such as the failure of unanimity or
dictatorship. A separate argument in favor of IIA is the following. Many
proofs of the Gibbard-Satterthwaite Theorem utilize Arrow’s Theorem.
Thus, one might suspect that 11A is related to sp. The theorem below estab-
lishes this relationship. It shows that on single-peaked domains, NNR, a
condition slightly stronger than IIA is equivalent to sp, provided one
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restricts the binary comparisons to the set of contiguous outcomes. Thus,
single-peaked preferences provide an interesting example of a domain that
affords non-trivial spscf’s and non-trivial swf’s that satisfy a version of 11A.
The theorem below shows that these are in fact the same functions.

THEOREM 5. The swf F: B" — B satisfies NNR iff viewed as a scf it is sp.

Proof. Pick jin {1, .,/} and &€ B such that &, < b,. Let n, = ¢, for all
k#j, and n,=¢&,;+ 1. Define €,() as follows: De €, (&) ff {F(&)n when
a'=¢ for all ie D and of=n for all i¢ D. By NNR, (1) if Ce€,(¢) and
Cc D, then De€,;(¢). By IIA (which is implied by NNR), for any 4,
{i] Ea'n} e @ (&) iff EF(&)n. By single-peakedness, this implies that

{ilam}e€ (&) il FAA),<E, (*)

It follows from (*) that (2) if n, <, and Ce€,(y), then Ce§,;({). Hence,
the collection §;(¢£) depends only on £, and not on other components of .
Therefore, we denote it by €,(¢;) hereafter. Define (3) €,(b,)=2". By (1),
(2), and (3), €, is a left coalition system j=1, ..,/ By (*), Fis induced by
{€,}'_,. Hence F is a GMVS and by Theorem 4, F interpreted as a scf
is sp.

To prove the converse, note that if Fis sp, then {£, n)e B (ie, £ and y
are contiguous) implies f,. ,, is sp (Theorem 5). Therefore, {i|éa'n}c
{i &M} and f, (&) = ¢ implies that f..  .(f) = ¢ Moreover,
Sie (&)= il SF(&)n. Therefore F satislies NNR. Q.E.D.

In the next section we exploit this dual interpretation of functions from
B to B as swf’s and scf’s to analyze committees and the decentralization of
the decision-making process.

4. COMMITTEES AND SIMPLE CHOICE RULES

In this section we explore the consequences of interpreting voting
schemes as swf’s for disaggregating the social decision process. In par-
ticular, we have in mind the following decision process. A given subset of
the agents will form a committee and determine a representative as the out-
come of their committee. Another (possibly overlapping) committee will
form its own representative. The two representatives will perhaps join a
third committee to determine a social ordering and/or social outcome. We
are interested in the following questions. If the rules to construct repre-
sentatives and to aggregate their preferences are sp, is the overall decision
process sp? To what extent can we characterize the overall decision rules
by studying the decision rules within the committees? We have already
noted the possibility of interpreting an element o € B in two different ways:
as a set of preferences and as an outcome. Clearly, for elements in the
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domain (of both scf’s and swf’s), the first interpretation is appropriate; in
terms of the range, the first is appropriate for swf’s and the second for scf’s.
We no longer remark on the various interpretations and simply call func-
tions from B” to B voting schemes. We leave it to the reader to note which
interpretation is adequate in the given context.

To formalize our notion of voting in committees and committee
representative, we need the following definitions.

DerFiNtTION.  The function M: (J7_, (Z'y**' — Z/, defined by

Mo, Y = (o), e 0T, () R YY),

1s called the multidimensional median value function. That s,
M(a', .., a**")y is the coordinate-wise median value of the vectors
a', .., a¥**'eZ! 1f nis odd, M, denotes the restriction of M to (Z')" (M,
is the n-players median value function).

It follows from Theorem 2 and the fact that one-dimensional medians are
sp that M, interpreted as a voting scheme over the set of all single-peaked
preferences on B, is sp.* Our notion of single-peaked preferences has a
claim to being the appropriate generalization of Moulin’s to multidimen-
sional arrays of outcomes, provided one wants to preserve the close
relationship between spscf’s and voting schemes. Our set of single-peaked
preferences is the largest collection of strict preferences for which the voting
scheme M, (t(P,), ..., t(P,)) is sp for any n> 1 (provided for all x€ B there
exists some P in the collection such that t(P)=a). This i1s established in
Theorem 6 below.

THEOREM 6. Let P be any collection of preferences such that M,: P" - B
is strategy-proof for n=2k + 1, k > 0. Suppose ©(P)= B (i.e., for ecvery x€ B
there exists Pe P such that 1(P)=a). Then, every PeP must be a single-
peaked preference.

Proof. Assume to the contrary that Pe P is not single-peaked, and let
7(P)=ua. Then, there exists 8, 7€ B such that x— B} + | —al = fjla—7)
and not fPy. Consider any profile in which there are k individuals who
prefer § the most, & individuals who prefer y the most, and one person with
preference P. The social outcome for this profile would be . If P were to
misrepresent his preference and claim that his most preferred outcome is 7y,
then the social outcome wouid have been y, which contradicts the strategy-
proofness of M. Q.ED.

# Essentially the same observation is made by Border and Jordan {3}
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Theorem 7 below establishes that every sp voting scheme f can be
represented by a ternary tree of the following kind: there is an initial node
which leads to three subsequent nodes. Each subsequent node either is a
terminal node or leads to three subsequent nodes, and so on. Every ter-
minal node is labeled by either a constant outcome or the bliss point a' of
an agent’s preference. To construct the social outcome, we “solve the tree
backward.” At any node that leads to three labeled nodes, we compute the
median of the labels and label the node with this outcome. Repeat the pro-
cess until the initial node is labeled. The label assigned to the initial node
corresponds to the social outcome f(&). Contrast this result for voting
schemes over domains of single-peaked preferences with that for scf’s over
unrestricted domains. For the latter, only constant and dictatorial rules are
sp (by the Gibbard- Satterthwaite Theorem). For the former, one needs to
include the median voter scheme, and hence all combinations that can be
obtained with it and the constant and dictatorial rules. The result is also
interesting in that it shows how any spscf can be reconstructed with an
appropriate set up of committees and the use of the median voter scheme.

In the following scheme sequence of definitions and lemmas, let B be an
/-dimensional box.

DermvimioNn.  The sets of all n-players voting schemes and sp voting
schemes on B are F¥:={f|f B"—~B}| and F¥*:={feF*!| [ is sp}.
respectively. The sets of all voting schemes and all sp voting schemes on B
are §*:=J,.; &F and F** :={J, ., &F* respectively.

In analyzing the committee decision process, we consider three different
simple choice functions: dictatorships, constants, and median voter

schemes. We have already defined median voter schemes and noted they
are sp; that dictatorital and constant social function are sp is obvious.

DermNITION.  For each #> 3 we have the following special scf on B™:

(1) for each ie N, I!(x):=2' for all xe B" is player i’s dictatorial
rule;
(2) for each e B, {X¥(a):=¢ for all xe B" is the {-constant rule.

DerFINITION.  Let fe§X and f.e&F*, k=1,..m The combination
fo*(fys . [,n) is the scf on B" defined by:

Sox (frs oo L)@) = o fU(E), ..., [,(&))  foreach F=(a',..,o")eB"

DEFINITION.  Let ¥ < &* and for each #>3 define &, =& &Y The
span {E> of & is the smallest collection of scf closed under combinations
that contains §. Recursively define
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K &) = {fo* (fi, - fu) | for some n and m, fy€ &,, and
ﬁ(e 3n’ k = 1, veny ’n},

k
and for k=1, K**(§) =K' [ U K"(i&)],
=0

where K°(F) :=§. Finally, let K(F) :=U;_, K/(&).

The following technical result states that the span of any collection of
voting schemes can be obtained recursively.

LEMMA 5. K(F)=<F) for all §< F*

Proof. Let § = &*. Clearly K(¥) < (& >. Thus we need only show that
K(§)= (&>, or equivalently, that K(F) is closed under combinations. But
if for some n and m, foe (¥, and £, € {§),. k=1, .., m, then there exists
t such that fie ' _, K'(§) for all k=0, 1, .., m. Therefore

Jor s fu) €K [ U K’(&)]=K'“(mc1«m QED.

The following lemma demonstrates the importance of the combination
operation. It shows that combinations of sp voting schemes are sp.
LEMMA 6. K'(F)c F** and K(F)<= F** for all F< F**

Proof. We first show the following result: let fe §¥* deB", §, ye B,
and ie N, be such that &' — 3| = |Ja' — Bl + I8 —y|l. Then, if & :=f(B,a )
and n:= f(y, ), we have &' — || = o' — &] + )¢ — n)l. Recall the remark
following Theorem 3; for each j=1, .., /, we obtain the following cases:

if o' <f,<y, then [if ;< B,, then n,=¢,, and if £;> B, then n,> ¢, 1;

if a'>p, 27, then [if £,> B, then n,=¢,, and if ;< B, then n,<¢;].
In all cases, |a)—n,|=la;~ ¢ +1;—n l; this proves the equality above.

Let < §**, and for some n and m, let f,e &,, and f,e&,,. k=1,..,m
Pick any ie N:={1,..,n},a 'eB" ' and B, ye B. Let

Ee=F(Ba ), n* = fuly, a7y, k=1,.., m,
E% = folELs L &MY, and n° = foln', .o ™).
To conclude, we need to show that [ —n°l=1{8—° +(1E"—n°). Let

8% =y and 0" := f(&L, . E5 R ™), k=1, .., m (note that §™ = &)
Since each £, is sp, [|f—n*l = |~ &5+ IIE¥ —~ #*|l, and from the result
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above, we get that [[f—o&|=[f—-&*""|+ 65" =5*| for each
k=0,1,.., m— 1. Adding these equalities we obtain:

m -

1
1B—8%=Ip—o"+ X l**"—8"). *)
k=

0
Recall that 6° :=4° and 8" = ¢°, and note that

m-—1

I°=nl< X 6%t ' =3 and  B—n°l <|B~E°U+1E°—n°l;

k=0
these two inequalities, together with (*), imply that

m—1

1€°—n°) = 3 [16**" =4 and 1B—n°l=1B—&% +11E°—n°l;
e Q.ED.

Note that for any n and k <n, stacking the k dictatorial rules 7., ..., I*
and constructing the combination fy * (1}, .., 1) results in the aggregate
rule f, for the committee {1, .., k}. Thus, the concept of a dictatorial rule
is an integral part of our notion of a committee. A voter within the com-
mittee can be an agent (represented by the rule /%), a constant, or the
outcome of some other committee. Theorem 7 establishes that every sp
voting scheme can be represented by a committee structure in which every
committee has exactly three members and aggregates the preferences of its
members according to the median voter scheme. It is worth noting that our
notion of a committee does not allow for separate committees for each
dimension. Hence, Theorem 7 cannot be proved by considering the one-
dimensional case and appealing to Theorem 2 as we did in proving
Theorem 3.

DeFNITION.  Let & :=[U, 53 &,1, where
G i={I1]1i=1,2,3} U {&¥|EeB}u{M;},
E={Ili=1,.,n}U{EX|EeB},n>4

THEOREM 7. (§)>=F**
Proof. See Appendix.
S. CONCLUSION

Having established all our results and stated the related definitions, we
now are in a position to compare them to those provided by Moulin [7]
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and Border and Jordan [3]. As noted earlier, Moulin [7] provides an
extensive analysis of single-peaked preferences in the one-dimensional case
(ie, when B=%WR). His characterization of anonymous strategy-proof
voting schemes can be expressed as follows: if /2 R” — R is an anonymous
sp voting scheme, then there exists fe R”* ' such that

fl@)=w@a B) forall GeR"

His general characterization of sp voting schemes states that if /: R" — R
is sp, then for each coalition C < N, there exists ace Ru { — ¢, +0} such
that

SE@)=inf{sup{x| x=a, or x=0o'for some ie C} | C< N}.

Moulin also makes the following observations:

(1) infs and sups can be expressed as combinations of constants and
medians, and medians can be expressed as combinations of infs, sups, and
dictatorial voting schemes.

(2) Combinations of sp voting schemes are sp.

(3) Combinations can be interpreted as committee representation
and viewed as a decentralization of the decision-making process.

Thus, his characterization of the non-anonymous voting schemes combined
with (3) results in a conclusion similar to our Theorem 7. Our work is
complementary to his in the following ways:

(a) We show that his restriction to voting schemes is without loss of
generality, provided the range of the scf is a subbox (i.e., an interval in the
one-dimensional case).

(b} We extend his results to the multidimensional case.

(c) We provide an alternative characterization of sp voting schemes
(i.e., GMYVS) which includes the work of Barbera, Sonnenschein, and Zhou
(2] and the Farquharson [4] and Kramer [6] characterizations of a
voting rule as special cases.

(d) Note that our separability property (Theorem 2) does not
depend on the set of alternatives being discrete and that combinations of
medians are GMVSs. Hence, Moulin’s observation (1) implies that our
characterization of sp voting schemes in terms of GMVSs can be extended
to include the case in which B= R/, or B is any box in R’

(e) Minor modifications of the proof of Theorem 7 (i.e., committee
representation) and the observation that sp voting schemes are GMVSs,
will also lead to an extension of Theorem 7 that includes the case in which
B=W'or B is a subbox of R’
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Border and Jordan [3] also extend Moulin’s work to R’ Their main
theorem for the multidimensional case states the following result. If
f: 2" =N is a surjective scf, where 2 denotes the set of all separable
preferences on R’, then f is sp iff it is separable in each coordinate. A
lemma used to prove this result provides a result similar to our Theorem 1.
In addition, they show that for the multidimensional case, efficiency and
strategy-proofness imply the scf must be dictatorial, and that even small
departures from the separable case may lead to dictatorial scf’s. Our work
complements theirs in at least two ways:

(a) The set of all separable preferences is strictly smaller than the set
of (multidimensional) single-peaked preferences. In fact, we show that our
notion of single-peaked preferences is the appropriate generalization of
Moulin’s for multidimensional sets of alternatives, in that such preferences
constitute the largest class which extends Moulin’s results (i.e., the largest
class for which all GMVSs are sp).

(b) We are able to weaken the surjectivity requirement of Theorem 1.

Finally, we consider swf’s on single-peaked domains and relate these
swi’s to the spscf’s considered earlier. In particular, we show that swf’s
viewed as contingent choices are strategy-proof if and only if the
unrestricted choice (i.e., the bliss point) implied by the swf is sp. Moreover,
we show that the non-negative response property of the swf is equivalent
to strategy-proofness and establish the relationship between Arrow’s
normative conditions and strategy-proofness in a framework that does not
rule out non-trivial scf’s and swf’s.

APPENDIX
Proof of Theorem 1

DerINITION.  For any subset A < B, let B(A) be the minimal subbox of
B that contains it.

LEMMA 1.1. For every profile P=(P,,...P,), ¢(P)e B({T(P,») | i=
1oy 21}).

Proof. By contradiction, assume not. Let P be a profile for which
o(Py=:a¢ X :=B(|t(P)|i=1,.., }). Let «* be the point in X closest to a.
Note that «*P;a for each i=1, .., n. Pick any P with bliss point «* and
such that 8Py for all fe Y and y¢ Y, where Y := B({a, x*}). Sequentially
replace each P, by P. Since ¢ is sp, @(P, P_,)e€ Y, otherwise player 1 with
preference P would report P,. In fact, (P, P ,)=a, otherwise player 1
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with preference P, would prefer to report P when his opponent’s profile is
.- Repeating this argument for each player, we obtain ¢(P, .., P)=a.
But this is a contradiction: ¢ would violate unanimity. Q.ED.

To prove the theorem, by contradiction suppose P* is a proﬁle for which
there exists j and P such that (P )=1(PF), =@(P*)#

@(P*,,P)=:a". For the rest of this proof, j always refers to this voter.
In addmon suppose P* was chosen so that the box X*:= B(|1t1(P*) |
i=1,..,n}), is minimal, in the sense that for no profile P, with B({ (P)]
i= l, n}) strictly contained in X*, one can switch the preference
of a player & to a preference P, in such a way that t(P})=1(5)
and @(P)#@(P ., P,). By the previous lemma, we know that
Y:=B({a*,a*})c X* As an intermediate step, we first show that
Y = X*, i.e., that the social outcomes a* and «* must be kitty-corners (i.e.,
diagonal opposites) of the box X*.

LEMMA 12, Y=X*

Proof. For every preference P with t(P)¢ Y, let « be the point in ¥
closest to 7(P), and denote by m(P) the collection of preferences with bliss
point a, which rank each outcome in Y above every outcome not in ¥ and
keep the same relative ranking as P over outcomes in Y. That is,
n(P):={PeP(a)|for every B, yeY and 6¢ Y, BP3, and BPy iff BPy}.
Suppose by contradiction that there exists / such that t©(P¥*)¢ Y. If
©(P*)eY, let P=P* and P' =P otherwise, pick any Pe n(P,*) and
Pren(P) Smce @ 1S sp, @ (P‘,, P)—a and @(P*,, P} )=a" in cither
case. Let i # j be such that t(P*)¢ Y, and pick any P in n(P*) Since ¢ 1s
sp, @((P*,P) ,P)=o* and o@((P*,P) , P)=ua". Sequentially
replace every preference P, with t(P*)}¢ Y by a preference P, in n(P}¥),
and let P,=P¥ whenever t(P*)eY. Then ¢(P,..,P)=a* and
@(P_,, P} )=a". But this contradicts the minimality of the box X*. Hence
(P¥)eYand Y=X* Q.E.D.

Consider any two preferences Q¢ and Q' such that 7(Q)=oa* and
1(Q')=x"*. Starting with the profile P*, for each i # j, sequentially switch
P*to Qif a*P*x”, and to Q' otherwise; denote the final profile by P (so
P,= P*, and for i # j, either P,=Q or P,=Q’). The social outcomes along
the sequence thus generated, and along the sequence when player j's
preference is replaced by P, remain constant. For example, if j# 1 and
a*Pra*, since ¢ is sp and @(P*)=a* we must have @(P*,, Q)=a*
Also, we must have o((P*,, P) _,, Q) # a*, for otherwise a player 1 with
preference P} would rather report @ when his opponents’ profile is {(P* ,

P') |, contradicting strategy-proofness. Since @((P*,, P') |, Q)#a*,
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the kitty-corner condition just established and the minimality of the box
X* imply @((P*;, P") . ,,Q)=a". Thus, ¢(P)=a* and @(P_,, Pry=a™.

To conclude, starting with profile P, sequentially switch every preference
P; which is equal to @ to the preference P*; denote the resulting final
profile P. Suppose, for example, that j#1 and P,=Q. Then
@(P_,, PF)#a”, for otherwise a player 1 with preference P* would prefer
to report Q when his opponents’ profile is P _,. Hence, along the sequence
from P to P the social outcome is never equal to a*, and thus @(P)#a*.
Since pQa* for all Be Y, @((P_,, P}¥)_;, P")=a". Otherwise a player 1
with preference Q would prefer to report P* when his opponent’s profile is
(P_,, P")_,. Therefore, along the sequence from P to P, when player j’s
preference is replaced by P/, the social outcome remains constant at « ™,
and (P i Pj+ y=a*. By the kitty-corner condition, we must have
@(P)=0o* By Lemma 12, &:=t(P¥*)=1(P})e B({a* a*})=X*. Since
a*#& (otherwise P} would misrepresent), B({t(P)|i=1,.,n})=
B({&, a* }) is strictly contained in X*. This contradicts the minimality of
X*. Q.ED.

Proof of Theorem 7

LemMa 7. M, e(§> for all n>3 odd.

Proof. The proof is by induction. However, to avoid tedious notation,
we only show how to construct M from M;, and M, from M, and ask
the reader to infer the general step. For any four different players i, j, k,
me{l,2,3,4,5}, let

fijk =M}*(1'5~1,5’1‘;) and gq’/’km :=M3*(fijm’f;'km’fikm)'

Clearly, f; € <%, and therefore g,;,,€ (&>

We now show that M.=M;* (g3 &1235> f123), and therefore
Mse (&). Fix a coordinate je {1, 2,..,1}. We show that for all &€ B, the
Jth coordinate of M; * (g,334, £1235. f123)(&) equals the jth coordinate of
My(&). Let x:=M(&),, C™:={i|aj<x} and C* :={i]a;>x}. Then,
#C <2and #C" <2 Suppose g,,34(&); < x; since g,34(&), is the median
of f124(%);, f234(8),; and f}3,(&);, we must have 4e C~ and at least one more
element from {1,2,3} must be in C . But #C <2, so exactly one
element of {1,2,3} must be in C~, and 5¢ C . Therefore, f;,3(&),> x and
81235(8); = x, 50 M3 % (82345 &12355 /123)(d); 2 x. A symmetric argument
establishes that g,,35(&); < x implies M * (g,234, £235, f123)(&); = x. But if
both g,,34(&),2 x and g,,35(&), = x, then obviously M, x (£)334, £1235, f123)
(@), 2 x. S0, My * (8234, £1235, fis)(F); > x. Again a symmetric argument
establishes that g,33,(&); > x ot g)335(&); > x implies M, * (81234, £1235> f123)
(2);<x. So M3 * (g1214, &1235+ f123)(F); = x, as desired.
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Similarly, for any six different players i, j, k, m, n, ge {1,, .., 7}, let

Sitmn = Ms* (15, .. 13)
and

gijkmnq = MS * (f;j'kmqy ./;jknq’ ﬁjmnqa ﬁkmnqa ./jkmnq )

Again, fiun€ (&> and &ijkmng € (&) Thus My x (g123456s &123a57> fiasas) €
{(&>. An argument similar to that above establishes that M, % (g,23456,
£123457» fi21as) = M. In particular, for any j, there are at most three agents
such that their bliss points on the jth coordinate are below M,(&);. Hence,
il g123a56(8); < M3(X);, 8123a57(%); 2 M4(&); and fi5345(&), > M(&),. There-
fore, M;*(g123456: 81234575 JS1234s)(&); 2 M,(&);. As before, symmetric
arguments establish that M, = M, * (g,23456, £123457> Si2245) € {&F>. Q.E.D.

For any subsets C and D, let C4D :=[C\D]u [D\C}, and if C and D
are finite, let

A4(C, D) := #(CAD) (Hausdorff “metric”).

For any sp voting scheme f:B"— B, let €/ = (€7, .., €/) denote the
coalition system induced by f. If £, g: B”" — B, let

[k
o(f,g)i=3 Y AE/(), €LY
Jj=1 {=u
Clearly, if f and g are sp, f=g iff 8(f, g)=0.

Let fe®** and ge (§), be such that 5(/, g)>0. We construct a
scf he (&), such that 8(f, h)<d(f, g). Therefore, if f is the “best
approximation” to f in {{§) according to the metric 5, we must have
(f, f)=0, and f=f"e (& >. For notational convenience we only present
the proof for the case in which B is a two-dimensional box (ie., /=2).
W.lo.g. suppose that €/ # €%, Let £ e B, be the smallest point for which
ClENCs(EY£ . Uf Cf(n)=C%(yn) for all neB,, we must have
CE(mN\C(n)# & for some neB,; we consider this case later. Let
CcG(ENCE(E). The scf h is constructed so as to satisfy the following
conditions:

(i) €5=G4 (that is, h,=g,);
(il €4(n)=C2(y) for all ne B, with n<¢;
(i) €& =C()v{De2¥ | CcD};
(iv) n>¢& D¢GE(n) and C ¢ D imply D¢ 6" (n).

Condition (i) says that the coalition system induced by % in B, is the same
as that induced by g, while conditions (ii)-(iv) guarantee that the coalition
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system induced by 4 on B, is the minimal coalition system that coincides
with that of g up to £ — 1, and includes €5(&)w {C} at £ Let m= #C and
define:

h = M4m+3 * (g’ vy ga (éa b2)1’1k1 (a19 a2):1ks 1,(,s 1,(,)’

where I{ denotes the n-dimensional vector of dictatorial rules whose com-
ponents are I! with ie C. The following observation is used repeatedly
below: if €Y denotes the coalition system induced by M,, ,, on B,
j=1,2, then DeCM(&) iff #D>2m+2.

Cramm 1. h,=g,.

Pick @e B% and let n=g,(&) and f= (1, .., . &, a,, aS, a<), where a¢ is
the profile with components «', ie C (so h,(&)=M,, ,(f)). Clearly
C(B;n)=2m+ 2. Therefore C(B;n)e €3 (n) and hy(3)<n. U n=a,, then
h{d)=1n= g,(%). Otherwise, note that C(fi;n—1)<2m+ 1 because the
first 2m+2 entries of § are greater than #; hence h,(&)>n—1, and,
together with the earlier inequality, this implies 4,(&)=1n = g,(d).

Cramm 2. C%(n)<=C€(n) for all ne B,.

Let ne B, and De@¥(n). Pick any &< B such that C(&; )= D. Then
g(d)<n and (a,)¥ (&)=a, <n. Hence h (%) <n and DeCl(n).

CramM 3. C%(n)>€%n) for all ne B, with n<¢.

Let n <& and D¢C%(n). Pick any d€ B such that C(&; #n)= D. Then
g(&)>n and EX(E)=¢&>n. Hence h(&)>n and D ¢ €4(n).

Cramm 4. Ce@’(¢).

Pick any de B with C(4;¢)=C. Then [{(3)=a'<¢& for all ieC,
(a)¥(&)=a, <&, and EXHE) = Hence h (7)< ¢ and Ce €4(¢).

CLAM 5. D¢ G%(¢) and C ¢ D imply DeGl(¢).

Let D¢@$(&) be such that C ¢ D. Pick any de B} with C(&;¢)=
Then g,(&)> ¢ and there exists ie C\D. Since for each i¢ D, [{(d)=o'>
h (@) >¢ and D ¢E1().

Claims 1-5 imply that 4(€{(n), €5(n))= A(€4(n), €4(n)) for all ne B,,
A(C(n), €4(n))= A(€/(n), €%(n)) for all neB, with n<¢ and
A(€](n), €(n)) < A€/ (n), €%(n)) — 1 for all ne B, with n =& Therefore
Of,h)y<d(g h)— 1.

D.
S
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If €/(n)=C€s4(n) for all ne B, let & be the largest point for which
CE)NENE)Y # s let CeC5(ENE](E). In this case we construct the scf 4 so
as to satisfy the following properties:

(i) Cf=€53;
(i) €f(n)=Ex(n) for all n>¢&;
(iii) €H(&)=C5(EN\{De2" | CcD};
(ivi n<¢ D¢€%(n) and C< D imply D¢ €(n).
Let D=N\C and m= # D. Define:

h = M4m+3 * (g, s 8 (‘:s al)::kv (bl’ bl):’ 1,)

n

1,?)9

and note that if € denotes the right-coalition system induced by M., ,
on By, then EeC€}(n) iffl # E<2m+ 1. A similar argument to that above
demonstrates that 3(f, A)< (g, h)— | for this case as well.
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