CSE 5319/6319 Homework 3

Due April 3, 5:00 p.m. on Canvas

1. Show that the following instance of stable marriages has two stable matchings:

$\underline{\mathrm{A}}$	$\underline{\mathrm{B}}$	$\underline{\mathrm{C}}$	$\underline{\mathrm{D}}$	$\underline{\mathrm{E}}$	$\underline{1}$	$\underline{2}$	$\underline{3}$	$\underline{4}$	$\underline{5}$
5	2	3	3	3	A	E	A	B	B
1	3	5	2	1	D	B	B	D	E
3	5	4	4	2	C	A	C	A	C
4	4	1	5	4	B	C	E	E	A
2	1	2	1	5	E	D	D	C	D

2. Find as many maximum-cardinality, pareto-optimal solutions as you can for the following instance of house allocation:

A1: H4 H5 H2 H1 H3
A2: H2 H5 H4 H3 H1
A3: H1 H4 H2 H3 H5
A4: H4 H2 H1 H5 H3
A5: H3 H2 H4 H1 H5
3. A man dies, leaving an estate worth $\$ 600$. The deceased has three widows with marriage contracts of $\$ 150, \$ 250$, and $\$ 350$. Divide the estate among the widows, using the Rule of Linked Vessels.
4. Solve problem 3 using the O'Neill's law/race-to-the-bank method (Shapley Value).
5. A man dies, leaving an estate worth $\$ 250$. The deceased has three widows with marriage contracts of $\$ 50, \$ 100$, and $\$ 200$. Divide the estate among the widows, using the Rule of Linked Vessels.
6. Solve problem 5 using the O'Neill's law/race-to-the-bank method (Shapley Value).

