CSE 5319 Notes 1: Game Theory Concepts
(Last updated 1/20/24 1:11 PM)

Karlin & Peres (KP) 1/2/3/4/5/7 (6 is worth skimming)

Nisan (N) 1/2

1.A. SELFISH BEHAVIOR - CLASSIC GAMES AND STRATEGIC SITUATIONS

Subtraction Game (Pile of chips, remove at least one and no more than four. Last move wins.)
N = moves where next/first player wins P = moves where previous/second player wins
x chips is in P < x is divisible by 5

Impartial vs. Partisan Game; Progressively Bounded

Chomp (All starting positions are in N . . . “backward induction” on small cases leads to strategy-
stealing)

Nim and Bouton's Exclusive-Or Solution (KP p. 17, Theorem 1.1.12)
Multiple piles
Remove any number of chips from one of the piles

Winner picks up the last chip(s)

1.1.2. Bouton’s solution of Nim. We next describe a simple way of deter-
mining if a state is in P or N: We explicitly describe a set Z of configurations
(containing the terminal position) such that, from every position in Z, all moves
lead to Z¢, and from every position in Z¢, there is a move to Z. It will then follow
by induction that Z = P.

Such a set Z can be defined using the notion of Nim-sum. Given integers
T1,T9,...,Tk, the Nim-sum 7 @ xo & --- & xp is obtained by writing each z; in
binary and then adding the digits in each column mod 2. For example:

decimal | binary

T 3 0011
Lo 9 1001
T3 13 1101

xr1 D are D3 7 0111

DEFINITION 1.1.11. The Nim-sum z1 @ x5 & --- ® 73, of a configuration
(21,22, ... ; x1) is defined as follows: Write each pile size z; in binary; i.e., z; =
> >0 272" where z;; € {0,1}. Then

T ®T2 B Bar =) (210 Dy’
720
where for bits,
k
21, Qo - Dapy = (Z a?,-j> mod 2.
i=1

THEOREM 1.1.12 (Bouton’s Theorem). A Nim position © = (z1, 23, ..., T))

is in P if and only if the Nim-sum of its components is 0.



Hex - partisan, first player (standard board) has a win. Draw not possible (K p. 23)

(KP p. 2, Blue to move)

Shannon Switching Game (on a graph) - two players (short/reinforce, cut) compete to obtain a path
between designated vertices or to block it. (First player has a win)

Tic-Tac-Toe
Optimal play leads to a draw
Isomorphism to Pick15 ( https://en.wikipedia.org/wiki/Number Scrabble )

3D Tic-Tac-Toe and https://en.wikipedia.org/wiki/Zermelo%27s_theorem (game_theory)
( https://ranger.uta.edu/~weems/NOTES6319/PAPERSONE/patashnik.pdf )

Optimal play leads to first player winning
Recursive Majority
Complete ternary tree
Players alternate marking (+/-) of the leaves
Mark parent based on majority marking of its children
Mark of parent indicates the winner
Like 3D Tic-Tac-Toe, contradiction for second-player to have forced win (p. 203 of Patashnik)
+ player has a forced win (Theorem 1.2.16)
Aside: nttps://en.wikipedia.org/wiki/Sprouts_(game)

Prisoner's Dilemma

KPp. 75 KP p. 129
prisoner II player 11
. silent confess e cooperate (C) defect (D)
% silent | (—=1,—1) (—10,0) = | cooperate (C) (6,6) (0,8)
é confess | (0,—10) (—8,—8) ;E: defect (D) (8,0) (2,2)




Stag Hunt

KP p.75

Hunter 1

Hunter 11

Stag (S)

Hare (H)

Stag (S) | (4, 4)

Hare (H) | (2, 0)

0, 2)

(1, 1)

War and Peace

KP p.75

Firm 1

Driver and

Firm II

diplomacy

attack

diplomacy
attack

(2,2)
(07 ‘2)

('2’ 0)
(’17 ‘1)

Parking Inspector

KPp. 76

Driver

Inspector

Don’t Inspect

Inspect

Legal
Illegal

(0,0)
(10, —10)

(O’ _1)
(—90, —6)

Cheetahs and Antelopes

KPp. 78

cheetah 1

Chicken

cheetah 11

L S

L {¢/2,272)

(s, )

(¢, 5)

(s/2,5/2)

player 11

Swerve (S)

Drive (D)

Swerve (S)
Drive (D)

(1,1)
(27 _1)

(_17 2)
(_

M, —M)




ExamPLE 4.3.2 (Pollution game). Three firms will either pollute a lake in
the following year or purify it. They pay 1 unit to purify, but it is free to pollute.
If two or more pollute, then the water in the lake is useless, and each firm must
pay 3 units to obtain the water that they need from elsewhere. If at most one firm
pollutes, then the water is usable, and the firms incur no further costs.

If firm III purifies, the cost matrix (cost = — payoff) is

firm 11T
purify  pollute

purify | (1,1,1) (1,0,1)
pollute | (0,1,1) (3,3,4)

]
£
—

=

If firm III pollutes, then it is

firm I
purify  pollute
purify | (1,1,0) (4,3,3)
pollute | (3,4,3) (3,3,3)

—
g
=

=

1.B. SELFISH BEHAVIOR - TWO-PERSON/ZERO-SUM
Matrix value is for the row player . . . Negate for the column player

Pick a Hand - Hider puts coin(s) in their two hands (left, right): (1, 0) or (0, 2).

KP p. 35

Hider
¢ Ll  R2
L
é L1 0
s|R| O 2
@)

Rock/Scissors/Paper (. . . Lizard/Spock)

KPp. 139
player I1

Rock Paper Scissors

w5 [ Rock g 1 ]

= | Paper 1 0 -1

"2 | Scissors —1 1 0

Santa Claus & and Easter Bunny €99

Graphs

Series-sum, Parallel-sum, Troll and Traveler - SKIP



Hide and Seek

KP p. 59
15t Ave. 2"%Ave. 3"%Ave. 4" Ave. 5™ Ave.

Robber

COROLLARY 3.2.6. For the Hide and Seek game, an optimal strateqy for the
cop is to choose uniformly at random a line in a minimum line-cover. An optimal
strategy for the robber is to hide at a uniformly random safehouse in a maximum
matching.

b
b

5
E
5
:

:
i

X A

Maximum (Bipartite) Matching

:
:
:

Maximum subset of edges such that no vertex is incident to two of the chosen edges
Minimum Covers
( {1st St, 2nd St, 3rd St} {2nd Ave, 4th Ave, 5th Ave} {2nd St, 2nd Ave, 4th Ave} )

0/1 matrix - Minimum set of rows and columns such that every 1 is in one of the chosen
rows or columns

Graph - Minimum set of vertices such that every edge is incident to one of the chosen
vertices



Hall's Theorem - Suppose the number of right column vertices is at least the number of left
column vertices. If the neighborhood (e.g. corresponding right column vertices, I') for each
subset of the left column contains as many vertices as in the subset, then there is a matching that
includes all left column vertices. (KP p. 61, Theorem 3.2.4)

Konig's Lemma: Size of maximum matching = size of minimum line-cover. (KP p. 62,
Lemma 3.2.5)

hideAndSeek.1.kp59.gbt - Finds one strategy using COROLLARY 3.2.6

hideAndSeek.2.kp59.gbt - Finds all strategies (same payoffs) using fundamental Nash
equilibrium search

Linear Programming - KP Appendix A (Sedgewick’s Java code for 2-person, 0-sum on webpage)
EQUILIBRIUM CONCEPTS FOR ZERO-SUM GAMES
Pure Strategies

Saddle Point - A row i and column j such that the smallest entry in the row is the same as the
largest entry in the column. (The value is guaranteed to appear as entry a;j). (Exercise 2.6)

Dominance - Recognizing and removing rows and columns that are not useful options
Simple - another row/column is always better
KP p. 41 - a convex combination dominates (2.9)
Mixed Strategy - Probability vector for playing available actions (KP p. 36-38)
Safety Strategy and Value for Player I (maximize expected gain)
Safety Strategy and Value for Player II (minimize expected loss)

THEOREM 2.3.1 (Von Neumann’s Minimax Theorem). For any two-person
zero-sum. game with m X n payoff matriz A, there is a number V', called the value
of the game, satisfying

max min X! Ay =V = min max x’ Ay. (2.3)
XE€EAm yEA, YEA, xXEAp,

We will prove the Minimax Theorem in [§2.6]

DEFINITION 2.5.1. A pair of strategies (x*,y*) is a Nash equilibrium in a
zero-sum game with payoff matrix A if
min (x*)T Ay = (x*)T Ay* = max xT Ay*. (2.10)
YEA, XEA,
Thus, x* is a best response to y* and vice versa.

REMARK 2.5.2. If x* = e;« and y* = e, then by (2.2)), this definition coincides
with [Definition 2.4.1]




PRrOPOSITION 2.5.3. Let x € A,, andy € A, be a pair of mized strategies.
The following are equivalent:

(i) The vectors x and 'y are in Nash equilibrium.

(ii) There are Vi, Va such that

Z =Vi  for every j such that y; >0, (2.11)
TiQgq .
"V1>Vi  for every j such that y; = 0.

and

(2.12)

=Vy  for every i such that xz; > 0,
< Vs for everyi such that x; = 0.

(i) The vectors x andy are optimal.
Safety values for the two players are equal
Safety strategies that yield the safety value are called optimal strategies
Equalization Principle (KP p. 39)

Easily applied when each of the two players has two actions

Proposition 2.5.3 (KP p. 43) suggests finding optimal strategies by using linear
programming (e.g. simplex method) to determine mixed strategies with identical safety

values (V1=)>)
Removing Restriction to Zero-Sum

DEerFINITION 4.2.1 (Nash equilibrium). A pair of mixed strategy vectors
(x*,y*) with x* € A, (where Ay, ={x €R™ : 2; > 0,31 z; =1}) and y* € A,
is a Nash equilibrium if no player gains by unilaterally deviating from it. That
18,

(x*)T Ay* > x" Ay*
for all x € A,,, and

(x*)TBy* > (X*)TBy
forally € A,,.

Nash's Theorem (KP p. 84)

THEOREM 4.3.6 (Nash’s Theorem). FEvery finite general-sum game has a
Nash equilibrium.

For determining Nash equilibria in (small) games, the following lemma (which
we have already applied several times) is useful.

LEMMA 4.3.7. Consider a k-player game where X; is the mized strategy of player
i. For eachi, letT; = {s € S; | xi(s) > 0}. Then (X1,...,Xx) is a Nash equilibrium

if and only if for each i, there is a constant ¢; such that

Vs; €Ty ui(si,X—i)=¢; and Vs; €T, wi(s;,x—;) <.

Symmetric Games (KP p. 85)



1.C. POTENTIAL GAMES

Congestion Game

cost; (P) = Z cr(n(P))

Cost for a driver i: rep;

Potential Function (KP p. 86, (4.5)): r=1 (=1
(C(*) 1s monotone increasing, but is not necessarily linear)

Minimizing a potential function gives a local optimum/pure Nash equilibrium (PNE).

COROLLARY 4.4.2. Let ¢ be defined by (4.5). Fix a strategy profile P =
(Pr,...,Py). If player i switches from path P; to an alternative path P}, then
the change in the value of ¢ equals the change in the cost he incurs:

&(P!,P_;) — ¢(P) = costi(P!,P_;) — cost;(P). (4.7)

(1) +¢(2)

c(1) (1) +¢(2) (1) +¢(2) (1) +¢(2)
+¢(3)
é=c(1)+c(1) +c(1) + ¢(2) + ¢(3) d=c(1) +c(1) +c(1) +¢(2) + c(2) + ¢(2)

(Easily translated to minimum-cost, maximum-flow problem. Solvable by linear programming.)

Nash Equilibrium in Pure Strategies (KP p. 87)
CrLAM 4.4.3. FEvery potential game has a Nash equilibrium in pure strategies.

Repeated Play Dynamics

“Last player” concept in potential function is straightforward motivation.
Best-response dynamics:
In turn, try each player:
Remove player’s current path from G to give G’
Find shortest path in G’ (e.g. Dijkstra with C,(¢) for edge costs)

If path cost is an improvement, replace G with G’



Consensus

: : Di(b) = > |b; —bj]

FIGure 4.11. This is a Nash equilibrium in the Consensus game. JEN('L)
(comment regarding “simultaneously” and converging to cycle)
Graph Coloring (KP p.89) - seek to maximize potential function

ExXAMPLE 4.4.9 (Graph Coloring). Consider an arbitrary undirected graph
G = (V,FE) on n vertices. In this game, each vertex v; € V is a player, and its
possible actions consist of choosing a color s; from the set [n] := {1,...,n}. For
any color ¢, define

n¢(s) = number of vertices with color ¢ when players color according to s.

The payoff of a vertex v; (with color s;) is equal to the number of other vertices
with the same color if v;’s color is different from that of its neighbors, and it is 0
otherwise; i.e.,

() ns;(s) if no neighbor of v; has the same color as v,
ui(s) =
. 0 otherwise.

LEMMA 4.4.10. Graph Coloring has a pure Nash equilibrium.

COROLLARY 4.4.11. Let x(G) be the chromatic number of the graph G, that
18, the minimum number of colors in any proper coloring of G. Then the graph
coloring game has a pure Nash equilibrium with x(G) colors.

INFINITE STRATEGY SPACES

Tragedy of the Commons - network channel version (KP p. 90; N p. 6)

Note that the player’s utility at equilibrium (1/(k + 1)?) is not maximized (1/4k).

Nightclub Pricing (KP p. 91)

Aside: When to fire in a duel . . . ( https://en.wikipedia.org/wiki/Hamilton_ (musical) )



FIXED-POINTS, SPERNER’S LEMMA, AND EXISTENCE OF NASH EQUILIBRIA (skim)

FiGURE 5.2. Sperner’s lemma when d = 2.

Intractability (N p.33)
Theorem 2.3 (Gilboa and Zemel, 1989) The following are NP-complete prob-

lems, even for symmetric games: Given a two-player game in strategic form, does
it have

e at least two Nasu equilibria?
e a Nasu equilibrium in which player 1 has utility at least a given amount?

o a Nasu equilibrium in which the two players have total utility at least a given
amount?

e a Nasu equilibrium with support of size greater than a given number?
o a Nasu equilibrium whose support contains strategy s?
o a Nasu equilibrium whose support does not contain strategy s?

e elc., efc.
Succinct Representation (N p. 39)

Extensive (tree) vs. Strategic (matrix) Form

Complexity Theorists work with “natural” or “compact” representations
Approximate Equilibria (N p. 45)

(R p. 261 has summary of tractability results)

(R p. 240) e-Approximate Coarse Correlated Equilibrium

(R p. 248) e-Approximate Correlated Equilibrium

(R p. 296) e-Approximate Mixed Nash Equilibrium

(R p. 197, 219) e-Pure Nash Equilibrium



Example Bimatrix Game:
(5,0) (-25,0) (-25,1)
(-25,0) (1,0) (-25,-1)
Nash Equilibria Distributions (payoff) ( optimal.cce.p3.gbt )
Row Column
1,0 (-25) 0,0,1(1)

1/2,1/2 (-155/14) 13/28, 15/28, 0 (0)

1/2, 1/2 (-25) 0,0, 1 (0)
0, 1 (-155/14) 13/28, 15/28, 0 (0)
0,1(1) 0,1,0(0)

Correlated Equilibria Distribution (payoffs: 1, 0) ( corrEq.mod optimal.cce.p3.dat )
0 0 0

0 1 0

Coarse Correlated Equilibria Distribution (payoffs: 3, 0) ( coarseCorrEqg.mod )

12 0 0

0 1/2 0

11
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1.D. UTILITY FUNCTIONS, RISK AVERSION, ST. PETERSBURG PARADOX

The term utility is often used as a substitute for concepts like “money”, “value”, “revenue”, “cost”,
“payoff”, or “profit”.

A utility function is a mapping from choices to an amount. (KP p. 81)

A narrower concept (VNM utility function) was developed in
https://en.wikipedia.org/wiki/Theory of Games and Economic Behavior tO address preférence and risk.

https://en.wikipedia.org/wiki/St._ Petersburg paradox

A casino offers a game of chance for a single player in which a fair coin is tossed at each stage. The initial stake begins at
2 dollars and is doubled every time heads appears. The first time tails appears, the game ends and the player wins
whatever is in the pot. Thus the player wins 2 dollars if tails appears on the first toss, 4 dollars if heads appears on the first
toss and tails on the second, 8 dollars if heads appears on the first two tosses and tails on the third, and so on.
Mathematically, the player wins 2k+1 dollars, where k is the number of consecutive head tosses. What would be a fair
price to pay the casino for entering the game?

To answer this, one needs to consider what would be the expected payout at each stage: with probability % the player
wins 2 dollars; with probability JT the player wins 4 dollars; with probability % the player wins 8 dollars, and so on.
Assuming the game can continue as long as the coin toss results in heads and, in particular, that the casino has unlimited
resources, the expected value is thus

1 1 1 1
E=-.294 .44 =. .1
S 2t At g 8 o 16+
=141414+14--
= 0.

Lottery: Set of mutually exclusive numeric outcomes with a probability for each outcome.
(probabilities sum to 1.0)

St. Petersburg Lottery: (probability, outcome) pairs (1/21, 27)
(vNM) Utility function (to be applied to outcomes) such as:
Logarithm to some base
Square root
Example: Using /n as utility function for each lottery
Lottery 1: (0.5, $100), (0.5, $1) 0.5+ mn(100)+ 0.5 /n(1)=0.54.6=2.3
Lottery 2: (1.0, $50) 1.0 * In(50)=3.9
How to determine some utility function for an agent?

Presumably, an agent’s preference over lotteries is consistent with four axioms:

https://en.wikipedia.org/wiki/Von_Neumann—Morgenstern utility theorem#The_ axioms
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allowing a construction to be applied:

https://en.wikipedia.org/wiki/Von_ Neumann—-Morgenstern utility theorem#The theorem

Where this leads:

https://en.wikipedia.org/wiki/Risk_aversion#Measures_of_risk aversion_under_expected utility theory
BAYESIAN GAMES AND BAYES-NASH EQUILIBRIUM

KP p. 126 introduces Bayesian games using extensive-form notions, but switches to strategic-form (like
N p. 20 and p. 233)

First-Price Auction (KP p. 233, N 9.6.2, R 2)
Single item
Two bidders with private values (a < b) from the same uniform distribution (0, 1]
What happens in ascending auction? (Aside: https://www.youtube.com/watch?v=akwSGr-9Ldc )
What should happen in sealed-bid auction? (What about »n bidders?)
Vickrey Auction (KP p. 237, N 9.3.1, R 2)
How should two bidders bid in sealed-bid second-price auction?
What about » bidders?
EVOLUTIONARILY STABLE STRATEGIES - 6319 presentation possibility?

Hawk and Doves (KP p. 137)

player 11

- H D
5 | H (5 &2 ¢ (4,0
o,

CORRELATED EQUILIBRIA

If there s intelligent life on other planets, in a majority of them, they would
have discovered correlated equilibrium before Nash equilibrium.  — Roger Myerson

https://ranger.uta.edu/~weems/NOTES6319/PAPERSONE/papadimitriou.pdf - 6319 presentation pOSSlbllltyQ



Concepts (KP p. 143):

Player II
g - 9 - 4 j
D, Zyyo e i 2y %,
Player I D, P.4; 1|z, z;
pm g E Z/n/

FiGURE 7.4. This figure illustrates the difference between a Nash equilibrium
and a correlated equilibrium. In a Nash equilibrium, the probability that
player I plays i and player II plays j is the product of the two correspond-
ing probabilities (in this case p;q;), whereas a correlated equilibrium puts a
probability, say z;;, on each pair (i, j) of strategies.

Player II strategy conditioned on ¢

K”’R

Zil Zi2 .oe Zin .
Z;‘=1 Zij ;:121'] 2;‘:1 Zij ]
Zy;
Do %
Z..
2
Player I S
strategy =
. conditioned
? on j
A
—mj
D %

FIGURE 7.5. The left figure shows the distribution player I faces (the labels
on the columns) when the correlated equilibrium indicates that she should

play 7. Given this distribution over columns, [Definition 7.2.3| says that she

has no incentive to switch to a different row strategy. The right figure shows
the distribution player II faces when told to play j.

Battle of the Sexes (KP p. 142; N p. 7)
https://www.milb.com/frisco https://www.santafeopera.org

husband
opera baseball
opera | (4,1) (0,0)
baseball | (0,0) (1,4)

wife

14
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Traffic Light (N p. 14; R p. 177, correct values shown here)

1 Cross Stop
-100 0
Cross
-100 1 Stop Go
1 0 Stop | -1,-1 -1,0
Stop
0 0 Go 0,-1 -5,-5

Chicken (KP p. 79, 144; N p. 45)

player II player 11
. Swerve (S)  Drive (D) . Swerve (S) Drive (D)
5 | Swerve (S) (1, 1) (-1, 2) = | Swerve (S) (6, 6) (2, 7)
% | Drive (D) (2, -1) (=M, —M) | Drive (D) (7,2) (0, 0)
2 =
Stop Go
Consider the symmetric game (often called chicken) with payoffs
Stop 4.4 1,5
4 1
(0 Go | 51 | 00

OPTIMAL BASKETS OF GOODS VIA NETWORK FLOW (N 1.8.1)
Trivial Example:
3 buyers (“B”) { a/$300, b/$500, ¢/$100 } with indicated budgets
2 interchangeable divisible goods (“4”) { 0/10, 1/20 } with indicated amounts

Buyers have limited access to goods (o0 edges between 4 and B below)
Buyers prefer lower prices

Determine “market clearing” (AKA equilibrium) prices
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Binary search (between 0 and (300+500+100)/(10+20)=900/30=30) gives x* = $30 as market clearing
price (per unit) for both goods.

x* is the largest value at which (s, 4 U B U f) remains a min-cut in N. (N p. 25)

A B

(O -
o0
500
b (D)
o0
a will get 10 units of 0 b will get 16.667 units of 1 ¢ will get 3.333 units of 1

Second Example
5 buyers (“B”) { a/$2000, b/$1000, c/$500, d/$200, ¢/$100 } with indicated budgets

4 interchangeable divisible goods (“4”) { 0/10, 1/50, 2/200, 3/1000 } with indicated amounts

Buyers have limited access to goods (oo edges between 4 and B below)
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Binary search (between 0 and (2000+1000+500+200+100)/(10+50+200+1000)=3800/1260=3.0159)
gives x* = $0.30 (largest x value that saturates all edges leaving s)

W=1{0,1,2,a,b,c} S*¥=A4-W={3} TE*={d e}
(vertices in residual network
with path to ¢)
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Binary search (between 0.3 and (2000+1000+500)/(10+50+200)=3500/260=13.462) gives x* = §2.50
(largest x value that saturates all edges leaving s)

X 1 O /
o0
50 o0
c 500 7‘@
x¢200 o0
W=1{0,1,a,b} S*¥=A4-W={2} T(E*={c}
(vertices in residual network Remove S§* Remove I'(S*)

with path to ¢)
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Binary search (between 2.5 and (2000+1000)/(10+50)=3000/60=50) gives x* = $20 (largest x value that

saturates all edges leaving s)

o0
\
x10 /
ogl
*50
W={0,a} S*¥=A4-W={1} TIT(E*={b}
Remove S§* Remove I'(S*)

(vertices in residual network
with path to ¢)
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Binary search (between 20 and 2000/10=200) gives x * = $200 (largest x value that saturates all edges

leaving s)
o A2
2000
x*10
W= S*¥=A4-W={0} TI(S*={a}
Remove §* Remove I'(S*)
A Price B Units
0 $200 a 10 of 0
1 $20 b 50 of 1
2 $2.5 c 200 of 2
3 $0.3 d 666.67 of 3

e 333.33 of 3



1.E. LINEAR PROGRAMMING

Protein Problem (KP p. 334) - protein.kp334.mod

# Karlin/Peres, p. 334

# glpsol --model protein.kp334.mod

var steak; # x1

var peanutButter; # x2

s.t. cost: 4*steak + peanutButter <= 6;
s.t. fat: steak + 2*peanutButter <= 5;
maximize protein: 2*steak + peanutButter;
solve;

printf "steak %10g\n", steak;

printf "peanut butter %10g\n", peanutButter;
printf "cost %10g\n", cost;

printf "fat %10g\n", fat;

printf "protein %10g\n", protein;

end;
Simplex Method / Slack Variables / Duality / Farkas’s Lemma

Matousek and Gartner is recommended for examples, algorithms, and theory
Two-Person Zero-Sum

2persOsum.max.mod 2persOsum.min.mod

2persOsum.mod

# Computes both players distributions for 2-person, 0-sum Nash equilibrium
# p. 286 of G. B. Dantzig, Linear Programming and Extensions

# Combines 2persOsum.max.mod and 2persOsum.min.mod to eliminate the need for
# a min/maximize objective.

# glpsol --model 2persOsum.mod --data rockSP.kpl39.dat

param m, integer, > 0;

param n, integer, > 0;

set I := l..m; # rows

set J := l..n; # columns

param af{i in I, j in J}; # input matrix, a[i,j] is payoff for i, -a[i,j] is payoff to j
var x{i in I}, >= 0;

var y{i in J}, >= 0;

var V;

s.t. xsum{i in J}: sum{j in I} a[j,i]*x[]] >= V;

s.t. xprob: sum{i in I} x[i] = 1;



s.t. ysum{i in I}: sum{j in J} a[i,jl*y[j] <= V;
s.t. yprob: sum{i in J} y[i] = 1;
solve;

printf "\n";

printf "V is %10g\n",V;

printf "X distribution is:\n";
printf{i in I} " (%d %10g)\n",i,x[i];
printf "\n";

printf "Y distribution is:\n";
printf{i in J} " (%d %10g)\n",i,y[i];

end;

# rock paper scissors V is 0
X distribution is:

param m := 3; (1 0.333333)

(2 0.333333)

param n := 3; (3 0.333333)
param a : 1 2 3 := Y distribution is:

0 -1 1 (1 0.333333)

2 1 0 -1 (2 0.333333)

3 -1 1 0 ; (3 0.333333)

Model has been successfully processed
end;

Single Iteration of Optimal Basket of Goods via Network Flow

optBasket.mod optBasket.2nd.1l.dat

# Solves one iteration of optimal basket of goods from Nisan, Chapter 1, p. 23 - 26.
# See Figure 1.4 on p. 24.

# Loosely based on glpk-5.0/examples/maxflow.mod

# glpsol --model optBasket.mod --data optBasket.trivial.dat

# using --exact fixes issues with "flowToSink[j] < money[j]" later
param numGoods, integer, > 0;

param numBuyers, integer > 0;

set good := 0..numGoods-1; # Left column A

set buyer := 0..numBuyers-1; # Right column B

param amount{i in good}, >= 0;

param money{i in buyer}, >= 0;

set accessible, within good cross buyer;

var price, >= 0;

var flowFromSource{i in good}, >= 0;

var flowGoodToBuyer{(i,j) in accessible}, >= 0;

var flowToSink{i in buyer}, >= 0;

s.t. checkFlowFrom{i in good}: flowFromSource[i] = price*amount[i];
s.t. checkFlowTo{i in buyer}: flowToSink[i] <= money[i];

s.t. priceCheck: price <= (sum{i in buyer} money[i]) / (sum{j in good} amount[]j]);
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s.t. flowConservationGood{i in good}: flowFromSource[i] = (sum{j in buyer} if (i,j) in accessible
then flowGoodToBuyer[i,j]);

s.t. flowConservationBuyer{i in buyer}: flowToSink[i] = (sum{j in good} if (j,i) in accessible
then flowGoodToBuyer[j,i]);

maximize obj: price;

solve;

printf "price is %10g\n",price;
printf "Data for next iteration\n";

# If a good or buyer does not appear, then their respective amount or money should be zeroed.

printf "set accessible :=";
for {(i,j) in accessible: flowToSink[]j] < money[j]}
printf "\n%d %d",i,J;
# The line below reveals numeric issue that can be fixed with --exact
# printf "\n%d %d %$10g %10g",i,j,flowToSink[]j],money[]j];
printf " ;\n";

end;

# Second optimal basket of goods example in notes0Ol.gtconcepts.doc.
# Input to first iteration for optimalBasket.mod.

param numGoods := 4;

param numBuyers := 5;

set accessible :=

WWNNRE P OO
B WWNNRERFR O

’

param amount :=
0 10
1 50
2 200
3 1000 ;

param money :=
0 2000

1 1000

2 500

3 200

4 100 ;

end;

OPTIMAL SOLUTION FOUND

Time used: 0.0 secs
Memory used: 0.1 Mb (129206 bytes)
price is 0.3

Data for next iteration
set accessible :=
00

N~ B~ O
NN =

i
Model has been successfully processed



