
CSE 5319 Notes 1:  Game Theory Concepts 
 

(Last updated 1/20/24 1:11 PM) 
 
Karlin & Peres (KP) 1/2/3/4/5/7 (6 is worth skimming) 
 
Nisan (N) 1/2 
 
1.A.  SELFISH BEHAVIOR - CLASSIC GAMES AND STRATEGIC SITUATIONS 
 
Subtraction Game (Pile of chips, remove at least one and no more than four.  Last move wins.) 
 
 N = moves where next/first player wins P = moves where previous/second player wins 
 
 x chips is in P Û x is divisible by 5 
 
Impartial vs. Partisan Game;  Progressively Bounded 
 
Chomp (All starting positions are in N . . . “backward induction” on small cases leads to strategy-
stealing) 
 
Nim and Bouton's Exclusive-Or Solution (KP p. 17, Theorem 1.1.12) 
 
 Multiple piles 
 
 Remove any number of chips from one of the piles 
 
 Winner picks up the last chip(s) 
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Hex - partisan, first player (standard board) has a win.  Draw not possible (K p. 23) 
 

  (KP p. 2, Blue to move) 
 
Shannon Switching Game (on a graph) - two players (short/reinforce, cut) compete to obtain a path 
between designated vertices or to block it.  (First player has a win) 
 
Tic-Tac-Toe 
 
 Optimal play leads to a draw 
 
 Isomorphism to Pick15 ( https://en.wikipedia.org/wiki/Number_Scrabble ) 
 
 3D Tic-Tac-Toe and https://en.wikipedia.org/wiki/Zermelo%27s_theorem_(game_theory)  
 ( https://ranger.uta.edu/~weems/NOTES6319/PAPERSONE/patashnik.pdf ) 
 
  Optimal play leads to first player winning 
 
Recursive Majority 
 
 Complete ternary tree 
 
 Players alternate marking (+/-) of the leaves 
 
 Mark parent based on majority marking of its children 
 
 Mark of parent indicates the winner 
 
 Like 3D Tic-Tac-Toe, contradiction for second-player to have forced win (p. 203 of Patashnik) 
 
 + player has a forced win (Theorem 1.2.16) 
 
Aside:  https://en.wikipedia.org/wiki/Sprouts_(game) 
 
Prisoner's Dilemma 
 
 KP p. 75     KP p. 129 
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Stag Hunt 
 
 KP p.75 

  
 
War and Peace 
 
 KP p.75 

  
 
Driver and Parking Inspector 
 
 KP p. 76 

  
 
Cheetahs and Antelopes 
 
 KP p. 78 

  
 
Chicken 
 
 KP p. 79 
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1.B.  SELFISH BEHAVIOR - TWO-PERSON/ZERO-SUM 
 
Matrix value is for the row player . . . Negate for the column player 
 
Pick a Hand - Hider puts coin(s) in their two hands (left, right):  (1, 0) or (0, 2). 
 
 KP p. 35 

  
 
Rock/Scissors/Paper (. . . Lizard/Spock) 
 
 KP p. 139 

  
 
 Santa Claus 🎅 and Easter Bunny 🐰? 
 
Graphs 
 
 Series-sum, Parallel-sum, Troll and Traveler - SKIP 
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 Hide and Seek 
 
  KP p. 59 

   
 

   
 

    
 
 Maximum (Bipartite) Matching 
 
  Maximum subset of edges such that no vertex is incident to two of the chosen edges 
 
 Minimum Covers  
 
  ( {1st St, 2nd St, 3rd St} {2nd Ave, 4th Ave, 5th Ave} {2nd St, 2nd Ave, 4th Ave} ) 
 
  0/1 matrix - Minimum set of rows and columns such that every 1 is in one of the chosen 
  rows or columns 
 
  Graph - Minimum set of vertices such that every edge is incident to one of the chosen 
  vertices 

1st St

2nd St

3rd St

1st Ave

2nd Ave

3rd Ave

4th Ave

5th Ave

1st St

2nd St

3rd St

1st Ave

2nd Ave

3rd Ave

4th Ave

5th Ave
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 Hall's Theorem - Suppose the number of right column vertices is at least the number of left 
 column vertices.  If the neighborhood (e.g. corresponding right column vertices, G) for each 
 subset of the left column contains as many vertices as in the subset, then there is a matching that 
 includes all left column vertices.  (KP p. 61, Theorem 3.2.4) 
 
 Konig's Lemma:  Size of maximum matching = size of minimum line-cover.  (KP p. 62, 
 Lemma 3.2.5) 
 
 hideAndSeek.1.kp59.gbt - Finds one strategy using COROLLARY 3.2.6 
 
 hideAndSeek.2.kp59.gbt - Finds all strategies (same payoffs) using fundamental Nash 
 equilibrium search 
 
Linear Programming - KP Appendix A (Sedgewick’s Java code for 2-person, 0-sum on webpage) 
 
EQUILIBRIUM CONCEPTS FOR ZERO-SUM GAMES 
 
Pure Strategies 
 
 Saddle Point - A row i and column j such that the smallest entry in the row is the same as the 
 largest entry in the column.  (The value is guaranteed to appear as entry aij). (Exercise 2.6) 
 
Dominance - Recognizing and removing rows and columns that are not useful options 
 
 Simple - another row/column is always better 
 
 KP p. 41 - a convex combination dominates (2.9) 
 
Mixed Strategy - Probability vector for playing available actions (KP p. 36-38) 
 
 Safety Strategy and Value for Player I (maximize expected gain) 
 
 Safety Strategy and Value for Player II (minimize expected loss) 
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 Safety values for the two players are equal 
 
 Safety strategies that yield the safety value are called optimal strategies 
 
 Equalization Principle (KP p. 39) 
 
  Easily applied when each of the two players has two actions 
 
  Proposition 2.5.3 (KP p. 43) suggests finding optimal strategies by using linear   
  programming (e.g. simplex method) to determine mixed strategies with identical safety 
  values (V1=V2) 
 
Removing Restriction to Zero-Sum 
 

  
 
 Nash's Theorem (KP p. 84) 
 

   
 
 Symmetric Games (KP p. 85) 
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1.C.  POTENTIAL GAMES 
 
Congestion Game 

 Cost for a driver i:   
 

 Potential Function (KP p. 86, (4.5)):   
 
 (Cr(•) is monotone increasing, but is not necessarily linear) 
 
 Minimizing a potential function gives a local optimum/pure Nash equilibrium (PNE). 
 

  
 

  
 
 (Easily translated to minimum-cost, maximum-flow problem.  Solvable by linear programming.) 
 
Nash Equilibrium in Pure Strategies (KP p. 87) 
 
  
 
Repeated Play Dynamics 
 
 “Last player” concept in potential function is straightforward motivation. 
 
 Best-response dynamics: 
 
  In turn, try each player: 
 
   Remove player’s current path from G to give G¢ 
 
   Find shortest path in G¢ (e.g. Dijkstra with Cr(•)  for edge costs) 
 
   If path cost is an improvement, replace G with G¢ 
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Consensus 
 

    
 
 (comment regarding “simultaneously” and converging to cycle) 
 
Graph Coloring (KP p.89) - seek to maximize potential function 
 

  
 
  
 

  
 
INFINITE STRATEGY SPACES 
 
Tragedy of the Commons - network channel version (KP p. 90; N p. 6) 
 
 Note that the player’s utility at equilibrium (1/(k + 1)2) is not maximized (1/4k). 
 
Nightclub Pricing (KP p. 91) 
 
Aside:  When to fire in a duel . . . ( https://en.wikipedia.org/wiki/Hamilton_(musical) ) 
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FIXED-POINTS, SPERNER’S LEMMA, AND EXISTENCE OF NASH EQUILIBRIA (skim) 
 

 
 
Intractability (N p.33) 
 

  
 
Succinct Representation (N p. 39) 
 
 Extensive (tree) vs. Strategic (matrix) Form 
 
 Complexity Theorists work with “natural” or “compact” representations 
 
Approximate Equilibria (N p. 45) 
 
 (R p. 261 has summary of tractability results) 
 
 (R p. 240) Î-Approximate Coarse Correlated Equilibrium 
 
 (R p. 248) Î-Approximate Correlated Equilibrium 
 
 (R p. 296) Î-Approximate Mixed Nash Equilibrium 
 
 (R p. 197, 219) Î-Pure Nash Equilibrium 
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Example Bimatrix Game: 
 
 (5, 0)  (-25, 0)  (-25, 1) 
 
 (-25, 0)  (1, 0)  (-25, -1) 
 
 Nash Equilibria Distributions (payoff) ( optimal.cce.p3.gbt ) 
 
  Row   Column 
 
 1, 0 (-25)  0, 0, 1 (1) 
 
 1/2, 1/2 (-155/14) 13/28, 15/28, 0 (0) 
 
 1/2, 1/2 (-25)  0, 0, 1 (0) 
 
 0, 1 (-155/14)  13/28, 15/28, 0 (0) 
 
 0, 1 (1)   0, 1, 0 (0) 
 
 Correlated Equilibria Distribution (payoffs: 1, 0) ( corrEq.mod optimal.cce.p3.dat ) 
 
 0  0  0 
 
 0  1  0 
 
 Coarse Correlated Equilibria Distribution (payoffs: 3, 0) ( coarseCorrEq.mod ) 
 
 1/2  0  0 
 
 0  1/2  0 
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1.D.  UTILITY FUNCTIONS, RISK AVERSION, ST. PETERSBURG PARADOX 
 
The term utility is often used as a substitute for concepts like “money”, “value”, “revenue”, “cost”, 
“payoff”, or “profit”. 
 
A utility function is a mapping from choices to an amount.  (KP p. 81) 
 
A narrower concept (vNM utility function) was developed in 
https://en.wikipedia.org/wiki/Theory_of_Games_and_Economic_Behavior  to address preference and risk. 
 
https://en.wikipedia.org/wiki/St._Petersburg_paradox 

 

 
 
Lottery:  Set of mutually exclusive numeric outcomes with a probability for each outcome.  
(probabilities sum to 1.0) 
 
St. Petersburg Lottery:  (probability, outcome) pairs (1/2i, 2i) 
 
(vNM) Utility function (to be applied to outcomes) such as: 
 
 Logarithm to some base 
 
 Square root 
 
Example:  Using ln as utility function for each lottery 
 
 Lottery 1:  (0.5, $100), (0.5, $1) 0.5 • ln(100) + 0.5 • ln(1) = 0.5 • 4.6 = 2.3 
 
 Lottery 2:  (1.0, $50)   1.0 • ln(50) = 3.9 
 
How to determine some utility function for an agent? 
 
Presumably, an agent’s preference over lotteries is consistent with four axioms: 
 
 https://en.wikipedia.org/wiki/Von_Neumann–Morgenstern_utility_theorem#The_axioms 
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allowing a construction to be applied: 
 
 https://en.wikipedia.org/wiki/Von_Neumann–Morgenstern_utility_theorem#The_theorem 

 
Where this leads: 
 
https://en.wikipedia.org/wiki/Risk_aversion#Measures_of_risk_aversion_under_expected_utility_theory 

 
BAYESIAN GAMES AND BAYES-NASH EQUILIBRIUM 
 
KP p. 126 introduces Bayesian games using extensive-form notions, but switches to strategic-form (like 
N p. 20 and p. 233) 
 
First-Price Auction (KP p. 233, N 9.6.2, R 2) 
 
 Single item 
 
 Two bidders with private values (a < b) from the same uniform distribution (0, 1] 
 
 What happens in ascending auction?  (Aside:  https://www.youtube.com/watch?v=akwSGr-9Ldc ) 
 
 What should happen in sealed-bid auction?  (What about n bidders?) 
 
Vickrey Auction (KP p. 237, N 9.3.1, R 2) 
 
 How should two bidders bid in sealed-bid second-price auction? 
 
 What about n bidders? 
 
EVOLUTIONARILY STABLE STRATEGIES - 6319 presentation possibility? 
 
Hawk and Doves (KP p. 137) 
 

  
 
CORRELATED EQUILIBRIA 
 

 
 
https://ranger.uta.edu/~weems/NOTES6319/PAPERSONE/papadimitriou.pdf - 6319 presentation possibility? 
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Concepts (KP p. 143): 
 

  
 

  
 
Battle of the Sexes (KP p. 142; N p. 7) 
 
 https://www.milb.com/frisco  https://www.santafeopera.org 
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Traffic Light (N p. 14; R p. 177, correct values shown here) 
 

    
 
Chicken (KP p. 79, 144; N p. 45) 
 

    
 

   
 
OPTIMAL BASKETS OF GOODS VIA NETWORK FLOW (N 1.8.1) 
 
Trivial Example: 
 
 3 buyers (“B”) { a/$300, b/$500, c/$100 } with indicated budgets 
 
 2 interchangeable divisible goods  (“A”) { 0/10, 1/20 } with indicated amounts 
 
 Buyers have limited access to goods (¥ edges between A and B below) 
 
 Buyers prefer lower prices 
 
 Determine “market clearing” (AKA equilibrium) prices 
 

Stop
Stop
Go

Go

-1,-1
0,-1

-1,0
-5,-5

Stop
Stop
Go

Go

4,4
5,1

1,5
0,0
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Binary search (between 0 and (300+500+100)/(10+20)=900/30=30) gives x* = $30 as market clearing 
price (per unit) for both goods. 

x* is the largest value at which (s, A È B È t) remains a min-cut in N.  (N p. 25) 
 

  
 
 a will get 10 units of 0  b will get 16.667 units of 1 c will get 3.333 units of 1 
 
Second Example 
 
 5 buyers (“B”) { a/$2000, b/$1000, c/$500, d/$200, e/$100 } with indicated budgets 
 
 4 interchangeable divisible goods  (“A”) { 0/10, 1/50, 2/200, 3/1000 } with indicated amounts 
 
 Buyers have limited access to goods (¥ edges between A and B below) 

s t

0

1

a

b

c

x•10

x•20

300

500

100

A B
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Binary search (between 0 and (2000+1000+500+200+100)/(10+50+200+1000)=3800/1260=3.0159) 
gives x* = $0.30 (largest x value that saturates all edges leaving s) 
 

  
 
 W = { 0, 1, 2, a, b, c }  S* = A - W = { 3 } G(S*) = { d, e } 
 (vertices in residual network 
 with path to t) 
 

s t

0

1

a

b

c 500

100
d

e

2

3

200

1000

2000

x•1000

x•200

x•50

x•10
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Binary search (between 0.3 and (2000+1000+500)/(10+50+200)=3500/260=13.462) gives x* = $2.50 
(largest x value that saturates all edges leaving s) 
 

  
 
 W = { 0, 1, a, b }  S* = A - W = { 2 } G(S*) = { c } 
 (vertices in residual network        Remove S*   Remove G(S*) 
 with path to t) 
 

s t

0

1

a

b

c 500

2

1000

2000

x•200

x•50

x•10
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Binary search (between 2.5 and (2000+1000)/(10+50)=3000/60=50) gives x* = $20 (largest x value that 
saturates all edges leaving s) 
 

  
 
 W = { 0, a }   S* = A - W = { 1 } G(S*) = { b } 
 (vertices in residual network         Remove S* Remove G(S*) 
 with path to t) 
 

s t

0

1

a

b

1000

2000

x•50

x•10
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Binary search (between 20 and 2000/10=200) gives x* = $200 (largest x value that saturates all edges 
leaving s) 
 

  
 
 W = Æ  S* = A - W = { 0 } G(S*) = { a } 
   Remove S*  Remove G(S*) 
 
 
 
A Price   B Units 
 
0 $200   a 10 of 0 
 
1 $20   b 50 of 1 
 
2 $2.5   c 200 of 2 
 
3 $0.3   d 666.67 of 3 
 
    e 333.33 of 3 
 

s t

0

a

2000

x•10
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1.E.  LINEAR PROGRAMMING 
 
Protein Problem (KP p. 334) - protein.kp334.mod 
 

# Karlin/Peres, p. 334 
 
# glpsol --model protein.kp334.mod 
 
var steak; # x1 
 
var peanutButter; # x2 
 
s.t. cost: 4*steak + peanutButter <= 6; 
 
s.t. fat: steak + 2*peanutButter <= 5; 
 
maximize protein: 2*steak + peanutButter; 
 
solve; 
 
printf "steak %10g\n", steak; 
 
printf "peanut butter %10g\n", peanutButter; 
 
printf "cost %10g\n", cost; 
 
printf "fat %10g\n", fat; 
 
printf "protein %10g\n", protein; 
 
end; 

 
Simplex Method / Slack Variables / Duality / Farkas’s Lemma 
 
 Matousek and Gartner is recommended for examples, algorithms, and theory 
 
Two-Person Zero-Sum 
 
 2pers0sum.max.mod 2pers0sum.min.mod  
 
 2pers0sum.mod 
 

# Computes both players distributions for 2-person, 0-sum Nash equilibrium 
# p. 286 of G. B. Dantzig, Linear Programming and Extensions 
 
# Combines 2pers0sum.max.mod and 2pers0sum.min.mod to eliminate the need for 
# a min/maximize objective. 
 
# glpsol --model 2pers0sum.mod --data rockSP.kp139.dat 
 
param m, integer, > 0; 
 
param n, integer, > 0; 
 
set I := 1..m; # rows 
 
set J := 1..n; # columns 
 
param a{i in I, j in J}; # input matrix, a[i,j] is payoff for i, -a[i,j] is payoff to j 
 
var x{i in I}, >= 0; 
 
var y{i in J}, >= 0; 
 
var V; 
 
s.t. xsum{i in J}: sum{j in I} a[j,i]*x[j] >= V; 
 
s.t. xprob: sum{i in I} x[i] = 1; 
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s.t. ysum{i in I}: sum{j in J} a[i,j]*y[j] <= V; 
 
s.t. yprob: sum{i in J} y[i] = 1; 
 
solve; 
 
printf "\n"; 
printf "V is %10g\n",V; 
printf "X distribution is:\n"; 
printf{i in I} " (%d %10g)\n",i,x[i]; 
printf "\n"; 
printf "Y distribution is:\n"; 
printf{i in J} " (%d %10g)\n",i,y[i]; 
 
end; 
 
 
# rock paper scissors 
 
param m := 3; 
 
param n := 3; 
 
param a : 1  2  3 := 
      1   0 -1  1 
      2   1  0 -1 
      3  -1  1  0 ; 
 
end; 

 
 
 
 
 
 
 
 
 
 
 
 
 
V is          0 
X distribution is: 
 (1   0.333333) 
 (2   0.333333) 
 (3   0.333333) 
 
Y distribution is: 
 (1   0.333333) 
 (2   0.333333) 
 (3   0.333333) 
Model has been successfully processed 
 

 

 
Single Iteration of Optimal Basket of Goods via Network Flow 
 
 optBasket.mod optBasket.2nd.1.dat 
 

# Solves one iteration of optimal basket of goods from Nisan, Chapter 1, p. 23 - 26. 
# See Figure 1.4 on p. 24. 
 
# Loosely based on glpk-5.0/examples/maxflow.mod 
 
# glpsol --model optBasket.mod --data optBasket.trivial.dat 
 
# using --exact fixes issues with "flowToSink[j] < money[j]" later 
 
param numGoods, integer, > 0; 
 
param numBuyers, integer > 0; 
 
set good := 0..numGoods-1; # Left column A 
 
set buyer := 0..numBuyers-1; # Right column B 
 
param amount{i in good}, >= 0; 
 
param money{i in buyer}, >= 0; 
 
set accessible, within good cross buyer; 
 
var price, >= 0; 
 
var flowFromSource{i in good}, >= 0; 
 
var flowGoodToBuyer{(i,j) in accessible}, >= 0; 
 
var flowToSink{i in buyer}, >= 0; 
 
s.t. checkFlowFrom{i in good}: flowFromSource[i] = price*amount[i]; 
 
s.t. checkFlowTo{i in buyer}: flowToSink[i] <= money[i]; 
 
s.t. priceCheck: price <= (sum{i in buyer} money[i]) / (sum{j in good} amount[j]); 
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s.t. flowConservationGood{i in good}: flowFromSource[i] = (sum{j in buyer} if (i,j) in accessible 
then flowGoodToBuyer[i,j]); 
 
s.t. flowConservationBuyer{i in buyer}: flowToSink[i] = (sum{j in good} if (j,i) in accessible 
then flowGoodToBuyer[j,i]); 
 
maximize obj: price; 
 
solve; 
 
printf "price is %10g\n",price; 
 
printf "Data for next iteration\n"; 
 
# If a good or buyer does not appear, then their respective amount or money should be zeroed. 
 
printf "set accessible :="; 
for {(i,j) in accessible: flowToSink[j] < money[j]} 
  printf "\n%d %d",i,j; 
# The line below reveals numeric issue that can be fixed with --exact 
#  printf "\n%d %d %10g %10g",i,j,flowToSink[j],money[j]; 
printf " ;\n"; 
 
end; 
 
 
# Second optimal basket of goods example in notes01.gtconcepts.doc. 
 
# Input to first iteration for optimalBasket.mod. 
 
param numGoods := 4; 
 
param numBuyers := 5; 
 
set accessible := 
  0 0 
  0 1 
  1 1 
  1 2 
  2 2 
  2 3 
  3 3 
  3 4 ; 
 
param amount := 
  0 10 
  1 50 
  2 200 
  3 1000 ; 
 
param money := 
  0 2000 
  1 1000 
  2 500 
  3 200 
  4 100 ; 
 
end; 
 
OPTIMAL SOLUTION FOUND 
Time used:   0.0 secs 
Memory used: 0.1 Mb (129206 bytes) 
price is        0.3 
Data for next iteration 
set accessible := 
0 0 
0 1 
1 1 
1 2 
2 2 ; 
Model has been successfully processed 


