
CSE 5319 Notes 1: Game Theory Concepts

(Last updated 1/20/24 1:11 PM)

Karlin & Peres (KP) 1/2/3/4/5/7 (6 is worth skimming)

Nisan (N) 1/2

1.A. SELFISH BEHAVIOR - CLASSIC GAMES AND STRATEGIC SITUATIONS

Subtraction Game (Pile of chips, remove at least one and no more than four. Last move wins.)

 N = moves where next/first player wins P = moves where previous/second player wins

 x chips is in P Û x is divisible by 5

Impartial vs. Partisan Game; Progressively Bounded

Chomp (All starting positions are in N . . . “backward induction” on small cases leads to strategy-
stealing)

Nim and Bouton's Exclusive-Or Solution (KP p. 17, Theorem 1.1.12)

 Multiple piles

 Remove any number of chips from one of the piles

 Winner picks up the last chip(s)

 2
Hex - partisan, first player (standard board) has a win. Draw not possible (K p. 23)

 (KP p. 2, Blue to move)

Shannon Switching Game (on a graph) - two players (short/reinforce, cut) compete to obtain a path
between designated vertices or to block it. (First player has a win)

Tic-Tac-Toe

 Optimal play leads to a draw

 Isomorphism to Pick15 (https://en.wikipedia.org/wiki/Number_Scrabble)

 3D Tic-Tac-Toe and https://en.wikipedia.org/wiki/Zermelo%27s_theorem_(game_theory)
 (https://ranger.uta.edu/~weems/NOTES6319/PAPERSONE/patashnik.pdf)

 Optimal play leads to first player winning

Recursive Majority

 Complete ternary tree

 Players alternate marking (+/-) of the leaves

 Mark parent based on majority marking of its children

 Mark of parent indicates the winner

 Like 3D Tic-Tac-Toe, contradiction for second-player to have forced win (p. 203 of Patashnik)

 + player has a forced win (Theorem 1.2.16)

Aside: https://en.wikipedia.org/wiki/Sprouts_(game)

Prisoner's Dilemma

 KP p. 75 KP p. 129

 3
Stag Hunt

 KP p.75

War and Peace

 KP p.75

Driver and Parking Inspector

 KP p. 76

Cheetahs and Antelopes

 KP p. 78

Chicken

 KP p. 79

 4

1.B. SELFISH BEHAVIOR - TWO-PERSON/ZERO-SUM

Matrix value is for the row player . . . Negate for the column player

Pick a Hand - Hider puts coin(s) in their two hands (left, right): (1, 0) or (0, 2).

 KP p. 35

Rock/Scissors/Paper (. . . Lizard/Spock)

 KP p. 139

 Santa Claus 🎅 and Easter Bunny 🐰?

Graphs

 Series-sum, Parallel-sum, Troll and Traveler - SKIP

 5
 Hide and Seek

 KP p. 59

 Maximum (Bipartite) Matching

 Maximum subset of edges such that no vertex is incident to two of the chosen edges

 Minimum Covers

 ({1st St, 2nd St, 3rd St} {2nd Ave, 4th Ave, 5th Ave} {2nd St, 2nd Ave, 4th Ave})

 0/1 matrix - Minimum set of rows and columns such that every 1 is in one of the chosen
 rows or columns

 Graph - Minimum set of vertices such that every edge is incident to one of the chosen
 vertices

1st St

2nd St

3rd St

1st Ave

2nd Ave

3rd Ave

4th Ave

5th Ave

1st St

2nd St

3rd St

1st Ave

2nd Ave

3rd Ave

4th Ave

5th Ave

 6
 Hall's Theorem - Suppose the number of right column vertices is at least the number of left
 column vertices. If the neighborhood (e.g. corresponding right column vertices, G) for each
 subset of the left column contains as many vertices as in the subset, then there is a matching that
 includes all left column vertices. (KP p. 61, Theorem 3.2.4)

 Konig's Lemma: Size of maximum matching = size of minimum line-cover. (KP p. 62,
 Lemma 3.2.5)

 hideAndSeek.1.kp59.gbt - Finds one strategy using COROLLARY 3.2.6

 hideAndSeek.2.kp59.gbt - Finds all strategies (same payoffs) using fundamental Nash
 equilibrium search

Linear Programming - KP Appendix A (Sedgewick’s Java code for 2-person, 0-sum on webpage)

EQUILIBRIUM CONCEPTS FOR ZERO-SUM GAMES

Pure Strategies

 Saddle Point - A row i and column j such that the smallest entry in the row is the same as the
 largest entry in the column. (The value is guaranteed to appear as entry aij). (Exercise 2.6)

Dominance - Recognizing and removing rows and columns that are not useful options

 Simple - another row/column is always better

 KP p. 41 - a convex combination dominates (2.9)

Mixed Strategy - Probability vector for playing available actions (KP p. 36-38)

 Safety Strategy and Value for Player I (maximize expected gain)

 Safety Strategy and Value for Player II (minimize expected loss)

 7

 Safety values for the two players are equal

 Safety strategies that yield the safety value are called optimal strategies

 Equalization Principle (KP p. 39)

 Easily applied when each of the two players has two actions

 Proposition 2.5.3 (KP p. 43) suggests finding optimal strategies by using linear
 programming (e.g. simplex method) to determine mixed strategies with identical safety
 values (V1=V2)

Removing Restriction to Zero-Sum

 Nash's Theorem (KP p. 84)

 Symmetric Games (KP p. 85)

 8
1.C. POTENTIAL GAMES

Congestion Game

 Cost for a driver i:

 Potential Function (KP p. 86, (4.5)):

 (Cr(•) is monotone increasing, but is not necessarily linear)

 Minimizing a potential function gives a local optimum/pure Nash equilibrium (PNE).

 (Easily translated to minimum-cost, maximum-flow problem. Solvable by linear programming.)

Nash Equilibrium in Pure Strategies (KP p. 87)

Repeated Play Dynamics

 “Last player” concept in potential function is straightforward motivation.

 Best-response dynamics:

 In turn, try each player:

 Remove player’s current path from G to give G¢

 Find shortest path in G¢ (e.g. Dijkstra with Cr(•) for edge costs)

 If path cost is an improvement, replace G with G¢

 9
Consensus

 (comment regarding “simultaneously” and converging to cycle)

Graph Coloring (KP p.89) - seek to maximize potential function

INFINITE STRATEGY SPACES

Tragedy of the Commons - network channel version (KP p. 90; N p. 6)

 Note that the player’s utility at equilibrium (1/(k + 1)2) is not maximized (1/4k).

Nightclub Pricing (KP p. 91)

Aside: When to fire in a duel . . . (https://en.wikipedia.org/wiki/Hamilton_(musical))

 10
FIXED-POINTS, SPERNER’S LEMMA, AND EXISTENCE OF NASH EQUILIBRIA (skim)

Intractability (N p.33)

Succinct Representation (N p. 39)

 Extensive (tree) vs. Strategic (matrix) Form

 Complexity Theorists work with “natural” or “compact” representations

Approximate Equilibria (N p. 45)

 (R p. 261 has summary of tractability results)

 (R p. 240) Î-Approximate Coarse Correlated Equilibrium

 (R p. 248) Î-Approximate Correlated Equilibrium

 (R p. 296) Î-Approximate Mixed Nash Equilibrium

 (R p. 197, 219) Î-Pure Nash Equilibrium

 11
Example Bimatrix Game:

 (5, 0) (-25, 0) (-25, 1)

 (-25, 0) (1, 0) (-25, -1)

 Nash Equilibria Distributions (payoff) (optimal.cce.p3.gbt)

 Row Column

 1, 0 (-25) 0, 0, 1 (1)

 1/2, 1/2 (-155/14) 13/28, 15/28, 0 (0)

 1/2, 1/2 (-25) 0, 0, 1 (0)

 0, 1 (-155/14) 13/28, 15/28, 0 (0)

 0, 1 (1) 0, 1, 0 (0)

 Correlated Equilibria Distribution (payoffs: 1, 0) (corrEq.mod optimal.cce.p3.dat)

 0 0 0

 0 1 0

 Coarse Correlated Equilibria Distribution (payoffs: 3, 0) (coarseCorrEq.mod)

 1/2 0 0

 0 1/2 0

 12
1.D. UTILITY FUNCTIONS, RISK AVERSION, ST. PETERSBURG PARADOX

The term utility is often used as a substitute for concepts like “money”, “value”, “revenue”, “cost”,
“payoff”, or “profit”.

A utility function is a mapping from choices to an amount. (KP p. 81)

A narrower concept (vNM utility function) was developed in
https://en.wikipedia.org/wiki/Theory_of_Games_and_Economic_Behavior to address preference and risk.

https://en.wikipedia.org/wiki/St._Petersburg_paradox

Lottery: Set of mutually exclusive numeric outcomes with a probability for each outcome.
(probabilities sum to 1.0)

St. Petersburg Lottery: (probability, outcome) pairs (1/2i, 2i)

(vNM) Utility function (to be applied to outcomes) such as:

 Logarithm to some base

 Square root

Example: Using ln as utility function for each lottery

 Lottery 1: (0.5, $100), (0.5, $1) 0.5 • ln(100) + 0.5 • ln(1) = 0.5 • 4.6 = 2.3

 Lottery 2: (1.0, $50) 1.0 • ln(50) = 3.9

How to determine some utility function for an agent?

Presumably, an agent’s preference over lotteries is consistent with four axioms:

 https://en.wikipedia.org/wiki/Von_Neumann–Morgenstern_utility_theorem#The_axioms

 13
allowing a construction to be applied:

 https://en.wikipedia.org/wiki/Von_Neumann–Morgenstern_utility_theorem#The_theorem

Where this leads:

https://en.wikipedia.org/wiki/Risk_aversion#Measures_of_risk_aversion_under_expected_utility_theory

BAYESIAN GAMES AND BAYES-NASH EQUILIBRIUM

KP p. 126 introduces Bayesian games using extensive-form notions, but switches to strategic-form (like
N p. 20 and p. 233)

First-Price Auction (KP p. 233, N 9.6.2, R 2)

 Single item

 Two bidders with private values (a < b) from the same uniform distribution (0, 1]

 What happens in ascending auction? (Aside: https://www.youtube.com/watch?v=akwSGr-9Ldc)

 What should happen in sealed-bid auction? (What about n bidders?)

Vickrey Auction (KP p. 237, N 9.3.1, R 2)

 How should two bidders bid in sealed-bid second-price auction?

 What about n bidders?

EVOLUTIONARILY STABLE STRATEGIES - 6319 presentation possibility?

Hawk and Doves (KP p. 137)

CORRELATED EQUILIBRIA

https://ranger.uta.edu/~weems/NOTES6319/PAPERSONE/papadimitriou.pdf - 6319 presentation possibility?

 14
Concepts (KP p. 143):

Battle of the Sexes (KP p. 142; N p. 7)

 https://www.milb.com/frisco https://www.santafeopera.org

 15
Traffic Light (N p. 14; R p. 177, correct values shown here)

Chicken (KP p. 79, 144; N p. 45)

OPTIMAL BASKETS OF GOODS VIA NETWORK FLOW (N 1.8.1)

Trivial Example:

 3 buyers (“B”) { a/$300, b/$500, c/$100 } with indicated budgets

 2 interchangeable divisible goods (“A”) { 0/10, 1/20 } with indicated amounts

 Buyers have limited access to goods (¥ edges between A and B below)

 Buyers prefer lower prices

 Determine “market clearing” (AKA equilibrium) prices

Stop
Stop
Go

Go

-1,-1
0,-1

-1,0
-5,-5

Stop
Stop
Go

Go

4,4
5,1

1,5
0,0

 16
Binary search (between 0 and (300+500+100)/(10+20)=900/30=30) gives x* = $30 as market clearing
price (per unit) for both goods.

x* is the largest value at which (s, A È B È t) remains a min-cut in N. (N p. 25)

 a will get 10 units of 0 b will get 16.667 units of 1 c will get 3.333 units of 1

Second Example

 5 buyers (“B”) { a/$2000, b/$1000, c/$500, d/$200, e/$100 } with indicated budgets

 4 interchangeable divisible goods (“A”) { 0/10, 1/50, 2/200, 3/1000 } with indicated amounts

 Buyers have limited access to goods (¥ edges between A and B below)

s t

0

1

a

b

c

x•10

x•20

300

500

100

A B

 17
Binary search (between 0 and (2000+1000+500+200+100)/(10+50+200+1000)=3800/1260=3.0159)
gives x* = $0.30 (largest x value that saturates all edges leaving s)

 W = { 0, 1, 2, a, b, c } S* = A - W = { 3 } G(S*) = { d, e }
 (vertices in residual network
 with path to t)

s t

0

1

a

b

c 500

100
d

e

2

3

200

1000

2000

x•1000

x•200

x•50

x•10

 18
Binary search (between 0.3 and (2000+1000+500)/(10+50+200)=3500/260=13.462) gives x* = $2.50
(largest x value that saturates all edges leaving s)

 W = { 0, 1, a, b } S* = A - W = { 2 } G(S*) = { c }
 (vertices in residual network Remove S* Remove G(S*)
 with path to t)

s t

0

1

a

b

c 500

2

1000

2000

x•200

x•50

x•10

 19
Binary search (between 2.5 and (2000+1000)/(10+50)=3000/60=50) gives x* = $20 (largest x value that
saturates all edges leaving s)

 W = { 0, a } S* = A - W = { 1 } G(S*) = { b }
 (vertices in residual network Remove S* Remove G(S*)
 with path to t)

s t

0

1

a

b

1000

2000

x•50

x•10

 20
Binary search (between 20 and 2000/10=200) gives x* = $200 (largest x value that saturates all edges
leaving s)

 W = Æ S* = A - W = { 0 } G(S*) = { a }
 Remove S* Remove G(S*)

A Price B Units

0 $200 a 10 of 0

1 $20 b 50 of 1

2 $2.5 c 200 of 2

3 $0.3 d 666.67 of 3

 e 333.33 of 3

s t

0

a

2000

x•10

 21
1.E. LINEAR PROGRAMMING

Protein Problem (KP p. 334) - protein.kp334.mod

Karlin/Peres, p. 334

glpsol --model protein.kp334.mod

var steak; # x1

var peanutButter; # x2

s.t. cost: 4*steak + peanutButter <= 6;

s.t. fat: steak + 2*peanutButter <= 5;

maximize protein: 2*steak + peanutButter;

solve;

printf "steak %10g\n", steak;

printf "peanut butter %10g\n", peanutButter;

printf "cost %10g\n", cost;

printf "fat %10g\n", fat;

printf "protein %10g\n", protein;

end;

Simplex Method / Slack Variables / Duality / Farkas’s Lemma

 Matousek and Gartner is recommended for examples, algorithms, and theory

Two-Person Zero-Sum

 2pers0sum.max.mod 2pers0sum.min.mod

 2pers0sum.mod

Computes both players distributions for 2-person, 0-sum Nash equilibrium
p. 286 of G. B. Dantzig, Linear Programming and Extensions

Combines 2pers0sum.max.mod and 2pers0sum.min.mod to eliminate the need for
a min/maximize objective.

glpsol --model 2pers0sum.mod --data rockSP.kp139.dat

param m, integer, > 0;

param n, integer, > 0;

set I := 1..m; # rows

set J := 1..n; # columns

param a{i in I, j in J}; # input matrix, a[i,j] is payoff for i, -a[i,j] is payoff to j

var x{i in I}, >= 0;

var y{i in J}, >= 0;

var V;

s.t. xsum{i in J}: sum{j in I} a[j,i]*x[j] >= V;

s.t. xprob: sum{i in I} x[i] = 1;

 22

s.t. ysum{i in I}: sum{j in J} a[i,j]*y[j] <= V;

s.t. yprob: sum{i in J} y[i] = 1;

solve;

printf "\n";
printf "V is %10g\n",V;
printf "X distribution is:\n";
printf{i in I} " (%d %10g)\n",i,x[i];
printf "\n";
printf "Y distribution is:\n";
printf{i in J} " (%d %10g)\n",i,y[i];

end;

rock paper scissors

param m := 3;

param n := 3;

param a : 1 2 3 :=
 1 0 -1 1
 2 1 0 -1
 3 -1 1 0 ;

end;

V is 0
X distribution is:
 (1 0.333333)
 (2 0.333333)
 (3 0.333333)

Y distribution is:
 (1 0.333333)
 (2 0.333333)
 (3 0.333333)
Model has been successfully processed

Single Iteration of Optimal Basket of Goods via Network Flow

 optBasket.mod optBasket.2nd.1.dat

Solves one iteration of optimal basket of goods from Nisan, Chapter 1, p. 23 - 26.
See Figure 1.4 on p. 24.

Loosely based on glpk-5.0/examples/maxflow.mod

glpsol --model optBasket.mod --data optBasket.trivial.dat

using --exact fixes issues with "flowToSink[j] < money[j]" later

param numGoods, integer, > 0;

param numBuyers, integer > 0;

set good := 0..numGoods-1; # Left column A

set buyer := 0..numBuyers-1; # Right column B

param amount{i in good}, >= 0;

param money{i in buyer}, >= 0;

set accessible, within good cross buyer;

var price, >= 0;

var flowFromSource{i in good}, >= 0;

var flowGoodToBuyer{(i,j) in accessible}, >= 0;

var flowToSink{i in buyer}, >= 0;

s.t. checkFlowFrom{i in good}: flowFromSource[i] = price*amount[i];

s.t. checkFlowTo{i in buyer}: flowToSink[i] <= money[i];

s.t. priceCheck: price <= (sum{i in buyer} money[i]) / (sum{j in good} amount[j]);

 23
s.t. flowConservationGood{i in good}: flowFromSource[i] = (sum{j in buyer} if (i,j) in accessible
then flowGoodToBuyer[i,j]);

s.t. flowConservationBuyer{i in buyer}: flowToSink[i] = (sum{j in good} if (j,i) in accessible
then flowGoodToBuyer[j,i]);

maximize obj: price;

solve;

printf "price is %10g\n",price;

printf "Data for next iteration\n";

If a good or buyer does not appear, then their respective amount or money should be zeroed.

printf "set accessible :=";
for {(i,j) in accessible: flowToSink[j] < money[j]}
 printf "\n%d %d",i,j;
The line below reveals numeric issue that can be fixed with --exact
printf "\n%d %d %10g %10g",i,j,flowToSink[j],money[j];
printf " ;\n";

end;

Second optimal basket of goods example in notes01.gtconcepts.doc.

Input to first iteration for optimalBasket.mod.

param numGoods := 4;

param numBuyers := 5;

set accessible :=
 0 0
 0 1
 1 1
 1 2
 2 2
 2 3
 3 3
 3 4 ;

param amount :=
 0 10
 1 50
 2 200
 3 1000 ;

param money :=
 0 2000
 1 1000
 2 500
 3 200
 4 100 ;

end;

OPTIMAL SOLUTION FOUND
Time used: 0.0 secs
Memory used: 0.1 Mb (129206 bytes)
price is 0.3
Data for next iteration
set accessible :=
0 0
0 1
1 1
1 2
2 2 ;
Model has been successfully processed

