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2.A.  RELATING EQUILIBRIA AND OPTIMALITY 
 
Selfish Routing (infinitesimal, non-atomic) 
 
 Braess’s Problem (R 1, 11.1;  KP p. 148) 
 

   
 
  Initial network:  Suppose load is 1.0, so random traffic will split between two routes  
  (1.5 hours each way) 
 
  Augmented network:  Upon “signal” that v ® w exists, each driver assumes that  
  s ® v ® w ® t is a 2Î hour path.  But, s ® v and w ® t saturate, so a 2-hour drive  
  results and POA = cost of worst NE/optimal cost = 2/1.5 = 4/3 
 
 Pigou’s Problem (R 11.2) 
 

   
 
  Selfish choice is bottom path with cost of 1.0. 
 
  Optimal routing is 1/2 of the traffic on each path, average cost is .75.  POA is 4/3 
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 Nonlinear Pigou (R 11.1.3; N p. 464) 
 

   
 
  Selfish choice is bottom path with load of 1.0, average cost is 1. 
 
  Putting 1/2 the traffic on each path, average cost approaches 0.5. 
 
  Optimal:  As p increases, the fraction on lower edge should increase with almost no  
  traffic on the upper edge.  POA grows unbounded as p increases. 
 
 Table 11.1 demonstrates POA for polynomials of various degrees (R p. 149, p/ln p) 
 
 Theorem 11.1:  Worst-case POA for a set of  cost functions is achieved in a Pigou-like network. 
 (R p. 148).  It is unnecessary to construct more complicated networks! 
 

      (N p. 473) 
 
 where r is the traffic rate and x is the amount of traffic on the lower edge. 
 
 Theorem 11.2 generalizes Theorem 11.1 using Pigou bound. 
 
 Equilibrium Flows (R p. 153; KP p. 152; N 463) 
 
  Usual conservation of flow at non-source, non-sink vertices holds 
 
  (Shortest path is called “minimum cost path” in some presentations) 
 
  In an equilibrium flow, every source-to-sink path (using edges with non-zero flow) is 
  a shortest path (R Definition 11.3) of the same length as all other SPs. 
 

  Travel time along path P:   
 

  Total time (cost of a flow) for all paths:   
 

  Alternative definition in terms of edges:   
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  For a given (non-atomic) network, the equilibrium flow (value) is unique (R p. 154,  
  inequality 11.9; N p. 468) 
 
 Proof of Theorem 11.2:  Especially R, top of p. 155 (skim) 
 
Resource Augmentation Bound (R p. 161; KP 8.1.5) 
 
 Traffic-Anarchy Trade-Off (doubling traffic) (KP p. 156; R p. 162; N p. 479) 
 

  
 

  
 
ATOMIC SELFISH ROUTING  (R p. 163; N p. 465; KP p. 160) 
 
 Agents are no longer “infinitesimal”.  Agents contribute to the count (n) on each edge  
 (or may be generalized to agent i having ri units of traffic on their path). 
 
 Each agent has an origin and destination. 
 
 Each edge has a cost function.  Often these are affine:  ax + b 
 
 Equilibrium Flow:  No path can be replaced to give a decrease in cost (R p. 164) 
 
 Unlike non-atomic networks, equilibrium flows are not unique (R bottom of p. 164) 
 
 Theorem 12.3:  In every atomic selfish network with affine cost functions, the POA is at most 
 5/2.  (R p. 165; KP p. 161) (skim) 
 
  Lemma 12.4 is the critical part of the proof. 
 
 Since atomic selfish routing games are potential games, an optimal flow is an equilibrium flow. 
 
 AAE Example (N p. 467; R p.166; KP p. 160 Figure 8.11) 
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 Instance with no equilibrium flow when the players have weights specifying different amounts of  
 traffic (N p. 467; R p. 185) 
 

  
 
2.B.  Hierarchy of Equilibria (R 13.1) 
 
 Problem:  Various optimization games lack “convenient” equilibria 
 
 Pure Nash Equilibria - no unilateral deviation may be an improvement 
 
 Mixed Nash Equilibria - no unilateral deviation in mixed strategy gives an expected  
 improvement. (revised POA definition, R p. 175) 
 
 Correlated Equilibria - replace product distribution of MNE with distribution over (limited) set  
 of outcomes.  Agents know the distribution and (to initiate play) receive an indication of their  
 strategy, but not the strategies of other agents. 
 
 Coarse Correlated Equilibria - Agents know only the distribution of outcomes and make the  
 decision to deviate without knowing what (i.e. a strategy) they are deviating from. 
 
Example (R 13.1.6, p. 178) - atomic selfish network example 
 
 Single origin and destination for four agents.  Six edges labeled 0 ... 5, each with cost function  
 c(x) = x. 
 
 Agents choose distinct edges Þ pure Nash equilibrium (one unit of cost each) 
 
 Agents choose edge at random Þ mixed Nash equilibrium (3/2 unit of expected cost each,  
 easy simulation, https://ranger.uta.edu/~weems/NOTES6319/tr13.1.6.c) 
 
 Coordinator informs agents of their edges:  two solos and one duet Þ correlated equilibrium 
 (still 3/2 as expected cost, avoids worse possibilities) 
 
 Still coordinated with two solos and one duet, but edges used are either { 0, 2, 4 } or { 1, 3, 5 }  
 Þ not a correlated equilibrium, since a duet agent may move to the next edge.  Coarse correlated  
 equilibrium since it is not useful to change edge without knowing the coordinator’s decisions. 
 



 5 
MAKESPAN SCHEDULING (ON IDENTICAL MACHINES) 
 
https://en.wikipedia.org/wiki/Balls_into_bins_problem (Aside:  https://awards.acm.org/kanellakis 2020) 
 

Selfish Load Balancing (N p.451; N 20; R Problems 12.3 and 13.1) 
 
 n tasks (jobs, agents), each with positive weight wi (distribution?) 
 
 m identical machines (“speed” si =  1 for all machines) 
 
 Load on a machine is the sum of the assigned weights 
 
 Makespan is the maximum load over all machines 
 
 Goal:  Minimize the makespan 
 
Pure Nash equilibrium:  
 
 Assignment of tasks so no task wishes to change machines to experience a decreased load  
 (N p. 519, Proposition 20.2) 
 
 Construction:  (N p. 519, Proposition 20.3) 
 
  Sorted load vector (decreasing order)   Improvement step . . . 
 

     
   
  . . . yields a sorted load vector lexicographically smaller than the original 
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 Convergence Time: (N p. 524) 
 
 Consider PNE construction: 
 
  Satisfied task = task that cannot unilaterally reduce its cost 
 
  Max-weight best response policy = move the unsatisfied job with maximum weight to the 
  machine with minimum load 
 

  
 
 Assigning tasks to machines in non-increasing weight order (LPT) is very effective.  (N p. 529) 
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 Previous example using LPT: 
 
                       2 
  2     4  5  5  5  7  5  7 
 15 15 14 13 13 12  9  9  8 
 

  
 

  
 
Mixed Nash equilibrium: 
 
 Strategy profile:  Probability  of each task i being assigned to each machine j 
 

 For job i, the expected cost on machine j is:    (N p. 519, (20.1)) 
 

  
 
 Fully mixed Nash equilibrium:  Every task is assigned with equal probability to each of the  

 machines .  (N p. 529) 
 

 Suppose all n tasks have weight 1.  Optimal makespan is . 
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2.C.  (MORE) POTENTIAL GAMES 
 
Market Sharing Game (KP p. 158) 
 

  
 

  
 

  
 

  
 

  

  
 

  
 
 Proof is similar to R p. 165 in the notion of “disentangling” (KP Lemma 8.3.2) 
 

Sum over all cities. 
Different vector for each team. 
For i, the term is

1 + multiplicity  of in 

If then (multiplicity is 0)
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 Suppose 5 teams with cities (10, 8, 6, 4, 2).  S* is all cities.  c* is (1, 2, 3, 4, 5). 
 
 c is (1, 1, 2, 2, 3).  (Convenient to order indices.) 
 

 Left (NE) S is 5 + 5 + 4 + 4 + 6 = 24.  Right S is 10/2 + 8/3 + 6/2 + 4 + 2 = 16.667. 
 
(Facility) Location Games (R 14.2 p. 188; N 19.4) 
 
 Model: 
 
  L, set of possible locations 
 
  k agents (players), each agent i choosing exactly one location from Li Í L.  (Pointless,  
  payoff-wise, for two agents to choose the same location . . .) 
 
  M, set of markets, each market j having a public value vj (i.e. maximum price) 
 
  clj, the cost (possibly ¥) of serving market j from location l 
 

   
 

  Maximize social welfare:   
 

       
 

Same vectors

By definition NE to left Lemma 8.3.2

For i, the term is
1 + multiplicity  of in 

For i, the term is
1 + multiplicity  of in i

i

T
T

T

T

W

= +



 10 

   
 

    
 

    
 
 Example: 
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 Agent Choices with Payoffs    W(s)  
 
  l1 (0)  l3 (1)  l5 (1)  10 2  
 
  l1 (0)  l3 (1)   l6 (2) 11 3 PNE 
 
  l1 (0)   l4 (2) l5 (1)  11 3 
 
  l1 (0)   l4 (0)  l6 (0) 10 0 
 
   l2 (0) l3 (0)  l5 (2)  10 2 
 
   l2 (0) l3 (0)   l6 (3) 11 3 PNE 
 
   l2 (1)  l4 (2) l5 (2)  12 5 PNE, OPT 
 
   l2 (1)  l4 (0)  l6 (1) 11 2 
 
 Properties: 
 
  At least one pure Nash equilibrium. 
 
  The POA of every location game is at least 1/2.  (R p. 191, Theorem 14.1) 
 
  (P1) For every strategy profile, sum of the agents’ payoffs is at most the social welfare. 
 
  (P2) An agent’s payoff equals the extra welfare from their taking on their location. 
 
  (P3) Social welfare, W, is: 
 
   Monotone:  T1 Í T2 Í L implies W(T1) £ W(T2) 
 
   Submodular:  For any location l Î L and T1 Í T2 Í L implies 
 
    W(T2 È { l }) - W(T2) £ W(T1 È { l }) - W(T1) 
 
    (Including a location earlier has more impact than including it later) 
 
   (Aside:  “FAP”, https://dl-acm-org.ezproxy.uta.edu/doi/10.1145/1478873.1478955 ) 
 
 Proof of Theorem 14.1 (much like the proof of Theorem 12.3) 
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2.D.  SMOOTH GAMES (R 14.3 p. 194; KP p. 162 - leaves out “for all strategy profiles” detail) 
 
(This is useful for R p. 223-226.  Restatement of  (12.10) R p. 168.) 
 
Comparison between an arbitrary strategy profile (s) and an optimal one (s*): 
 

  
 
Robust Bounds for POA 
 
 Pure Nash Equilibria:  In a (λ, μ)-smooth cost-minimization game with μ < 1, every PNE s has  
 cost at most  times that of an optimal outcome s∗.  (R p. 195; KP p. 163) 
 
 Coarse Correlated Equilibria in Smooth Games:  In every (λ, μ)-smooth cost-minimization  
 game with μ < 1, the POA of CCE is at most .  (R p. 196, Theorem 14.4; KP p. 163) 
 
 Approximate Pure Nash Equilibria:  In every (λ, μ)-smooth cost-minimization game 

 with μ < 1, for every , the POA of Î-PNE is at most .  (R p. 198 Theorem 14.6) 
 
NETWORK COST-SHARING (FORMATION) GAMES 
 
Model: 
 
 Directed (or undirected) graph with each edge e having nonnegative cost ge. 
 
 k agents, each with origin oi and destination di along with strategy set of oi . . . di paths 
 
 Agents using an edge e split the cost.  fe is the number of agents using e 
 

 Cost of path chosen by agent i is  
 

W

WW

W
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 Goal is to  minimize total cost  
 
Example: 

  
 
Example: 
 

  
 
 k agents could split cost 1 + e by using vertex v, but agents will use their alternate edges 
 1, 1/2, 1/3, 1/4, . . . as the unique pure Nash equilibrium. 
 
 POA of Hk = ln k for network cost-sharing games. 
 
PRICE OF STABILITY (N p. 445) 
 
 Price of Stability = cost of best equilibrium / cost of optimal outcome 
 
 POA in the previous example is the worst-case for all network cost-sharing games 
 (R p. 206; KP p. 157) 
 
POA OF STRONG NASH EQUILIBRIA 
 
A strong Nash equilibrium is a pure Nash equilibrium having no improving coalition, i.e. a set of agents 
with a beneficial deviation, i.e. no deviating agent is worse-off and at least one deviating agent is strictly 
better-off.  (Some call this Pareto Optimal.  Some say a strong NE requires all defectors to benefit.) 
 
If a strong NE exists for a network cost-sharing game with k agents, it has a cost at most Hk times that of 
an optimal outcome.  (R p. 210, Theorem 15.3) 


