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CSE 6319 Notes 3:  Mechanism Design (Part 1)
(Last updated 2/29/24 9:19 AM)

Karlin & Peres 10/11/12/13/14/15/16/17
Nisan 9/10/11/12/13/15/28
Roughgarden 2/3/4/5/6/7/8/9/10
3.A.  Single-Peaked Preferences Over Policies (N 10.2)
n agents wish to choose a single point in a real-valued interval [0, 1].
Each agent has a single most-preferred point.  Decreasing preferences to either side.
Desire a strategy-proof rule (dominant strategy to report truthful preferences) to decide the point.

Possible Rule Properties:


onto = for every point in [0, 1], there is a strategy profile such that rule gives the point.

unanimity = if all agents have the same peak, rule choses it

Pareto-optimal = there is no point more preferred by all agents to the chosen point

[image: image1.png]Lemma 10.1 Suppose f is strategy-proof. Then f is onto if and only if it is
unanimous if and only if it is Pareto-optimal.




Median-Voter Rule:  Assume odd number of agents.  Use median of their peaks.

Strategy-proof (but so is choosing the kth highest peak)

Weighted average? (not strategy-proof in general, but could be dictatorial in the extreme)

anonymous = rule does not depend on order of input
Aside:
[image: image2.png]Theorem 10.2 A rule f is strategy-proof, onto, and anonymous if and only if
there exist yi, yp, ..., yo—1 € [0, 1] such that for all = € R",

f(i) = med{pl’ P2y -oos Pns Y15 Y2541 yn—l}' (101)




Aside:  https://en.wikipedia.org/wiki/The_Vital_Center
Aside:  https://en.wikipedia.org/wiki/A_Theory_of_Justice
Stable Matching
Marriages and Gale-Shapley (KP 10.1-10.3; N 10.4; R 10.2-10.3)

Classical Problem Instance:



n men (A, B, C, . . .) with preference lists (ordered from most-preferred to least)



n women (1, 2, 3, . . .) with preference lists


Goal:  Produce matching with n stable marriages.


A matching is unstable if there is a blocking pair:


Consider a matching with the pairs (I, k) and (L, j) based on preference lists:


[image: image3.emf]
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I and j prefer each over their partners in the suggested matching . . . unstable situation


Applications:



Matching new M.D.s to internships (many-to-one, http://www.nrmp.org/ )



Matching lawyers to federal clerkships (one-to-one)



Matching students to classes (many-to-many)



Centralized admissions decisions for universities (many-to-one)


[image: image4.png]Example 10.8 The preference orderings for the men and women are shown in
the table below

>m >my >ms >w, >w, >ws
w3 wi wi mj ms3 mj
w1 w3 wro ms mi ms
w3 wr w3 nm mp mp

Consider the matching {(m, wy), (m3, wy), (m3, w3)}. This is an unstable match-

ing since (m, wy) is ablocking pair. The matching {(m, wi), (ms, wa), (m2, wi)},
howeyver, is stable.





Gale-Shapley (Deferred Acceptance) Algorithm:



Corresponds to most societies.  (No https://en.wikipedia.org/wiki/Sadie_Hawkins_Day )



Men propose from the beginning of their lists.


Women always accept the first proposal, but may break the engagement later.


Example (from Sedgewick)

A
B
C
D
E
1
2
3
4
5
2
1
2
1
5
E
D
A
C
D

5
2
3
3
3
A
E
D
B
B

1
3
5
2
2
D
B
B
D
C
3
4
4
4
1
B
A
C
A
E

4
5
1
5
4
C
C
E
E
A

Observations:

1.
There is at least one stable solution.


(Once engaged, a woman is always engaged.  A man could eventually propose to all women and can’t be rejected by all of them.)

2.
The set of currently engaged couples is stable.

3.
As stated, Gale-Shapley algorithm gives male-optimal matching.  Switching roles in algorithm gives female-optimal matching.  (Example of rotations includes female-optimal matching for Sedgewick’s example)

4.
Truthfulness?

5.
If male-optimal solution is the same as female-optimal solution, the solution is unique.

6.
The order of proposals by the available men makes no difference in the outcome . . . leading to:

The “Rural Hospitals” Theorem:  When the number of men and women differ (or preference lists may be incomplete), the set of agents included in every stable matching is the same.

Also possible to maintain n2 nodes in reduced data structure instead of 2n2 nodes (i.e. each node is in two doubly-linked lists) - known as the Extended Gale-Shapley algorithm (MEGS = man-oriented, WEGS = woman-oriented).

Uses node deletion strategy to avoid some pain of rejection!  For MEGS:

Man proposes from current beginning of reduced list . . . always accepted!

When woman receives proposal . . . she will always accept and also delete the nodes for all less-preferable men.

For the current set of engagements:


A man is engaged to the woman at the beginning of his list.


A woman is engaged to the man at the end of her list.

A
B
C
D
E
1
2
3
4
5
2
1
2
1
5
E
D
A
C
D

5
2
3
3
3
A
E
D
B
B

1
3
5
2
2
D
B
B
D
C
3
4
4
4
1
B
A
C
A
E

4
5
1
5
4
C
C
E
E
A


Lattice of Stable Matchings:
Given any pair of stable marriage matchings, another stable matching may be found by taking either:

1.  The more preferred woman for every man (the “meet”).

2.  The less preferred woman for every man (the “join”).

Mathematically, the result is a distributive lattice.  (Also, note that any path from the male-optimal matching to the female-optimal matching includes each “rotation” exactly once.)
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Linear Programming:  https://ranger.uta.edu/~weems/NOTES6319/GLPSOL/marriage.*
House Allocation, Kidney Exchange, & Top-Trading Cycles (KP 10.4; N 10.3; R 10.1)

Like Stable Marriages, two types of agents - applicants (with preferences) and houses (without)


No notion of blocking pair


Expects some applicants’ preference lists to be incomplete


Usual solution concept - Pareto optimality, excludes any Pareto improvements:



Matching an unmatched applicant with an acceptable unmatched house



Changing an applicant to a more-preferable house without changing another



applicant to a less-preferable house (or leaving out entirely)


Simplest way to find a Pareto-optimal matching is the Serial Dictatorship Mechanism:

1.
Choose an arbitrary order for the applicants.

2.
Use the order to have each applicant choose their most-preferred house among the remaining unmatched houses.

Since the method is exhaustive and an early chooser would never trade with a later chooser, must be Pareto-optimal.

Due to different orderings and incomplete preference lists, different size matchings may occur!


Finding a maximum cardinality Pareto-optimal matching:

1.
Find a maximum cardinality bipartite matching (e.g. using flow techniques or CLRS problem 26-6, p. 763), but ignore the applicants’ preferences.  (The next two phases are constructive proof that a Pareto-optimal matching of this size exists.  This phase is the most expensive.  It is not worthwhile to clutter it with details of the two later phases.)

2.
Make the matching “trade-in free” - iteratively, find a matched applicant having a more-preferred house that is available and promote the applicant.

3.
Address “cyclic coalitions” in a manner similar to rotations for S.M.  The technique is known as Gale’s Top Trading Cycles algorithm:

a.
Delete all unmatched houses.

b.
While applicants remain:

1.
Iteratively, find applicants matched with their most-preferred house.  Make each match permanent and delete the applicant and house from data structures.  (This may expose other most-preferred matches in the reduced instance.)

2.
Create directed graph:

a.
Vertex for each applicant.

b.
Edge from vertex for applicant x to the vertex of the applicant who is (tentatively) matched with x’s most-preferred house.

3.
Properties of the generated graph:

a.
At least one cycle. (Aside:  Similar to Boruvka’s MST.  https://ranger.uta.edu/~weems/NOTES5311/NEWNOTES/notes08.pdf

https://en.wikipedia.org/wiki/Borůvka's_algorithm )

b.
Cycles do not intersect!  Simply eliminate each cycle.

Example 1:

After Phase 1

A1:  H1  H3  H2
A2:  H2  H4  H1
A3:  H1  H2  H4
A4:  H2  H3  H1

Phase 2 - no changes

Phase 3 graph

[image: image6.emf]
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Final Result:

A1:  H1
A2:  H2
A3:  H4
A4:  H3
___________________________________________________________________________________

Example 2:

After Phase 1

A1:  H3  H5  H1
A2:  H1  H3  H4  H2
A3:  H1  H4  H2  H3
A4:  H1  H2  H3  H4

After Phase 2

A1:  H3  H5  H1

A2:  H1  H3  H4  H2

A3:  H1  H4  H2  H3

A4:  H1  H2  H3  H4
After Phase 3a

A1:  H3  H1

A2:  H1  H3  H4  H2

A3:  H1  H4  H2  H3

A4:  H1  H2  H3  H4

Phase 3b

The applicants will be deleted in the order:  A1  A2  A3  A4
Final Result:

A1:  H3
A2:  H1
A3:  H4
A4:  H2
Example 3:

Find all maximum cardinality Pareto-optimal matchings for:

A1:  H1  H4  H2

A2:  H2  H3  H1

A3:  H1  H3  H4

A4:  H2  H4  H3

Maximum cardinality matchings (Phase 1) - Pareto-optimal ones are highlighted.  The number below the non-Pareto-optimal ones is the number of Pareto-optimal ones that may be reached using later phases.
H1
H1
H1
H2
H2
H2
H4
H4
H4
H2
H2
H3
H1
H1
H3
H1
H2
H3
H3
H4
H4
H3
H4
H1
H3
H1
H1
H4
H3
H2
H4
H3
H4
H2
H3
H2

1

1
1*
1
1

*Situation leading to 3.b iteration:

A1:  H1  H4  H2
A2:  H2  H3  H1
A3:  H1  H3  H4
A4:  H2  H4  H3
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A1:  H1
A2:  H2
A3:  H3  H4
A4:  H4  H3

[image: image8.emf]
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A1:  H1
A2:  H2
A3:  H3
A4:  H4
Example 4:

After Phases 1, 2, 3.a, 3.b.1, 3.b.2

A1:  H1  H2  H3  H4
A2:  H2  H3  H4  H1
A3:  H3  H4  H1  H2
A4:  H4  H1  H2  H3
[image: image9.emf]
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3.B.  Fair Division (KP 11)
Aside:  https://en.wikipedia.org/wiki/Ham_sandwich_theorem
Cake Cutting (KP 11.1; procaccia.2.pdf; cake.su.pdf)

[image: image10.png]WJL'V\JW\JVW—’

T2 T3 T4 s

FIGURE 11.2. This figure shows a possible way to cut a cake into five pieces.
The i*" piece is B; = [Zk L Thy 2y k). If the i™ piece goes to player j
(i.e., Aj := B;), then his value for this piece is u;(B;).





[image: image11.png]Moving-knife Algorithm for fair division of a cake among n people
e Move a knife continuously over the cake from left to right
until some player yells “Stop!”
e Give that player the piece of cake to the left of the knife.
e Iterate with the other n —1 players and the remaining cake.






Not envy-free


Simmons’ Method Based on Sperner’s Lemma (KP 11.1.1; cake.su.pdf p. 930-937)



[image: image12.png]Sperner’s Lemma for Triangles. Any Sperner-labelled triangulation of T must con-
tain an odd number of elementary triangles possessing all labels. In particular, there is
at least one.






[image: image13.png]2 2 1 1

Figure 1. A Sperner labelling, with (1,2,3)-triangles marked.






[image: image14.png]1,2,0r3
for vertices on facet #4

2,3,0r4
for vertices on facet #1

1,2,3,0r4
on interior vertices

lor2
2o0r3

on this edge
facet #3 underneath
facet #2 in back

Figure 3. A triangulated tetrahedron, with Sperner labelling.






[image: image15.png]Sperner’s Lemma. Any Sperner-labelled triangulation of a n-simplex must contain an
odd number of fully labelled elementary n-simplices. In particular, there is at least one.






Trap-door walk (https://en.wikipedia.org/wiki/Doubly_connected_edge_list 



https://ranger.uta.edu/~weems/dt.html) as constructive proof and as fundamental 


procedure:


[image: image16.png]2 2 1 1

Figure 4. House, rooms, and doors indicated by dotted lines.



 [image: image17.png]Figure 5. Walking through doors.





Simmons’ Algorithm:



Construct initial triangulation (( and ( issue for diameters with KP?)


Repeat until happy:




Properly color (“fully label”) small triangles/tetrahedrons/simplices 



(vertex ownership, not Sperner)




[image: image18.png]B C

Figure 7. Labelling by ownership.







Determine the preferred slice for the owner of each vertex




(This is a Sperner labeling.  Consider segment between (0, 0, 1) and (0, 1, 0).)




Find “fully labeled” simplices to use in happiness check




Refine triangulation using “barycentric subdivision”

Fair division of rent (indivisible objects) later 
Bankruptcy (or divorce settlement or inheritance)

Chapter 4 of https://ebookcentral.proquest.com/lib/utarl/detail.action?docID=377897 

(https://www.amazon.com/dp/0521696925) is useful.

Four Laws are presented:
1.
Contested-Garment Principle (p. 5).  Also has “physical interpretation” diagrams for equivalent Rule of Linked Vessels.
[image: image19.png]1. The estate is 80 and the debts are 100 and 200.
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[image: image20.png]2. The estate is 140 and the debts are 100 and 200.

Diagram 2 | 50| 100

100

50



 
[image: image21.png]3. The estate is 180 and the debts are 100 and 2.00.

Diagram 3 | 50| 100

100

50




[image: image22.png]4. The estate is 240 and the debts are 100 and 200.

Diagram 4 | 50\ I 100‘
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2.
Rif’s Law - order claimants in ascending order, then proceed evenly in levels

[image: image23.png]ol 300 500 600
100] . 100 100 100 100 100
200/ o 100 100+f 200 200 200
300| o 100 100+8 200 200+y 300




3.
Proportional division - proportion of investment determines proportion of proceeds
4.
O’Neill’s law - race to the bank (Shapley value)
Cooperative Games (KP 12; N 15.6)
Cooperative Game with Transferable Utility

Glove Market



Player 1 has a left glove.  Player 2 has a right glove, so does Player 3.



[image: image24.png]v(123) = v(12) = v(13) =1





Characteristic Function on subsets of n players:  [image: image25.png]v:2° 3R





[image: image26.png]e v(2)=0.
e Monotonicity: If S C T, then v(S) < v(T).





[image: image27.png]An allocation vector ¥ = 1 (v) is in the core if it satisfies the following two
properties:
e Efficiency: Y. ;¥ = v({1,...,n}). This means, by monotonicity, that,
between them, the players extract the maximum possible total value.
e Stability: Each coalition is allocated at least the payoff it can obtain on
its own; i.e., for every set S,

> i > 0(9).

i€S






[image: image28.png]For the glove market, an allocation vector in the core must satisfy

U1+ > 1,
U1 +Y3 > 1,
1+ o + 13 = 1.






[image: image29.png]This system has only one solution: 1¥; = 1 and 19 = 13 = 0.





Miners carrying gold bars in pairs.  Core solution iff number of miners is even.

[image: image30.png]ExAMPLE 12.2.2 (Splitting a dollar:). A parent offers his two children $100
if they can agree on how to split it. If they can’t agree, they will each get $10. In
this case v(12) = 100, whereas v(1) = v(2) = 10. The core conditions require that

1/11 Z 10 1/12 Z 10 and 1/11 + 1/12 = 100,

which clearly has multiple solutions.




Shapley Value

[image: image31.png]12.3.1. Shapley’s axioms.
(1) Symmetry: If v(SU{i}) = v(SU{j}) for all S with i,j ¢ S, then
Vi(v) = ¥;(v).
(2) Dummy: A player that doesn’t add value gets nothing; i.e., if v (SU{i}) =
v(S) for all S, then v;(v) = 0.
(3) Efficiency: Yo, vs(v) =v({1,...,n}).
(4) Additivity: ¥;(v + u) = ¥;(v) + ¥;(u).





S-Veto Game:


Controlling coalition S.  Characteristic function wS(•) = 1 when subset includes S.


[image: image32.png]vi(wg) =0 ifi ¢S






 [image: image33.png]for i,j € S, the symmetry axiom gives ¢;(ws) = ¥;(ws)






[image: image34.png]




Shapley Value Solution to Glove Market:


Player 1 gets (1(v) = 2/3.  (2(v) = (3(v) = 1/6.

[image: image35.png]LEMMA 12.3.2. For any characteristic function v : 2" — R there is a unique
choice of coefficients c¢s such that

v = E CsWg.





Four Stockholders and Shapley-Shubik Power Index (KP p. 208)


Shapley’s Theorem



Define allocation by marginal contribution based on a permutation (:




[image: image36.png]¢i(v,m) = v(7r{1, A lc}) - v(7r{1, e k— 1}) where 7(k) = i.






satisfies the last three of Shapley’s axioms.  To satisfy symmetry, determine the expected 


value:




[image: image37.png]Yi(v) = Z di(v,m)

7rES





https://en.wikipedia.org/wiki/Airport_problem
(Nash) Bargaining . . . skip
3.C. Social Choice (KP 13; N 9.2)
“Every nation gets the government it deserves” (https://en.wikiquote.org/wiki/Joseph_de_Maistre#Quotes)

“If . . . voters . . . knew the distribution . . .”

“Vote early and vote often”

https://en.wikipedia.org/wiki/Ross_Perot
https://en.wikipedia.org/wiki/Electronic_voting_in_Estonia
https://www.amazon.com/Gödels-Proof-Ernest-Nagel/dp/0814758371/
https://en.wikipedia.org/wiki/Gödel%2C_Escher%2C_Bach
https://en.wikipedia.org/wiki/Proofs_and_Refutations
https://en.wikipedia.org/wiki/Order_dimension
F. Brandl, et.al. “Proving the Incompatibility of Efficiency and Strategyproofness via SMT Solving”. J. ACM 65, 2, Article 6 (January 2018), 28 pages.  https://dl.acm.org/doi/10.1145/3125642

Condorcet Paradox - order of pairwise contests can make a difference

[image: image38.png]35% 65%

40% 35% 2570 Social Preference

40% 60%

Pairwise Contests

> 5% 5%

FIGURE 13.1. In pairwise contests A defeats C' and C defeats B, yet B defeats A.




Mechanisms


Plurality voting (KP p. 217, figures 13.2 and 13.3)

Runoff elections (KP p. 217, figures 13.4 and 13.5)

Voting rule - produces a single winner from preference profile

Ranking rule - produces a total order from preference profile
Arrow's Properties

[image: image39.png]A social welfare function F satisfies unanimity if forevery < € L, F(<, ..., <) =
<. That is, if all voters have identical preferences then the social preference is the
same.

Voter i is a dictator in social welfare function F if for all <; ... <, €L,
F(<y,...,<y) = <;. The social preference in a dictatorship is simply that of the
dictator, ignoring all other voters. F is not a dictatorship if no i is a dictator in it.

A social welfare function satisfies independence of irrelevant alternatives if the
social preference between any two alternatives a and b depends only on the voters’
preferences between a and b. Formally, for every a,b € A and every <y, ...,
<ns <]s..., <, €L, if wedenote < = F(<1,...,<,)and <" = F(<],.... <))
then a <; b < a < b for all i implies thata < b < a <" b.





[image: image40.png]DEFINITION 13.2.4. A ranking rule R is strategically vulnerable at the
profile ®# = (=1,...,>,) if there is a voter ¢ and alternatives A and B so that





[image: image41.png]A >=; B and B > A in R(w), yet replacing >; by >7 yields a profile 7* such that
AD>* Bin R(w*).




Arrow's Impossibility Theorem

[image: image42.png]THEOREM 13.3.1. Any ranking rule that satisfies unanimity and independence
of irrelevant alternatives is a dictatorship.




Gibbard-Satterthwaite Theorem


[image: image43.png]DEFINITION 13.4.1. A voting rule f from profiles to I' is strategy-proof if for
all profiles 7, candidates A and B, and voters i, the following holds: If A >=; B and
f(m) = B, then all 7/ that differ from 7 only in voter #’s ranking satisfy f(w’) # A.





[image: image44.png]THEOREM 13.4.2. Let f be a strategy-proof voting rule onto ', where |T'| > 3.
Then f is a dictatorship. That is, there is a voter i such that for every profile w
voter i’s highest ranked candidate is equal to f (7).




Desirable Properties

[image: image45.png](1) Anonymity (i.e., symmetry): The identities of the voters should not
affect the results. Le., if the preference orderings of voters are permuted,
the society ranking should not change. This is satisfied by most reasonable
voting systems, but not by the US electoral college or other regional based
systems. Indeed, switching profiles between very few voters in California
and Florida would have changed the results of the 2000 election between
Bush and Gore.





[image: image46.png](2) Monotonicity: If a voter moves candidate A higher in his ranking with-
out changing the order of other candidates, this should not move A down
in the society ranking.





[image: image47.png](3) Condorcet winner criterion: If a candidate beats all other candidates
in pairwise contests, then he should be the winner of the election. A
related, and seemingl weaker, property is the Condorcet loser crite-
rion: The system should never select a candidate that loses to all others
in pairwise contests.





[image: image48.png](4) ITA with preference strengths: If two profiles have the same prefer-
ence strengths for A versus B in all voter rankings, then they should yield
the same preference order between A and B in the social ranking. (The
preference strength of A versus B in a ranking is the number of places
where A is ranked above B, which can be negative.)





[image: image49.png](5) Cancellation of ranking cycles: If there is a subset of N candidates,
and N voters whose rankings are the N cyclic shifts of one another (e.g.





 [image: image50.png]three voters each with a different ranking from|Figure 13.1)), then removing
these N voters shouldn’t change the outcome.





Analysis of Specific Voting Rules

Instant Runoff - remove candidate with fewest first-place votes after each round.  Issues

with monotonicity, IIA with preference strengths, and Condorcet winner criterion.

Borda Count - m candidates gives descending weights m, m - 1, . . . , 1 for ranks.  Issues with

Condorcet winner criterion, IIA, and strategic vulnerability.


Positional Voting - generalizes Borda count.

Approval Voting - vote for as many candidates as one wishes without ranking.
3.D. Auction Concepts (R p. 11)
Welfare-Maximizing Auction - maximizes the utilities(s) of the winner(s) (assuming truthfulness)

(expected) utility = (expected) value - (expected) payment

Single-Parameter Domain/Environment/Setting (N p. 228?;  R p. 24)

Each agent i has a private value-per-unit vi (distribution is assumed public)
(Terminology:  k units are homogeneous / indistinguishable, k items are heterogeneous / distinguishable.  Concept of substitutes complicates this.)

(Desired quantity)

Feasible set of allocation vectors

Examples (and allocation vectors) (R p. 24)



Single Item (basis vectors)



k Units (0-1 vectors)



Sponsored Search (click-through rates) (R 2.6)



Public Project (nobody-or-everybody)
Single Item Auctions and Independent Private Values (review of Notes 1.D; KP 14.1-14.2, Def. 14.1.1)

First-Price


Ascending - Dominant Strategy:  stop bidding when price exceeds value


Sealed-Bid - Dominant Strategy:  bid [image: image51.png]


 (KP p. 241)

Sealed-Bid Second-Price (R Theorem 2.4) - Dominant Strategy:  bid value
Dominant-Strategy Incentive Compatible (DSIC; R p. 15)


Truthful bidding is always a dominant strategy


Truthful bidders obtain non-negative utility

Bayes-Nash Equilibrium - For every bidder i, utility is maximized by bidding (i(Vi)

Revenue in Single-Item Auctions (KP 14.3)


[image: image52.png]ExaMpLE 14.3.1. We return to our earlier example of two bidders, each with a
value drawn independently from a UJ[0.1] distribution. From that analysis, we know





[image: image53.png]that if the auctioneer runs a first-price auction, then in equilibrium his expected

revenue will be
E |max —1 —2 = —1
2 ’ 2 3

On the other hand, suppose that in the exact same setting, the auctioneer runs a
second-price auction. Since we can assume that the bidders will bid truthfully, the
auctioneer’s revenue will be the expected value of the second-highest bid, which is

1

E [mln(‘/ly ‘/2)] = 57




Revenue Equivalence (KP 14.4)

Arguably, the central result in single-object auction theory is the revenue equivalence theorem
 . . . (Bichler, p. 61)

Perhaps the most remarkable theoretical result in auction theory is revenue equivalence, a principle which can be loosely expressed as follows:  for a broad class of auctions, bidders, ideally, adjust their behavior to the rules in such a way that the expected revenue to the seller remains the same.  (Steiglitz, p. 180)

[image: image54.png]THEOREM 14.4.2 (Revenue Equivalence). Suppose that each agent’s value
V; is drawn independently from the same strictly increasing distribution F € [0, h].
Consider any n-bidder single-item auction in which the item is allocated to the
highest bidder, and u;(0) = 0 for all i. Assume that the bidders employ a symmetric
strategy profile B; := B for all i, where 3 is strictly increasing in [0, h).

(i) If (B,...,B) is a Bayes-Nash equilibrium, then for a bidder with value v,

a(w)=F@)" " and pv)=wva(v)— /OU a(w)dw. (14.9)

(ii) If (14.9) holds for the strategy profile (B,...,[3), then for any bidder i
with utility u(-|-) and all v,w € [0, h),

w(vlv) > u(w|v). (14.10)





[image: image55.png]Theorem 9.46 (The Revenue Equivalence Principle) Under certain weak as-
sumptions (to be detailed in the proof body), for every two Bayesian—Nash imple-
mentations of the same social choice function f,we have that if for some type tlQ
of player i, the expected (over the types of the other players) payment of player i
is the same in the two mechanisms, then it is the same for every value of t;. In par-
ticular, if for each player i there exists a type tf) where the two mechanisms have
the same expected payment for player i, then the two mechanisms have the same
expected payments from each player and their expected revenues are the same.





Ascending First-Price

Descending (Dutch)


Second-Price Sealed-Bid


First-Price Sealed-Bid


All-pay (Steiglitz, p. 203-205;  KP p. 241)

War of attrition (second-price all-pay)
When i.i.d. valuations for n bidders are uniformly distributed over [0, 1], the expected revenue is (n - 1)/(n + 1) (Steiglitz, p. 190-192)
https://en.wikipedia.org/wiki/Winner's_curse
Reserve Prices

Vickrey Auction with a Reserve Price (KP p. 243; R exercise 5.1)


[image: image56.png]Perhaps surprisingly, an auctioneer may want to impose a reserve price even if
his own value for the item is zero. For example, we have seen that for two bidders
with values independent and drawn from U[0, 1], all auctions that allocate to the
highest bidder have an expected auctioneer revenue of 1/3.

Now consider the expected revenue if, instead, the auctioneer uses the Vickrey
auction with a reserve of r. Relative to the case of no reserve price, the auctioneer
loses an expected revenue of r/3 if both bidders have values below r, for a total
expected loss of 73 /3. On the other hand, he gains if one bidder is above r and one
below. This occurs with probability 2r(1 —r), and the gain is r minus the expected
value of the bidder below r; i.e.,  — r/2. Altogether, the expected revenue is

1 ro 1 4
e — 4 2(1l =)= =41 — =%
erpua e e
Differentiating shows that this is maximized at r = 1/2, yielding an expected

auctioneer revenue of 5/12. (This is not a violation of the Revenue Equivalence
Theorem because imposition of a reserve price changes the allocation rule.)





Bidder-Specific Reserve (R p. 78)


Revenue Equivalence Generalized (KP 14.5.1)


Entry Fee vs Reserve Price (KP 14.5.2)


Evaluation Fee (KP 14.5.3) - must pay fee to know your value (similarly eBay shipping)
Knapsack Auctions (R 4.1, 4.2; Chapters 1/2/3 of 

https://www-degruyter-com.ezproxy.uta.edu/document/doi/10.7312/milg17598/html)


Seller has capacity w

Each bidder has public size wi (( w) and private valuation vi (which is also the bid bi)

Since knapsack is NP-hard, apply greedy heuristic of ordering bid-to-size ratios descending


Achieves at least 50% of the maximum social welfare . . .

From https://ranger.uta.edu/~weems/NOTES3318/notes06.pdf

Observe that applying fractional concept to 0/1 problem gives an upper bound on what may be 


achieved optimally (OPT) for 0/1.
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By taking the larger of the revenue for the first i - 1 units or the revenue for unit i, we will 


achieve at least 1/2 of OPT.  (Why?)

Aside:  eBay


https://en.wikipedia.org/wiki/EBay#Bidding

3.E. Auction Concepts (continued)
Individually Rational (KP 14.5.4; N 9.4.1)

Each bidder’s expected utility is nonnegative (given a decision time for information)


Ex-ante - bidders know only the value distributions (evaluation fee)

Ex-interim - bidders know the value distributions and their own value (entry-fee)

Ex-post - bidders know their values after the auction (first-price and second-price)
Myerson’s Lemma (R 3)

Definition 3.5 (Implementable Allocation Rule) An allocation rule ... is implementable if there is a payment rule such that the direction-revelation mechanism is DSIC.
Definition 3.6 (Monotone Allocation Rule) An allocation rule ... is monotone if for every agent the allocation is nondecreasing in her bid.

Theorem 3.7 (Myerson’s Lemma) . . .

(a)
Allocation rule is implementable if and only if it is monotone.

(b)
Such a monotone allocation rule has a unique payment rule for which the direct-revelation mechanism is DSIC and the payment is zero whenever the bid is zero.

(c)
The payment rule in (b) has an explicit formula.

Highlights of the proof:  expressions (3.4) and (3.5/3.6), along with diagrams on (R p. 32).


Example:  Knapsack Auction and critical bid (R p. 41)

Payment Rule:



For each winner in the greedy heuristic, replace vi with the smallest value such that it’s



still a winner in the greedy heuristic.



That value is the payment . . .

W = 5


i
1
2
3
4
5
6
7

vi
8
7
6
5
4
3
2


wi
1
1
1
1
1
1
1


pi
3
3
3
3
3


W = 7


i
1
2
3
4
5
6
7
8


vi
9
4
7
3
4
2
3
1


wi
2
1
2
1
2
1
2
1


pi
4
2
4
2

1
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W = 21
i
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
vi
37
29
21
13
6
25
19
13
8
3
10
7
5
3
1
wi
5
4
3
2
1
5
4
3
2
1
5
4
3
2
1

pi
95/4
19
57/4
26/3
4
95/4



1

5•19/4
4•19/4
3•19/4
2•13/3
1•8/2
5•19/4
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Characterization of Bayes-Nash Equilibrium (KP 14.6)

Myerson’s Lemma, but for distributions


KP proof and diagram (KP p. 247-248) mirror R proof and diagram (R p. 28-32)

POA in Auctions (KP 14.7)

See Roughgarden et.al, “The Price of Anarchy in Auctions” ( PAPERSTWO/auction.poa.pdf )
Revelation Principle
Theorem 4.3 (Revelation Principle for DSIC Mechanisms):  For every mechanism in which every participant always has a dominant strategy, there is an equivalent direct-revelation DSIC mechanism.  (R p. 47)

[image: image59.png]THEOREM 14.8.2 (The Revelation Principle). Let A be a direct auction

where {B;}1_, is a Bayes-Nash equilibrium. Recall Definition

1711

. Then there is

another direct auction A, which is BIC and has the same winners and payments as
A in equilibrium; i.e., for all v = (vy,...,v,), if by = Bi(v;) and b = (by,...,b,),

then

oAbl = o]  and PADb] = PAN.




[image: image60.png]ExaMPLE 14.8.3. Recall [Example 14.2.1] a first-price auction with two bidders
with U[0, 1] values. An application of the Revelation Principle to this auction yields
the following BIC auction: Allocate to the highest bidder and charge him half of
his bid.





Myerson's Optimal Auction/Revenue Maximization (R 5; KP 14.9)
“Take it or leave it” by setting a reserve price r
One Bidder, One Item (Monopoly Price)


Expected Revenue:  r • (1 - F(r)) (F is the distribution function,  the probability that the 


value is at most the argument. f is the density function, its derivative.)


Uniform distribution [0, 1] for buyer’s value - set r at 1/2 (F(x)=x, f(x)=1)
Virtual Valuation (“regular” if non-decreasing, R p. 62)

[image: image61.png](0;) = v _ 1= Fiw)
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what you’d like to charge N ——r’
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Expected Revenue = Expected Virtual Welfare


[image: image62.png]



[image: image63.png]DEFINITION 14.9.12. The Myerson auction for distributions with strictly in-
creasing virtual value functions is defined by the following steps:

(i) Solicit a bid vector b from the agents.
(ii) Allocate the item to the bidder with the largest virtual value 1;(b;) if
positive, and otherwise, do not allocate. That 3?3





        [image: image64.png]1, if ¥(b;) > max;-; 1 (b;) and ¥ (b;) > 0;

. (14.29)
0, otherwise,

Oti(bi, b_l) = {

(iii) If the item is allocated to bidder 4, then she is charged her threshold bid
t«(b_;), the minimum value she could bid and still win, i.e.,

tx(b—i) :==min{b : ¢i(b) > max(0, {;(b;)};2i)}- (14.30)




[image: image65.png]THEOREM 14.9.13. Suppose that the bidders’ values are independent with strictly
increasing virtual value functions. Then the Myerson auction is optimal; i.e., it
mazimizes the expected auctioneer revenue in Bayes-Nash equilibrium. Moreover,
bidding truthfully is a dominant strategy.




[image: image66.png]COROLLARY 14.9.14. The Myerson optimal auction for i.i.d. bidders with strictly
increasing virtual value functions is the Vickrey auction with a reserve price of

~H(0).




Also see R 5.2.6:
[image: image67.png]EXERCISE 14.f. Show that the virtual value function for a uniform distribution
is strictly increasing. Use this to conclude that for bidders with i.i.d. U[0, 1] values,
the Myerson auction is a Vickrey auction with a reserve price of 1/2.




Approximately (Near-) Optimal Auctions
What if you don’t have the agents’ distributions?

Prophet Inequality (R 6.2) and Simple Single-Item Auction (R 6.3)

https://cacm.acm.org/magazines/2017/12/223050-lousy-advice-to-the-lovelorn

Bulow-Klemperer (KP 14.10.1; R 6.4)
[image: image68.png]THEOREM 14.10.1. Let F be a distribution for which virtual valuations are
increasing. The expected revenue in the optimal auction with n i.i.d. bidders with
values drawn from F' is upper bounded by the expected revenue in a Vickrey auction
with n+ 1 4.i.d. bidders with values drawn from F'.




Lookahead Auction (KP 14.10.2)

[image: image69.png](i) Solicit bids from the agents. Suppose that agent ¢ submits the highest bid

b;. (If there are ties, pick one of the highest bidders arbitrarily.)

(ii) Compute the conditional distribution F of V; given the bids b_; and the
event V; > maxjy; b;. Let p; = p;i(b_;) be the price p that maximizes
p(1 = F;(p)).

(iii) Run the optimal single-bidder auction with agent ¢, using his previous bid
b; and the distribution FZ for his value: This auction sells the item to
agent i at price p; if and only if b; > p;.




Lookahead Auction is Approximately Optimal  (KP 14.10.3)

[image: image70.png]ProprosITION 14.10.3. The Lookahead auction is optimal among truthful auc-
tions that allocate to the highest bidder (if at all).





[image: image71.png]THEOREM 14.10.4. The Lookahead (LA) auction yields an expected auctioneer
revenue that is at least half that of the optimal truthful and exr-post individually
rational auction even when bidders have dependent values.




