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3.A.  SINGLE-PEAKED PREFERENCES OVER POLICIES (N 10.2) 
 
n agents wish to choose a single point in a real-valued interval [0, 1]. 
 
Each agent has a single most-preferred point.  Decreasing preferences to either side. 
 
Desire a strategy-proof rule (dominant strategy to report truthful preferences) to decide the point. 
 
Possible Rule Properties: 
 
 onto = for every point in [0, 1], there is a strategy profile such that rule gives the point. 
 
 unanimity = if all agents have the same peak, rule choses it 
 
 Pareto-optimal = there is no point more preferred by all agents to the chosen point 
 

  
 
Median-Voter Rule:  Assume odd number of agents.  Use median of their peaks. 
 
 Strategy-proof (but so is choosing the kth highest peak) 
 
Weighted average? (not strategy-proof in general, but could be dictatorial in the extreme) 
 
anonymous = rule does not depend on order of input 
 

Aside:  
 
Aside:  https://en.wikipedia.org/wiki/The_Vital_Center 
 
Aside:  https://en.wikipedia.org/wiki/A_Theory_of_Justice 
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STABLE MATCHING 
 
Marriages and Gale-Shapley (KP 10.1-10.3; N 10.4; R 10.2-10.3) 
 
 Classical Problem Instance: 
 
  n men (A, B, C, . . .) with preference lists (ordered from most-preferred to least) 
 
  n women (1, 2, 3, . . .) with preference lists 
 
 Goal:  Produce matching with n stable marriages. 
 
 A matching is unstable if there is a blocking pair: 
 
 Consider a matching with the pairs (I, k) and (L, j) based on preference lists: 
 

  
 
 I and j prefer each over their partners in the suggested matching . . . unstable situation 
 
 Applications: 
 
  Matching new M.D.s to internships (many-to-one, http://www.nrmp.org/ ) 
  Matching lawyers to federal clerkships (one-to-one) 
  Matching students to classes (many-to-many) 
  Centralized admissions decisions for universities (many-to-one) 
 

  
 

Men Women

I j

k

j

L

I

(I, k) is an unstable pair (L, j) is an unstable pair

blocking pair



 3 
 Gale-Shapley (Deferred Acceptance) Algorithm: 
 
  Corresponds to most societies.  (No https://en.wikipedia.org/wiki/Sadie_Hawkins_Day ) 
 
  Men propose from the beginning of their lists. 
 
  Women always accept the first proposal, but may break the engagement later. 
 
 Example (from Sedgewick) 
 

A B C D E 1 2 3 4 5 
 
2 1 2 1 5 E D A C D 
 
5 2 3 3 3 A E D B B 
 
1 3 5 2 2 D B B D C 
 
3 4 4 4 1 B A C A E 
 
4 5 1 5 4 C C E E A 

 
Observations: 
 
1. There is at least one stable solution. 
 
 (Once engaged, a woman is always engaged.  A man could eventually propose to all women 

and can’t be rejected by all of them.) 
 
2. The set of currently engaged couples is stable. 
 
3. As stated, Gale-Shapley algorithm gives male-optimal matching.  Switching roles in 

algorithm gives female-optimal matching.  (Example of rotations includes female-optimal 
matching for Sedgewick’s example) 

 
4. Truthfulness? 
 
5. If male-optimal solution is the same as female-optimal solution, the solution is unique. 
 
6. The order of proposals by the available men makes no difference in the outcome . . . leading 

to: 
 

The “Rural Hospitals” Theorem:  When the number of men and women differ (or preference 
lists may be incomplete), the set of agents included in every stable matching is the same. 
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Also possible to maintain n2 nodes in reduced data structure instead of 2n2 nodes (i.e. each node 
is in two doubly-linked lists) - known as the Extended Gale-Shapley algorithm (MEGS = man-
oriented, WEGS = woman-oriented). 

 
Uses node deletion strategy to avoid some pain of rejection!  For MEGS: 
 
Man proposes from current beginning of reduced list . . . always accepted! 
When woman receives proposal . . . she will always accept and also delete the nodes for all less-
preferable men. 
 
For the current set of engagements: 
 
 A man is engaged to the woman at the beginning of his list. 
 
 A woman is engaged to the man at the end of her list. 

 
A B C D E 1 2 3 4 5 
 
2 1 2 1 5 E D A C D 
 
5 2 3 3 3 A E D B B 
 
1 3 5 2 2 D B B D C 
 
3 4 4 4 1 B A C A E 
 
4 5 1 5 4 C C E E A 

 
 Lattice of Stable Matchings: 
 

Given any pair of stable marriage matchings, another stable matching may be found by taking 
either: 
 
1.  The more preferred woman for every man (the “meet”). 
 
2.  The less preferred woman for every man (the “join”). 

 
Mathematically, the result is a distributive lattice.  (Also, note that any path from the male-
optimal matching to the female-optimal matching includes each “rotation” exactly once.) 
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 Linear Programming:  https://ranger.uta.edu/~weems/NOTES6319/GLPSOL/marriage.* 
 
House Allocation, Kidney Exchange, & Top-Trading Cycles (KP 10.4; N 10.3; R 10.1) 
 
 Like Stable Marriages, two types of agents - applicants (with preferences) and houses (without) 
 
 No notion of blocking pair 
 
 Expects some applicants’ preference lists to be incomplete 
 
 Usual solution concept - Pareto optimality, excludes any Pareto improvements: 
 
  Matching an unmatched applicant with an acceptable unmatched house 
 
  Changing an applicant to a more-preferable house without changing another 
  applicant to a less-preferable house (or leaving out entirely) 
 
 Simplest way to find a Pareto-optimal matching is the Serial Dictatorship Mechanism: 
 

1. Choose an arbitrary order for the applicants. 
 
2. Use the order to have each applicant choose their most-preferred house among the 

remaining unmatched houses. 
 
Since the method is exhaustive and an early chooser would never trade with a later chooser, must 
be Pareto-optimal. 
 
Due to different orderings and incomplete preference lists, different size matchings may occur! 

 
 Finding a maximum cardinality Pareto-optimal matching: 
 

1. Find a maximum cardinality bipartite matching (e.g. using flow techniques or CLRS problem 
26-6, p. 763), but ignore the applicants’ preferences.  (The next two phases are constructive 
proof that a Pareto-optimal matching of this size exists.  This phase is the most expensive.  It 
is not worthwhile to clutter it with details of the two later phases.) 

 
2. Make the matching “trade-in free” - iteratively, find a matched applicant having a more-

preferred house that is available and promote the applicant. 

14532

34521 15432

35421

(A,1)
(D,3)
(E,2)

(A,1)
(D,3)
(E,2)

(B,4)
(C,5)

(B,4)
(C,5)
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3. Address “cyclic coalitions” in a manner similar to rotations for S.M.  The technique is known 

as Gale’s Top Trading Cycles algorithm: 
 

a. Delete all unmatched houses. 
 
b. While applicants remain: 
 

1. Iteratively, find applicants matched with their most-preferred house.  Make each 
match permanent and delete the applicant and house from data structures.  (This may 
expose other most-preferred matches in the reduced instance.) 

 
2. Create directed graph: 
 

a. Vertex for each applicant. 
b. Edge from vertex for applicant x to the vertex of the applicant who is (tentatively) 

matched with x’s most-preferred house. 
 

3. Properties of the generated graph: 
 

a. At least one cycle. (Aside:  Similar to Boruvka’s MST.  
https://ranger.uta.edu/~weems/NOTES5311/NEWNOTES/notes08.pdf 

 https://en.wikipedia.org/wiki/Borůvka's_algorithm ) 
b. Cycles do not intersect!  Simply eliminate each cycle. 

 
Example 1: 
 
After Phase 1 
 
A1:  H1  H3  H2 
 
A2:  H2  H4  H1 
 
A3:  H1  H2  H4 
 
A4:  H2  H3  H1 

Phase 2 - no changes 
 
Phase 3 graph 
 

 

Final Result: 
 
A1:  H1 
 
A2:  H2 
 
A3:  H4 
 
A4:  H3 
 
 

___________________________________________________________________________________ 
Example 2: 
 
After Phase 1 
 
A1:  H3  H5  H1 
 
A2:  H1  H3  H4  H2 
 
A3:  H1  H4  H2  H3 
 
A4:  H1  H2  H3  H4 
 

After Phase 2 
 
A1:  H3  H5  H1 
 
A2:  H1  H3  H4  H2 
 
A3:  H1  H4  H2  H3 
 
A4:  H1  H2  H3  H4 
 

A1
H2

A2
H1

A4
H3

A3
H4
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After Phase 3a 
 
A1:  H3  H1 
 
A2:  H1  H3  H4  H2 
 
A3:  H1  H4  H2  H3 
 
A4:  H1  H2  H3  H4 
 

Phase 3b 
 
The applicants will be deleted in the order:  A1  A2  A3  A4 
 
Final Result: 
 
A1:  H3 
 
A2:  H1 
 
A3:  H4 
 
A4:  H2 

Example 3: 
 
Find all maximum cardinality Pareto-optimal matchings for: 
 
A1:  H1  H4  H2 
 
A2:  H2  H3  H1 
 
A3:  H1  H3  H4 
 
A4:  H2  H4  H3 
 
Maximum cardinality matchings (Phase 1) - Pareto-optimal ones are highlighted.  The number below the 
non-Pareto-optimal ones is the number of Pareto-optimal ones that may be reached using later phases. 
 
H1 H1 H1 H2 H2 H2 H4 H4 H4 
 
H2 H2 H3 H1 H1 H3 H1 H2 H3 
 
H3 H4 H4 H3 H4 H1 H3 H1 H1 
 
H4 H3 H2 H4 H3 H4 H2 H3 H2 
 
 1  1 1* 1 1 
 
*Situation leading to 3.b iteration: 
 
A1:  H1  H4  H2 
 
A2:  H2  H3  H1 
 
A3:  H1  H3  H4 
 
A4:  H2  H4  H3 
 

A1
H2

A2
H1

A4
H3

A3
H4
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A1:  H1 
 
A2:  H2 
 
A3:  H3  H4 
 
A4:  H4  H3 

 

A1:  H1 
 
A2:  H2 
 
A3:  H3 
 
A4:  H4 

 
Example 4: 
 
After Phases 1, 2, 3.a, 3.b.1, 3.b.2 
 
A1:  H1  H2  H3  H4 
 
A2:  H2  H3  H4  H1 
 
A3:  H3  H4  H1  H2 
 
A4:  H4  H1  H2  H3 

 
3.B.  FAIR DIVISION (KP 11) 
 
Aside:  https://en.wikipedia.org/wiki/Ham_sandwich_theorem 
 
Cake Cutting (KP 11.1; procaccia.2.pdf; cake.su.pdf) 
 

  
 

  
 
  Not envy-free 
 

A4
H3

A3
H4

A1
H4

A2
H1

A4
H3

A3
H2
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 Simmons’ Method Based on Sperner’s Lemma (KP 11.1.1; cake.su.pdf p. 930-937) 
 

   
 

   
 

   
 

   
 
  Trap-door walk (https://en.wikipedia.org/wiki/Doubly_connected_edge_list  
  https://ranger.uta.edu/~weems/dt.html) as constructive proof and as fundamental  
  procedure: 
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 Simmons’ Algorithm: 
 
  Construct initial triangulation (Î and h issue for diameters with KP?) 
 
  Repeat until happy: 
 
   Properly color (“fully label”) small triangles/tetrahedrons/simplices  
   (vertex ownership, not Sperner) 
 

    
 
   Determine the preferred slice for the owner of each vertex 
   (This is a Sperner labeling.  Consider segment between (0, 0, 1) and (0, 1, 0).) 
 
   Find “fully labeled” simplices to use in happiness check 
 
   Refine triangulation using “barycentric subdivision” 
 
 Fair division of rent (indivisible objects) later  
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Bankruptcy (or divorce settlement or inheritance) 
 
 Chapter 4 of https://ebookcentral.proquest.com/lib/utarl/detail.action?docID=377897  
 (https://www.amazon.com/dp/0521696925) is useful. 
 
 Four Laws are presented: 
 

1. Contested-Garment Principle (p. 5).  Also has “physical interpretation” diagrams for 
equivalent Rule of Linked Vessels. 

 

   
 

  
                  70             170 
 
2. Rif’s Law - order claimants in ascending order, then proceed evenly in levels 
 

  
 
3. Proportional division - proportion of investment determines proportion of proceeds 
 
4. O’Neill’s law - race to the bank (Shapley value) 
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COOPERATIVE GAMES (KP 12; N 15.6) 
 
Cooperative Game with Transferable Utility 
 
 Glove Market 
 
  Player 1 has a left glove.  Player 2 has a right glove, so does Player 3. 
 

   
 
 Characteristic Function on subsets of n players:   
 

  
 

  

   
 
   
 
 Miners carrying gold bars in pairs.  Core solution iff number of miners is even. 
 

  
 
Shapley Value 
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 S-Veto Game: 
 
  Controlling coalition S.  Characteristic function wS(•) = 1 when subset includes S. 
 
   
 

    
 

   
 
 Shapley Value Solution to Glove Market: 
 
  Player 1 gets y1(v) = 2/3.  y2(v) = y3(v) = 1/6. 
 

  
 
 Four Stockholders and Shapley-Shubik Power Index (KP p. 208) 
 
 Shapley’s Theorem 
 
  Define allocation by marginal contribution based on a permutation p: 
 
    
 
  satisfies the last three of Shapley’s axioms.  To satisfy symmetry, determine the expected  
  value: 
 

    
 
 https://en.wikipedia.org/wiki/Airport_problem 

 
(NASH) BARGAINING . . . skip 
 
3.C. SOCIAL CHOICE (KP 13; N 9.2) 
 
“Every nation gets the government it deserves” (https://en.wikiquote.org/wiki/Joseph_de_Maistre#Quotes) 
 
“If . . . voters . . . knew the distribution . . .” 
 
“Vote early and vote often” 
 
https://en.wikipedia.org/wiki/Ross_Perot 
 
https://en.wikipedia.org/wiki/Electronic_voting_in_Estonia 
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https://www.amazon.com/Gödels-Proof-Ernest-Nagel/dp/0814758371/ 
 
https://en.wikipedia.org/wiki/Gödel%2C_Escher%2C_Bach 
 
https://en.wikipedia.org/wiki/Proofs_and_Refutations 
 
https://en.wikipedia.org/wiki/Order_dimension 
 

F. Brandl, et.al. “Proving the Incompatibility of Efficiency and Strategyproofness via SMT Solving”. J. 
ACM 65, 2, Article 6 (January 2018), 28 pages.  https://dl.acm.org/doi/10.1145/3125642 
 
Condorcet Paradox - order of pairwise contests can make a difference 
 

  
 
Mechanisms 
 
 Plurality voting (KP p. 217, figures 13.2 and 13.3) 
 
 Runoff elections (KP p. 217, figures 13.4 and 13.5) 
 
 Voting rule - produces a single winner from preference profile 
 
 Ranking rule - produces a total order from preference profile 
 
Arrow's Properties 
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Arrow's Impossibility Theorem 
 

  
 
Gibbard-Satterthwaite Theorem 
 

  
 

  
 
Desirable Properties 
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Analysis of Specific Voting Rules 
 
 Instant Runoff - remove candidate with fewest first-place votes after each round.  Issues 
 with monotonicity, IIA with preference strengths, and Condorcet winner criterion. 
 
 Borda Count - m candidates gives descending weights m, m - 1, . . . , 1 for ranks.  Issues with 
 Condorcet winner criterion, IIA, and strategic vulnerability. 
 
 Positional Voting - generalizes Borda count. 
 
 Approval Voting - vote for as many candidates as one wishes without ranking. 
 
3.D. AUCTION CONCEPTS (R p. 11) 
 
Welfare-Maximizing Auction - maximizes the utilities(s) of the winner(s) (assuming truthfulness) 
 
 (expected) utility = (expected) value - (expected) payment 
 
Single-Parameter Domain/Environment/Setting (N p. 228?;  R p. 24) 
 
 Each agent i has a private value-per-unit vi (distribution is assumed public) 
 

(Terminology:  k units are homogeneous / indistinguishable, k items are heterogeneous / 
distinguishable.  Concept of substitutes complicates this.) 

 
 (Desired quantity) 
 
 Feasible set of allocation vectors 
 
 Examples (and allocation vectors) (R p. 24) 
 
  Single Item (basis vectors) 
 
  k Units (0-1 vectors) 
 
  Sponsored Search (click-through rates) (R 2.6) 
 
  Public Project (nobody-or-everybody) 
 
Single Item Auctions and Independent Private Values (review of Notes 1.D; KP 14.1-14.2, Def. 14.1.1) 
 
 First-Price 
 
  Ascending - Dominant Strategy:  stop bidding when price exceeds value 
 

  Sealed-Bid - Dominant Strategy:  bid  (KP p. 241) 
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 Sealed-Bid Second-Price (R Theorem 2.4) - Dominant Strategy:  bid value 
 
Dominant-Strategy Incentive Compatible (DSIC; R p. 15) 
 
 Truthful bidding is always a dominant strategy 
 
 Truthful bidders obtain non-negative utility 
 
Bayes-Nash Equilibrium - For every bidder i, utility is maximized by bidding bi(Vi) 
 
Revenue in Single-Item Auctions (KP 14.3) 
 

  

  
 
Revenue Equivalence (KP 14.4) 
 

Arguably, the central result in single-object auction theory is the revenue equivalence theorem 
 . . . (Bichler, p. 61) 

 
Perhaps the most remarkable theoretical result in auction theory is revenue equivalence, a 
principle which can be loosely expressed as follows:  for a broad class of auctions, bidders, 
ideally, adjust their behavior to the rules in such a way that the expected revenue to the seller 
remains the same.  (Steiglitz, p. 180) 
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 Ascending First-Price 
 
 Descending (Dutch) 
 
 Second-Price Sealed-Bid 
 
 First-Price Sealed-Bid 
 
 All-pay (Steiglitz, p. 203-205;  KP p. 241) 
 
 War of attrition (second-price all-pay) 
 

When i.i.d. valuations for n bidders are uniformly distributed over [0, 1], the expected revenue is 
(n - 1)/(n + 1) (Steiglitz, p. 190-192) 

 
https://en.wikipedia.org/wiki/Winner's_curse 

 
Reserve Prices 
 
 Vickrey Auction with a Reserve Price (KP p. 243; R exercise 5.1) 
 

   
 
 Bidder-Specific Reserve (R p. 78) 
 
 Revenue Equivalence Generalized (KP 14.5.1) 
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 Entry Fee vs Reserve Price (KP 14.5.2) 
 
 Evaluation Fee (KP 14.5.3) - must pay fee to know your value (similarly eBay shipping) 
 
Knapsack Auctions (R 4.1, 4.2; Chapters 1/2/3 of  
https://www-degruyter-com.ezproxy.uta.edu/document/doi/10.7312/milg17598/html) 
 
 Seller has capacity w 
 
 Each bidder has public size wi (£ w) and private valuation vi (which is also the bid bi) 
 
 Since knapsack is NP-hard, apply greedy heuristic of ordering bid-to-size ratios descending 
 
 Achieves at least 50% of the maximum social welfare . . . 
 
 From https://ranger.uta.edu/~weems/NOTES3318/notes06.pdf 
 
 Observe that applying fractional concept to 0/1 problem gives an upper bound on what may be  
 achieved optimally (OPT) for 0/1. 
 

  
 

  
 
 By taking the larger of the revenue for the first i - 1 units or the revenue for unit i, we will  
 achieve at least 1/2 of OPT.  (Why?) 
 
Aside:  eBay 
 
 https://en.wikipedia.org/wiki/EBay#Bidding 

 
 
3.E. AUCTION CONCEPTS (CONTINUED) 
 
Individually Rational (KP 14.5.4; N 9.4.1) 
 
 Each bidder’s expected utility is nonnegative (given a decision time for information) 
 
 Ex-ante - bidders know only the value distributions (evaluation fee) 
 
 Ex-interim - bidders know the value distributions and their own value (entry-fee) 
 
 Ex-post - bidders know their values after the auction (first-price and second-price) 
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Myerson’s Lemma (R 3) 
 

Definition 3.5 (Implementable Allocation Rule) An allocation rule ... is implementable if there is 
a payment rule such that the direction-revelation mechanism is DSIC. 
 
Definition 3.6 (Monotone Allocation Rule) An allocation rule ... is monotone if for every agent 
the allocation is nondecreasing in her bid. 
 
Theorem 3.7 (Myerson’s Lemma) . . . 
 
(a) Allocation rule is implementable if and only if it is monotone. 
 
(b) Such a monotone allocation rule has a unique payment rule for which the direct-revelation 

mechanism is DSIC and the payment is zero whenever the bid is zero. 
 
(c) The payment rule in (b) has an explicit formula. 
 
Highlights of the proof:  expressions (3.4) and (3.5/3.6), along with diagrams on (R p. 32). 

 
 Example:  Knapsack Auction and critical bid (R p. 41) 
 
 Payment Rule: 
 
  For each winner in the greedy heuristic, replace vi with the smallest value such that it’s 
  still a winner in the greedy heuristic. 
 
  That value is the payment . . . 
 
 W = 5 
 
 i 1 2 3 4 5 6 7 
 
 vi 8 7 6 5 4 3 2 
 
 wi 1 1 1 1 1 1 1 
 
 pi 3 3 3 3 3 
 
 W = 7 
 
 i 1 2 3 4 5 6 7 8 
 
 vi 9 4 7 3 4 2 3 1 
 
 wi 2 1 2 1 2 1 2 1 
 
 pi 4 2 4 2  1 
  2•4/2 1•4/2 2•4/2 1•4/2  1•1/1 Ü wi • vj/ wj 
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W = 21 
 
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
 
vi 37 29 21 13 6 25 19 13 8 3 10 7 5 3 1 
 
wi 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 
 
pi 95/4 19 57/4 26/3 4 95/4    1 
 5•19/4 4•19/4 3•19/4 2•13/3 1•8/2 5•19/4    1•1/1 
 
 
Characterization of Bayes-Nash Equilibrium (KP 14.6) 
 
 Myerson’s Lemma, but for distributions 
 
 KP proof and diagram (KP p. 247-248) mirror R proof and diagram (R p. 28-32) 
 
POA in Auctions (KP 14.7) 
 
 See Roughgarden et.al, “The Price of Anarchy in Auctions” ( PAPERSTWO/auction.poa.pdf ) 
 
Revelation Principle 
 

Theorem 4.3 (Revelation Principle for DSIC Mechanisms):  For every mechanism in which 
every participant always has a dominant strategy, there is an equivalent direct-revelation DSIC 
mechanism.  (R p. 47) 
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Myerson's Optimal Auction/Revenue Maximization (R 5; KP 14.9) 
 

“Take it or leave it” by setting a reserve price r 
 
One Bidder, One Item (Monopoly Price) 
 
 Expected Revenue:  r • (1 - F(r)) (F is the distribution function,  the probability that the  
 value is at most the argument. f is the density function, its derivative.) 
 
 Uniform distribution [0, 1] for buyer’s value - set r at 1/2 (F(x)=x, f(x)=1) 
 
Virtual Valuation (“regular” if non-decreasing, R p. 62) 
 

  
Expected Revenue = Expected Virtual Welfare 
 

  
 

 

         
 

 
 

 
 
Also see R 5.2.6: 
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Approximately (Near-) Optimal Auctions 
 

What if you don’t have the agents’ distributions? 
 
Prophet Inequality (R 6.2) and Simple Single-Item Auction (R 6.3) 
 
 https://cacm.acm.org/magazines/2017/12/223050-lousy-advice-to-the-lovelorn 

 
Bulow-Klemperer (KP 14.10.1; R 6.4) 
 

 
 
Lookahead Auction (KP 14.10.2) 
 

  
 
Lookahead Auction is Approximately Optimal  (KP 14.10.3) 
 

  
 

  
 


