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CSE 6319 Notes 3:  Mechanism Design (Part 2)
(Last updated 2/20/24 4:28 PM)

3.F. Multi-Unit Auctions
Uniform-Price for Budgeted Bidders (R 9.2)

m = number of units

Besides private valuation vi, each buyer has a public budget Bi
Demand of bidder i at price p:  [image: image1.png]D;(p)

:{ min{L%J,m} if p < wv;

0 if p > v;



                                                  
Utility is still vi - p
Not DSIC (due to “ambiguity” for p = vi, see R p. 115 Example 9.1) - demand reduction for reporting a lower vi
Clinching for Budgeted Bidders (R 9.3; PAPERSONE/dobzinski.pdf)
Price “gradually” rises to point where demand for all but one buyer (with largest residual demand) is below remaining supply.
If total demand exceeds supply, allocate one unit to largest-residual-demand buyer (and continue).
Otherwise, allocate remaining supply at current price.
DSIC
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Clinching with Descending Valuations (PAPERSONE/ausubel.pdf; R Problem 9.2)
Ascending auction with private valuations, but payments are based on prices where demand falls below remaining supply

Agent i valuations (for individual units) are downward-sloping vi1 ( vi2 ( . . . ( vik for auction with k units (replaces budgets)
m = 5
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Nisan survey (PAPERSONE/nisanAmd.pdf, Algorithmic Mechanism Design:  Through the lens of Multi-unit auctions)
[image: image2.png]e We have m identical indivisible units of a single good to be allocated among n

strategic players also called bidders.




[image: image3.png]e Each bidder 7 has a privately known valuation function v; : {0, ...,m} — R*, where
v;(k) is the value that this bidder has for receiving k units of the good. We assume
that v;(0) = 0 and free disposal: v;(k) < v;(k+ 1) (for all 0 < k < m).




[image: image4.png]e Our goal (as the auctioneer) is to allocate the units among the bidders in a way
that optimizes social welfare: each bidder ¢ gets m; units and we aim to maximize

> ; vi(m;), where the feasibility constraint is that ). m; < m.





Representations


Bidding Languages

[image: image5.png]1. Single Minded Bids: This language allows only representing “step functions”,
valuations of the form v(k) = 0 for k < k* and v(k) = w* for k > k*. Clearly
to represent such a valuation we only need to specify two numbers: £* and w*.

Clearly, also, this is a very limited class of valuations.




[image: image6.png]2. Step Functions: This language allows specifying an arbitrary sequence of pairs
(kp,wy), (ko,wa),. .., (keywe) with0 < by < kg-+- <krand 0 < wy < wy < - -+ < wy.
In this formalism v (k) = w, for the maximum j such that k > k;. Thus, for example,
the bid ((2,7),(5,23)) would give a value of $0 to 0 or 1 items, a value of $7 to
2, 3, or 4 items, and a value of $23 to 5 or more items. Every valuation can be
represented this way, but most valuations will take length m. Simple ones — ones

that have only a few “steps” — will be succinctly represented.




[image: image7.png]3. Piece-Wise Linear: This language allows specifying a sequence of marginal values
rather than of values. Specifically, a sequence (ki,p1), (k2,p2), ..., (kt, pr) with 0 <
ki < kg--- < ky and p; > 0 for all j. In this formalism p; is the marginal value
of item k for k; < k < kjyy. Thus v(k) = Y25, w with u, = p; for the largest j
such that [ > k;. In this representation, the bid ((2,7), (5,23)) would give a value
of $7 to 1 item, $14 to 2 items, $37 to 3 items, $60 to 4 items, and $83 to 5 or more

items.




Value Queries - any vi(k) instance in polynomial time in the representation length
Communication Queries - values are not provided exhaustively; instead queries are posed to the bidders

(Intractable) General Allocation Algorithm (DP, section 4.1) - O(nm2) time


[image: image8.png]The Allocation Problem

Input: The sequence of valuations of the players: vy, ..., v,.

Output: An allocation my, ..., m, with > m; < m that maximizes Y ., v;(m;).




[image: image9.png]1. Fill the (n+1)*(m+ 1) table s, where s(, k) is the maximum value achievable
by allocating £ items among the first ¢ bidders:

(a) Forall 0 <k <m: s(0,k)=0
(b) Forall 0 <i<n: s(i,0) =0

() For 0 <i<mnand 0 <k <m: s(i,k) =mazocj<r[vi(j) + s(i — 1,k — j)]




[image: image10.png]2. The total value of the optimal allocation is now stored in s(n,m)




[image: image11.png]3. To calculate the m;’s themselves, start with £ = m and for ¢ = n down to 1 do:

(a) Let m; be the value of j that achieved s(i, k) = v;(j) + s(i — 1,k — j)
(b) k=Fk—m;





Tractable Downward Sloping Valuations via Market Equilibrium and Multiple Binary Searches


[image: image12.png]vi(k+1) —v;(k) < wi(k) —v;(k—1) for all bidders ¢ and number of items 1 < k < m — 1






[image: image13.png]Algorithmically, given a potential price p, we can calculate players’ demands using
binary search to find the point where the marginal value decreases below p. This allows us
to calculate the total demand for a price p, determining whether it is too low or too high,
and thus search for the right price p using binary search. For clarity of exposition we will

assume below that all values of items are distinct, v;(k) # vy (k') whenever (i, k) # (¢, k).






[image: image14.png]Allocation Algorithm for Downward Sloping Valuations

1. Using binary search, find a clearing price p in the range [0, V], where V =

maz;[v;(1)]:

(a) For each 1 <1 < n, use binary search over the range {0, 1,...,m}, to find
m; such that v;(m;) — vi(mi—1) > p > vi(Mmiy1) — vi(Mmy)

(b) If Y, m; > m then p is too low; if >, m; < m then p is too high, otherwise
we have found the right p.

2. The optimal allocation is given by (my, ..., m,).
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Intractability for value queries model


[image: image15.png]Theorem 3 FEvery algorithm for the multi-unit allocation problem, in the value-queries

model, needs to make at least 2m — 2 queries for some input.






[image: image16.png]Let us consider the simplest possible bidding language, that of Single Minded Bids. In
this language each valuation v; is represented as (k;, p;) with the meaning that for k < k*
we have v;(k) = 0 and for k£ > k; we have v;(k) = p;. The optimal allocation will thus need
to choose some subset of the players S C {1...n} which it would satisfy. This would give
total value ) .. p; with the constraint that ), ¢ k; < m. This optimization problem is a

very well known problem called the knapsack problem, and it is one of a family of problems






[image: image17.png]known to be “NP-complete”. In particular, no computationally-efficient algorithm exists
for solving the knapsack problem unless “P=NP”, which is generally conjectured not to
be the case (the standard reference is still Garey and Johnson [1979]). It follows that

no computationally-efficient algorithm exists for our problem when the input valuations






[image: image18.png]are presented in any of the bidding languages mentioned above all of which contain the

single-minded one as special cases. We thus have:






[image: image19.png]Theorem 4 Assuming P # NP, there is no polynomial-time algorithm for the multi-

unit allocation problem, in any of the bidding language models.





Communication Complexity Results


[image: image20.png]Theorem 5 (Nisan and Segal [2006]) Every algorithm for the multi-unit allocation prob-
lem, in any query model, needs to ask queries whose total answer length is at least m — 1

i the worst case.





DP-based Approximation Scheme (with binary searches, from section 4.4)


[image: image21.png]At this point we seem to have very strong and general impossibility results for algorithms
attempting to find the optimal allocation. However, it turns out that if we just slightly
relax the optimality requirement and settle for “approximate optimality” then we are in

much better shape. Specifically, an approzimation scheme for an optimization problem






[image: image22.png]is an algorithm that receives, in addition to the input of the optimization problem, a
parameter € which specifies how close to optimal do we want to solution to be. For
a maximization optimization problem (like our allocation problem) this would mean a

solution whose value is at least 1 — e times the value of the optimal solution. It turns






[image: image23.png]out that this is possible to do, computationally-efficiently, for our problem using dynamic

programming.




4.
Generality (p. 11 of CSE 5311 Notes 11 https://ranger.uta.edu/~weems/NOTES5311/NEWNOTES/notes11.pdf )


Approximation Algorithm - achieve max/min ratio in 
[image: image24.emf]
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Approximation Scheme - flexible ratio 1 + ( in 
[image: image25.emf]O(f(n.))
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Polynomial-time Approximation Scheme - 
[image: image26.emf]
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Fully PTAS - 
[image: image27.emf]








   

O

n

k

1

e

()

l

æ 

è 

ç 

ö 

ø 

÷ 

 time



[image: image28.png]The basic idea is that there exists an optimal algorithm whose running time is poly-
nomial in the range of values. (This is a different algorithm than the one presented in
section 4.1 whose running time was polynomial in the number of items m.) Our approx-
imation algorithm will thus truncate all values v;(k) so that they become small integer
multiples of some ¢ and run this optimal algorithm on the truncated values. Choosing
d = €V/n where V' = max;[v;(m)] strikes the following balance: on one hand, all values
are truncated to an integer multiple wd for an integer 0 < w < n/e, and so the range of
the total value is at most the sum of n such terms, i.e. at most n?/e. On the other hand,
the total additive error that we make is at most nd < eV. Since V is certainly a lower
bound on the total value of the optimal allocation this implies that the fraction of total

value that we loose is at most (eV')/V = € as required.






[image: image29.png]The allocation algorithm among the truncated valuations uses dynamic programming,
and fills a (n + 1) * (W + 1)-size table K, where W = n?/e. The entry K (i,w) holds






[image: image30.png]the minimum number of items that, when allocated optimally between the first i players,
yields total value of at least wd. Each entry in the table can be computed efficiently from

the previous ones, and once the table is filled we can recover the actual allocation.






(Keller, H. et.al. Knapsack Problems, Springer, 2004 is very useful on DP for 



maximizing value or minimizing number of units)


[image: image31.png]. Fix § = €V/n where V = max;[v;(m)], and fix W = n?/e.

. Fill an (n 4+ 1) % (W + 1) table K, where K (i, w) holds the minimum number
of items that, when allocated optimally between the first ¢ players, yields total

value of at least wd:






[image: image32.png](a) Forall 0 <i<mn: K(i,0) =0
(b) Forallw=1,....,W: K(0,w) =00

(¢) Foralli=1,...,nand w =1,..., W compute K (i, w) = mino<j<wval(j),
for val(j) defined by:
i. Use binary search to find minimum number of items k such that
ii. val(j) =k+ K@ —1,w—j)






[image: image33.png]3. Let w be the maximum index such that K (n,w) <m






[image: image34.png]4. For 7 going from n down to 1:

(a) Let j be so that K (i,w) = val(j) (as computed above)
(b) Let m; be the minimum value of k& such that v;(k) > j0

(c) Let w=w - j






[image: image35.png]Our algorithm’s running time is dominated by the time required to fill the table K
which is of size n xn?/e where filling each entry in the table requires going over all possible
n/e values j and for each performing a binary search that takes O(logm) queries. Thus
the total running time is polynomial in the input size as well as in the precision parameter

€ which often called a fully polynomial time approximation scheme. For most realistic






[image: image36.png]optimization purposes such an arbitrarily good approximation is essentially as good as

an optimal solution. We have thus obtained:






[image: image37.png]Theorem 6 There exists an algorithm for the approzimate multi-unit allocation problem

(in any of the models we considered) whose running time is polynomial in n, logm, and






[image: image38.png]et It produces an allocation (my,...,my,) that satisfies >, vi(m;) > (1 — €)Y, v;(opt;),

where (opty, ...,opt,) is the optimal allocation.





Payments, Incentives, and Mechanisms
Direct Revelation Mechanism

Based on Revelation Principle, assume truthful vi(k)  values are provided
VCG Mechanism

[image: image39.png]1. Each Player reports a valuation ;.

2. The mechanism chooses the allocation (my,...,m,) that maximizes >, 7;(m;)

and outputs it.





[image: image40.png]3. For each player i:

(a) The mechanism finds the allocation (m/,...,m)) that maximizes
Zj;éi o;(m).
!

(b) Player i pays p; = Zj;éi oj(m7;) — Zj;éi 0j(m;).




“The basic difficulty in the field of Algorithmic Mechanism Design is to simultaneously achieve both incentive compatibility and computational efficiency.”
Approximation and Incentives

“desire a . . . mechanism that for every given ( > 0 produces an allocation whose total value is at least 1 - ( fraction of the optimal one”

Efficient?
Truthful?

Truncation may lose truthfulness (p. 25-26).  (issue with earlier DP-based Approximation Scheme)
Maximum in Range Mechanisms

Efficiency issue when maximizing [image: image41.png]


 over all possible allocations 

(m1, ..., mn)

Instead, maximize over a range of possible allocations that are fixed in advance

Assume m is an integer multiple of n2
[image: image42.png]Approximation Mechanism
1. Split the m items into n? equi-sized bundles of size m/n? each

2. Run the optimal VCG mechanism with the items being the n? bundles, using

the general allocation algorithm from section 4.1




[image: image43.png]Theorem 8 (Dobzinski and Nisan [2007]) There exists a truthful mechanism for the 2-
approximate multi-unit allocation problem (in any of the models we considered) whose
running time is polynomial in n and logm. It produces an allocation (my,...,m,) that

satisfies Y. vi(my) > (>, vi(opt;)) /2, where (opty, ..., opty,) is the optimal allocation.




[image: image44.png]Theorem 9 (Dobzinski and Nisan [2007]) There is no Maximum-in-Range mechanism
for approximate multi-unit allocation (in any query model) whose running time is polyno-
mial in n andlogm and always produces an allocation (my, ..., my) that satisfies Y, vi(m;) >

(>, vilopt;) ) /2, where (opty, ..., opty,) is the optimal allocation.




Single Parameter Mechanisms

Single-Minded Bids - bidder i has value vi for at least ki units

Truthful mechanisms are simply those with:

[image: image45.png]1. Monotonicity: If a player wins with bid (k;, v;) then it will also win with any bid
which offers at least as much money for at most as many items. Le. ¢ will still win
if the other bidders do not change their bids and i changes his bid to some (k%, v})
with &/ < k; and v > v;.




[image: image46.png]2. Critical Paymlent: The payment of a winning bid (k;,v;) is the smallest value
needed in order to win k; items, i.e. the infimum of v} such that (k;,v}) is still a

winning bid, when the other bidders do not change their bids.




[image: image47.png]Single-Minded Additive Approximation Mechanism

1. Let e > 0 be the required approximation level, and let § be a truncation precision

parameter

2. Truncate each v; to jo where 0 < j < n/e is an integer




[image: image48.png]3. Find the optimal allocation among the truncated v;’s, using the algorithm from

section 4.4

4. Charge the critical payments




[image: image49.png]Single-Minded Approximation Mechanism:
1. Let € > 0 be the required approximation level.

2. For all § = 2! where t is an integer (possibly negative) with eV/(2n?) < § <V,

where V = maz;v; do:

(a) Run the Additive Approximation Algorithm with precision parameter ¢

obtaining a “d-scale allocation”




[image: image50.png]3. Choose the J-scale allocation that achieved the highest value (as counted with

the truncated values) to determine the final allocation

4. For each winner ¢ in the final allocation: Find, using binary search, the lowest
value that would still have bidder ¢ win when the others’ values are unchanged,

and set this critical value as i’s payment




[image: image51.png]Theorem 10 (Briest et al. [2011]) There exists a truthful mechanism for the approwi-

mate multi-unit allocation problem among single-minded bidders whose running time is

1

polynomial in n, logm, and e '. It produces an allocation (mq,...,m,) that satisfies

Yo vilmi) > (1 —€) > . vi(opt;), where (opty, ..., opty,) is the optimal allocation.




Multi-Parameter Mechanisms Beyond VCG?

[image: image52.png]Theorem 11 (Lavi et al. [2003]) Every truthful mechanism for approzimate multi-unit
allocation with two players that always allocates all items, my + mo = m, and for some

fized o« > 1/2 always satisfies vi(m)+wva(mz) > a(vi(opt1) 4+ va(opts)), where (opty, opts)




[image: image53.png]is the optimal allocation, requires at least m queries in the value queries model.




Randomization
Maximum-in-Distributed-Range Mechanism

Theorem 12
3.G. Truthful Auctions in Win/Lose Settings (KP 15; N 9.3/9.5; R 7)
Win/Lose Allocation Settings (KP 15.2)
Single-minded for subset of items

[image: image54.png]e A set U of participants/bidders, where each has a private value v; for
“winning” (being selected) and obtains no value from losing;

e a set of feasible allocations (i.e., possible choices for the set of winning
bidders) £ C 2Y. In a single-item auction, £ contains all subsets of
size at most 1 and in the communication channel example, £ = {S C

Ul Yieswi <C}.




Allocation Rule

Based on the vector of bids bi, probability (often 0/1) for each bidder winning
[image: image55.png]



Payment Rule
Based on the vector of bids bi, (expected) payment for each bidder

[image: image56.png]pi(b) =max ) b;(w) =3 _bi(w
J# J#
N———

without 2 with 2





Social Surplus and the VCG Mechanism (R 7.2; KP 15.3; N 9.3.3)

Social Surplus:  [image: image57.png]Z (1)7.1{7. winner} _p’b) + sz - Z Vi

icU icU icL*





[image: image58.png]e Ask each bidder to report his private value v; (which he may or may not
report truthfully). Assume that bidder i reports b;.
e Choose as the winning set a feasible L € £ that maximizes b(L), where

b(L) = Zje 1, bj. Call this winning set L*.





[image: image59.png]e To compute payments, let £ = {S|SU{i} € £L}. Then ¢ only wins if his

bid b; satisfies

b; + max b(L) > max b(L),
Lect LeL—

(15.1)

where £ is the collection of sets in £ that do not contain i. His payment

is his threshold bid, the minimum b; for which

= b(L) — b(L).
pi = max b(L) LH:E;()

{15.1)

holds; i.e.,
(15.2)




Truthfulness and Individually Rational - KP Theorem 15.3.2
Envy-freeness - not guaranteed (KP p. 273)
Applications of VCG (KP 15.4; N 9.3.5)
Shared Communication Channel (knapsack auction restated; KP 15.4.1)

[image: image60.png]Bandwith

Bidder requirement w Value v
# (public) (private)
1 0.4 1
2 0.5 2
3 0.8 2.1
Input to
VCG auction

capacity 1

communication

channel

Winners Payments

1 2.1-2=0.1
2 21-1=1.1

L_/Y\_J

Output of
VCG auction





[image: image61.png]FIGURE 15.2. This figure illustrates the execution of the VCG algorithm on
Example 15.1.3| (a shared communication channel) when C' = 1 and there
are three bidders with the given values and weights. In this example, £ =
{{1,2},{1},{2}, {3},0}. With the given values, the winning set selected is
{1,2}. To compute, for example, bidder 1’s payment, we observe that without
bidder 1, the winning set is {3} for a value of 2.1. Therefore the loss of value
to other bidders due to bidder 1’s presence is 2.1 — 2.





Spanning Tree (KP 15.4.2)

[image: image62.png]e Choose the MST T* with respect to the reported costs.
e Pay each winning link owner ¢ his threshold bid, which is C' if removing
it disconnects the graph, and otherwise

(cost of MST with ¢ deleted) — (cost of MST with ¢ contracted),




        [image: image63.emf]Payments










[image: image64.emf]Deleted=3.1 Contracted=1.1










[image: image65.emf]Deleted=2.4 Contracted=2










[image: image66.emf]









[image: image67.emf]Deleted=2.3 Contracted=1.9










[image: image68.emf]Deleted=2.2 Contracted=1.6










Another MST Example:

[image: image69.emf]









AB:  9 - 6 = 3

BC:  8 - 5 = 3

CD:  8 - 3 = 5

Aside:  https://en.wikipedia.org/wiki/Steiner_tree_problem#Steiner_tree_in_graphs_and_variants
Charging for Shortest Path (N 9.3.5.6)
[image: image70.emf]









Shortest-path length without edge (“deleted”) - cost with edge “contracted”

AB:  6 - 2 = 4

BE:  6 - 4 = 2

EF:  7 - 4 = 3
Public Project Issues with VCG (KP 15.4.3; N 9.3.5.5)

Budget Balance


Collusion


(Long term) value and (immediate) payment

Not “Envy-Free”


[image: image71.png]DEFINITION 15.4.1. We say that a truthful mechanism in a win/lose setting is
envy-free if, when bidding truthfully, each bidder prefers his own allocation and
payment to that of any other bidder. That is, for every v and i, we have

a;[v]v; = pi[v] > o [v]v; — p;[v].





[image: image72.png]EXAMPLE 15.4.2. Suppose that the government is trying to decide whether or
not to build a bridge from the mainland to a big island A or to a small island B.
The cost of building a bridge is $90 million. Island A has a million people, and each
one values the bridge at $100. Island B has five billionaires, and each one values
the bridge at $30 million. Running VCG will result in a bridge to island B and
payments of 0. In this case, the people on island A will envy the outcome for the
people on island B.




Other Resources:


“Lovely, but Lonely” paper - PAPERSONE/ausubelMilgrom.pdf
•
low revenues

•
non-monotonicity

•
vulnerability to collusion

•
vulnerability to aliases
•
(revelation of too much private information)


Milgrom book (downloadable from UTA Library) - 

https://www-degruyter-com.ezproxy.uta.edu/document/doi/10.7312/milg17598/html
3.H. Truthful Auctions in Win/Lose Settings (continued)
Sponsored Search Auctions (KP 15.5; N 28; R 2.6/3.5/5.3)
Slot Clickthrough Rates (probabilities?):  c1 ( c2 ( . . . ( ck ( 0
Determine permutation ( of valuations vi (same as bi) to maximize social surplus [image: image73.png]j=1Um; Cj




VCG auction:


[image: image74.png]e Each bidder is asked to submit a bid b; representing the maximum he is
willing to pay per click.

e The bidders are reordered so that their bids satisfy by > by > ..., and slot
1 1s allocated to bidder 7 for 1 <7 < k.

e The participation of bidder i pushes each bidder j > i from slot j — 1 to
slot j (with the convention that ¢;1 = 0). Thus, i’s participation imposes
an expected cost of b;(c;_1 —¢;) on bidder j in one search (assuming that
b; is j's value for a click). The auctioneer then charges bidder ¢ a price of
pi(b) per click, chosen so that his expected payment in one search equals
the total externality he imposes on other bidders; i.e.,

cpi(b) = Y bilej-1—c;). (15.3)

j=it1

In other words, bidder i’s payment per click is then

Ci_1—Cj
pi(b) = > bj%. (15.4)
j=i+1




Examples (also see KP Figure 15.7):


k=3, n=4
c1=0.48
c2=0.24
c3=0.16
c4=0.0



v1=$4

v2=$3

v3=$2

v3=$1


p1 = v2(c1 - c2)/c1 + v3(c2 - c3)/c1 + v4(c3 - c4)/c1

    = 3(0.48 - 0.24)/0.48 + 2(0.24 - 0.16)/0.48 + 1(0.16 - 0.0)/0.48 = $2.16667

p2 = v3(c2 - c3)/c2 + v4(c3 - c4)/c2 = 2(0.24 - 0.16)/0.24 + 1(0.16 - 0.0)/0.24 =$1.33333

p3 = v4(c3 - c4)/c3 = 1(0.16 - 0.0)/0.16 = $1.00
Another view of the VCG auction for sponsored search (KP 15.5.1)


The entire auction may be viewed as the sum of k single-slot auctions . . .


Leads to the entire auction being truthful (KP Lemma 15.5.2)

Generalized First Price - Historical Use . . .
Generalized Second Price (KP 15.5.2)
[image: image75.png]e Fach advertiser interested in bidding on keyword K submits a bid b;,
indicating the price he is willing to pay per click.

e Fach ad is ranked according to its bid b; and ads allocated to slots in this
order.

e Fach winning advertiser pays the minimum bid needed to win the allo-
cated slot. For example, if the advertisers are indexed according to the
slot they are assigned to, with advertiser 1 assigned to the highest slot
(slot 1), then advertiser i’s payment p; is

pi = bi+1 .




Not truthful - KP Figure 15.9, but . . . 
KP has an equilibrium strategy based on valuations and CTRs:

[image: image76.png]LEMMA 15.5.3. Consider n competing advertisers with values v; sorted so that

v > Vg > - > v,. Assuming truthful bidding in the VCG auction, from (15.4) we
have that bidder i’s price-per-click is

k+1

pYCC = Zv] —7 (15.5)

J=i+1 Ci

Then, in GSP, it is a Nash equilibrium for these advertisers to bid (b1,...,b,)
where by > p VCG and b; = pySC fori > 2.




Reserve Prices and Yahoo! - R 5.3
Back to Revenue Maximization (KP 15.6)
Trips to the Moon - maximize the number of cost-sharing participants
Input T, n
while (true)
share := T/n
Ask the n remaining bidders “Will you pay share?”

Input numberWilling
if n == 0


return 0

if n == numberWilling

return n
n := numberWilling
T = 100

n:
10 ($10)
5 ($20)

5

n:
20 ($5)

5 ($20)

2 ($50)

2
n:
10 ($10)
3 ($33.33)
0

Revenue maximization without priors (KP 15.6.1; N 13.3)
Digital goods to be sold at fixed price

Conceptually, order bids descending for obtaining optimal fixed-price and maximize price to fit first i bidders
i
1
2
3
4
5
6
7
8
9
10
b
10
8
6
4
2
1
1
1
1
1
Revenue
10
16
18
16
10
6
7
8
9
10
Using this “directly” is not truthful

Deterministic optimal price auction (DOP) is truthful, but poor revenue (unless appropriate “distributional” assumptions can be made)
[image: image77.png]The deterministic optimal price auction (DOP):
For each bidder i, compute t; = p*(b_;), the optimal fixed
price for the remaining bidders, and use that as the threshold

bid for bidder «.




[image: image78.png]ExaMPLE 15.6.4. Consider a group of bidders of which 11 bidders have value
100 and 1,001 bidders have value 1. The best fixed price is 100 - at that price 11
items can be sold for a total revenue of $1,100. (The only plausible alternative is
to sell to all 1,012 bidders at price $1, which would result in a lower revenue.)

However, if we run the DOP auction on this bid vector, then for each bidder
of value 100, the threshold price that will be used is $1, whereas for each bidder of
value 1, the threshold price is $100, for a total revenue of only $11!




All bidders bidding truthfully, solved optimally

i
1
2
...
11
12
13
...
1011
1012
b
100
100
100
100
1
1
1
1
1

Revenue
100
200
...
1100
12
13
...
1011
1012

DOP making decision for original bidders 1 ... 11 (removing any one of them)
i
1
2
...
10
11
12
...
1010
1011
b
100
100
100
100
1
1
1
1
1
Revenue
100
200
...
1000
11
12
...
1010
1011

Thus, these 11 are committed (individually) at a threshold of 1.

DOP making decision for original bidders 12 ... 1012 (removing any one of them)
i
1
2
...
11
12
13
...
1010
1011
b
100
100
100
100
1
1
1
1
1
Revenue
100
200
...
1100
12
13
...
1010
1011

Thus, these 1001 are out (individually) at a threshold of 100.

DOP revenue is 11
Revenue extraction (KP 15.6.2)

“Trips to the moon” technique is truthful and useful . . .

An approximately optimal auction - random sampling revenue extraction auction (KP 15.6.3; N 13.3.2)
[image: image79.png]DerINITION 15.6.7 (RSRE). The random sampling revenue extraction
auction (RSRE) works as follows:

(1) Randomly partition the bids b into two groups by flipping a fair coin for
each bidder and assigning her bid to b’ or b”.

(2) Compute the optimal fixed-price revenue 77 := R*(b’) and 7" := R*(b").

(3) Run the revenue extractors: pep, on b” and pep, on b’. Thus, the target
revenue for b” is determined by b’ and vice versa.




[image: image80.png]OFP(¥") = 30

b = (20,10,5,5,5,5,1)

pexs(b”)

¥ = (10,8,5,3)
OFP(V') = 16

FIicUurE 15.11. This figure illustrates a possible execution of the RSRE auc-
tion when the entire set of bids is (20,10, 10,8,5,5,5,5,5,3,1). Running the
revenue extractor pes(b’) will not sell to anyone. Running the revenue ex-
tractor pe;g(b”) will sell to the top six bidders at a price of 16/6.




[image: image81.png]THEOREM 15.6.9. The random sampling revenue extraction (RSRE) auction is
truthful and for all bid vectors b, the expected revenue of RSRE is at least R5(b)/4.
Thus, if bidders are truthful, this auction extracts at least R5(v)/4 in expectation.
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