
CSE 6319 Notes 3:  Mechanism Design (Part 2) 
 

(Last updated 3/12/24 3:21 PM) 
 
3.F. MULTI-UNIT AUCTIONS 
 
Uniform-Price for Budgeted Bidders (R 9.2) 
 
 m = number of units 
 
 Besides private valuation vi, each buyer has a public budget Bi 
 

Demand of bidder i at price p:                                                     
 
Utility is still vi - p 
 
Not DSIC (due to “ambiguity” for p = vi, see R p. 115 Example 9.1) - demand reduction for 
reporting a lower vi 

 
Clinching for Budgeted Bidders (R 9.3; PAPERSONE/dobzinski.pdf) 
 

Price “gradually” rises to point where demand for all but one buyer (with largest residual 
demand) is below remaining supply. 
 
If total demand exceeds supply, allocate one unit to largest-residual-demand buyer (and 
continue). 
Otherwise, allocate remaining supply at current price. 
 
DSIC 
 
m = 25 
 

 i Bi vi 
 
 1 100 24 
 2 200 22 
 3 300 20 
 
 s p B1 D1(p) B2 D2(p) B3 D3(p) 
 25 5 100 20 200 40 300 60 
    <----- 20+40 > s - 1 ---->  Highest demand 
 25 12.5 100 8 200 16 300 24 (1 at 12.5) 
    <-----  8+16 < s - 1  ---->  Highest demand 
 24 12.5 100 8 200 16 287.5 23 
 24 12.6 100 7 200 15 287.5 22 (1 at 12.6) 
 23 12.6 100 7 200 15 274.9 21 (1 at 12.6) 
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 22 12.6 100 7 200 15 262.3 20 
 22 13.4 100 7 200 14 262.3 19 (1 at 13.4) 
 21 13.4 100 7 200 14 248.9 17 
 21 14.3 100 6 200 13 248.9 17 (1 at 14.3) 
 20 14.3 100 6 200 13 234.6 16 (1 at 14.3) 
 19 14.3 100 6 200 13 220.3 15 
 19 15.4 100 6 200 12 220.3 14 (1 at 15.4) 
 18 15.4 100 6 200 12 204.9 13 
 18 16.7 100 5 200 11 204.9 12 (1 at 16.7) 
 17 16.7 100 5 200 11 188.2 11 (1 at 16.7) 
 16 16.7 100 5 200 11 (1 at 16.7) 171.5 10 
 15 16.7 100 5 183.3 10 171.5 10 
 15 17.3 100 5 183.3 10 (1 at 17.3) 171.5 9 
 14 17.3 100 5 166 9 171.5 9 
 14 18.5 100 5 166 8 171.5 9 (1 at 18.5) 
 13 18.5 100 5 166 8 153 8 
 13 19.2 100 5 166 8 (1 at 19.2) 153 7 
 12 19.2 100 5 146.8 7 153 7 
 12 20 100 5 (5 at 20) 146.8 7 (7 at 20) 153 0 
 
Clinching with Descending Valuations (PAPERSONE/ausubel.pdf; R Problem 9.2) 
 

Ascending auction with private valuations, but payments are based on prices where demand falls 
below remaining supply 
 
Agent i valuations (for individual units) are downward-sloping vi1 ³ vi2 ³ . . . ³ vik for auction 
with k units (replaces budgets) 
 
m = 5 
 
Marginal Values 1st Unit 2nd Unit 3rd Unit 
Bidder A  123  113  103 
Bidder B  75  5  3 
Bidder C  125  125  49 
Bidder D  85  65  7 
Bidder E  45  25  5 
Bidder F  49  9  3 
 
Price     Demand     Sum 
 A B C D E F 
0 3 3 3 3 3 3 18 
3 3 2 3 3 3 2 16 
5 3 1 3 3 2 2 14 
7 3 1 3 2 2 2 13 
9 3 1 3 2 2 1 12 
25 3 1 3 2 1 1 11 
45 3 1 3 2 0 1 10 
49 3 1 2 2 0 0 8 
65 3 1 2 1 0 0 7 
   Demand of 4  A gets 1st unit at 65 
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Price     Demand     Sum 
 A B C D E F 
75 3 0 2 1 0 0 6 
 3 + 1 = 4 Þ C gets 1st unit at 75 
 2 + 1 = 3 Þ A gets 2nd unit at 75 
85 3 0 2 0 0 0 5 
 2 Þ A gets 3rd unit at 85 
 3 Þ C gets 2nd unit at 85 

 
Nisan survey (PAPERSONE/nisanAmd.pdf, Algorithmic Mechanism Design:  Through the lens of Multi-
unit auctions) 
 

 

 

 
 
 Representations 
 
  Bidding Languages 
 

 

 

 
 
Value Queries - any vi(k) instance in polynomial time in the representation length 
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Communication Queries - values are not provided exhaustively; instead queries are 
posed to the bidders 

 
 (Intractable) General Allocation Algorithm (DP, section 4.1) - O(nm2) time 
 

   
 

 

 

 
 

 Tractable Downward Sloping Valuations via Market Equilibrium and Multiple Binary Searches 
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       k 
 
  vi(k) 0 1 2 3 4 5 6 7 8 
 
  1 0 50 100 150 190 220 240 250 260 
  50 50 50 40 30 20 10 10 
 i 2 0 70 120 170 210 245 275 300 310 
  70 50 50 40 35 30 25 10 
  3 0 60 110 160 200 235 270 295 320 
  60 50 50 40 35 35 25 25 
 
  p m1 m2 m3 S 
 
  10 8 8 8 24 
  20 6 7 8 21 
  30 5 6 6 17 
  35 4 5 6 15 
  40 4 4 4 12 
  50 3 3 3 9 
  60 0 1 1 2 
  70 0 1 0 1 
 
 Intractability for value queries model 
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 Communication Complexity Results 
 

   
 
 DP-based Approximation Scheme (with binary searches, from section 4.4) 
 

   

   

   
 

4. Generality (p. 11 of CSE 5311 Notes 11 
https://ranger.uta.edu/~weems/NOTES5311/NEWNOTES/notes11.pdf ) 

 

 Approximation Algorithm - achieve max/min ratio in  time (k fixed) 

 
 Approximation Scheme - flexible ratio 1 + e in  
 

 Polynomial-time Approximation Scheme -  

 

 Fully PTAS -  time 
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  (Keller, H. et.al. Knapsack Problems, Springer, 2004 is very useful on DP for  
  maximizing value or minimizing number of units) 
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 Payments, Incentives, and Mechanisms 
 

Direct Revelation Mechanism 
 
 Based on Revelation Principle, assume truthful vi(k)  values are provided 
 
VCG Mechanism 
 

  

  
 

“The basic difficulty in the field of Algorithmic Mechanism Design is to 
simultaneously achieve both incentive compatibility and computational 
efficiency.” 

 
Approximation and Incentives 
 

“desire a . . . mechanism that for every given Î > 0 produces an allocation whose 
total value is at least 1 - Î fraction of the optimal one” 
 
Efficient? 
 
Truthful? 
 
Truncation may lose truthfulness (p. 25-26).  (issue with earlier DP-based 
Approximation Scheme) 

 
Maximum in Range Mechanisms 
 

Efficiency issue when maximizing  over all possible allocations  
(m1, ..., mn) 
 
Instead, maximize over a range of possible allocations that are fixed in advance 
 
Assume m is an integer multiple of n2 
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Single Parameter Mechanisms 
 
Single-Minded Bids - bidder i has value vi for at least ki units 
 
Truthful mechanisms are simply those with: 
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Multi-Parameter Mechanisms Beyond VCG? 
 

 
 

 
Randomization 
 

Maximum-in-Distributed-Range Mechanism 
 
Theorem 12 
 

3.G. TRUTHFUL AUCTIONS IN WIN/LOSE SETTINGS (KP 15; N 9.3/9.5; R 7) 
 
Win/Lose Allocation Settings (KP 15.2) 
 

Single-minded for subset of items 
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Allocation Rule 
 

Based on the vector of bids bi, probability (often 0/1) for each bidder winning 
 

 
 
Payment Rule 
 

Based on the vector of bids bi, (expected) payment for each bidder 
 

 
 
Social Surplus and the VCG Mechanism (R 7.2; KP 15.3; N 9.3.3) 
 

 Social Surplus:   
 

  

  
 
Truthfulness and Individually Rational - KP Theorem 15.3.2 
 
Envy-freeness - not guaranteed (KP p. 273) 

 
Applications of VCG (KP 15.4; N 9.3.5) 
 

Shared Communication Channel (knapsack auction restated; KP 15.4.1) 
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Spanning Tree (KP 15.4.2) 
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Another MST Example: 
 

 
 
AB:  9 - 6 = 3  BC:  8 - 5 = 3  CD:  8 - 3 = 5 
 
Aside:  
https://en.wikipedia.org/wiki/Steiner_tree_problem#Steiner_tree_in_graphs_and_variants 

 
Charging for Shortest Path (N 9.3.5.6) 
 

 
 
Shortest-path length without edge (“deleted”) - cost with edge “contracted” 
 
AB:  6 - 2 = 4  BE:  6 - 4 = 2  EF:  7 - 4 = 3 

 
Public Project Issues with VCG (KP 15.4.3; N 9.3.5.5) 
 
 Budget Balance 
 
 Collusion 
 
 (Long term) value and (immediate) payment 
 
Not “Envy-Free” 
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Other Resources: 
 
 “Lovely, but Lonely” paper - PAPERSONE/ausubelMilgrom.pdf 
 

• low revenues 
• non-monotonicity 
• vulnerability to collusion 
• vulnerability to aliases 
• (revelation of too much private information) 

 
 Milgrom book (downloadable from UTA Library) -  
 https://www-degruyter-com.ezproxy.uta.edu/document/doi/10.7312/milg17598/html 

 
3.H. TRUTHFUL AUCTIONS IN WIN/LOSE SETTINGS (CONTINUED) 
 
Sponsored Search Auctions (KP 15.5; N 28; R 2.6/3.5/5.3) 
 

Slot Clickthrough Rates (probabilities?):  c1 ³ c2 ³ . . . ³ ck ³ 0 
 

Determine permutation p of valuations vi (same as bi) to maximize social surplus  
 
VCG auction: 
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Examples (also see KP Figure 15.7): 
 
 k=3, n=4 c1=0.48 c2=0.24 c3=0.16 c4=0.0 
 
   v1=$4  v2=$3  v3=$2  v3=$1 
 
 p1 = v2(c1 - c2)/c1 + v3(c2 - c3)/c1 + v4(c3 - c4)/c1 

     = 3(0.48 - 0.24)/0.48 + 2(0.24 - 0.16)/0.48 + 1(0.16 - 0.0)/0.48 = $2.16667 
 
 p2 = v3(c2 - c3)/c2 + v4(c3 - c4)/c2 = 2(0.24 - 0.16)/0.24 + 1(0.16 - 0.0)/0.24 =$1.33333 
 
 p3 = v4(c3 - c4)/c3 = 1(0.16 - 0.0)/0.16 = $1.00 
 
Another view of the VCG auction for sponsored search (KP 15.5.1) 
 
 The entire auction may be viewed as the sum of k single-slot auctions . . . 
 
 Leads to the entire auction being truthful (KP Lemma 15.5.2) 
 
Generalized First Price - Historical Use . . . 
 
Generalized Second Price (KP 15.5.2) 
 

 
 
Not truthful - KP Figure 15.9, but . . .  
 
KP has an equilibrium strategy based on valuations and CTRs: 
 

 
 



 40 
Reserve Prices and Yahoo! - R 5.3 
 
Back to Revenue Maximization (KP 15.6) 
 

Trips to the Moon - maximize the number of cost-sharing participants 
 

Input T, n 
while (true) 

share := T/n 
Ask the n remaining bidders “Will you pay share?” 
Input numberWilling 
if n == 0 
 return 0 
if n == numberWilling 
 return n 
n := numberWilling 

 
T = 100 
 
n: 10 ($10) 5 ($20)  5 
n: 20 ($5)  5 ($20)  2 ($50)  2 
n: 10 ($10) 3 ($33.33) 0 

 
Revenue maximization without priors (KP 15.6.1; N 13.3) 
 

Digital goods to be sold at fixed price 
 
Conceptually, order bids descending for obtaining optimal fixed-price and 
maximize price to fit first i bidders 
 
i 1 2 3 4 5 6 7 8 9 10 
b 10 8 6 4 2 1 1 1 1 1 
Revenue 10 16 18 16 10 6 7 8 9 10 
 
Using this “directly” is not truthful 
 
Deterministic optimal price auction (DOP) is truthful, but poor revenue (unless 
appropriate “distributional” assumptions can be made) 
 

 
 



 41 

 
 
All bidders bidding truthfully, solved optimally 
i 1 2 ... 11 12 13 ... 1011 1012 
b 100 100 100 100 1 1 1 1 1 
Revenue 100 200 ... 1100 12 13 ... 1011 1012  
 
DOP making decision for original bidders 1 ... 11 (removing any one of them) 
i 1 2 ... 10 11 12 ... 1010 1011 
b 100 100 100 100 1 1 1 1 1 
Revenue 100 200 ... 1000 11 12 ... 1010 1011  
 
Thus, these 11 are committed (individually) at a threshold of 1. 
 
DOP making decision for original bidders 12 ... 1012 (removing any one of them) 
i 1 2 ... 11 12 13 ... 1010 1011 
b 100 100 100 100 1 1 1 1 1 
Revenue 100 200 ... 1100 12 13 ... 1010 1011  
 
Thus, these 1001 are out (individually) at a threshold of 100. 
 
DOP revenue is 11 
 

Revenue extraction (KP 15.6.2) 
 
 “Trips to the moon” technique is truthful and useful . . . 
 
An approximately optimal auction - random sampling revenue extraction auction (KP 
15.6.3; N 13.3.2) 
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