CSE 6319 Notes 3: Mechanism Design (Part 3)

3.I. VCG and Scoring Rules (KP 16; N 9; R 7)

Social Surplus Maximization and the General VCG Mechanism (KP 16.2)
Example 16.2.4-Roads for three cities
Example 16.2.5-Employee housing
Example 16.2.8-Spectrum auctions
Scoring Rules (KP 16.3-SKIP)

3.J. Combinatorial Auctions (N 11; R 8)

Introduction (N 11.1)
m indivisible items, n bidders
Definition 11.1 A valuation v is a real-valued function that for each subset S of items, $v(S)$ is the value that bidder i obtains if he receives this bundle of items. A valuation must have "free disposal," i.e., be monotone: for $S \subseteq T$ we have that $v(S) \leq v(T)$, and it should be "normalized": $v(\emptyset)=0$.

Sets S and T with $S \cap T=\varnothing$:
Complements: $v(S \cup T)>v(S)+v(T)$
Substitutes: $v(S \cup T)<v(S)+v(T)$
Definition 11.2 An allocation of the items among the bidders is S_{1}, \ldots, S_{n} where $S_{i} \cap S_{j}=\emptyset$ for every $i \neq j$. The social welfare obtained by an allocation is $\sum_{i} v_{i}\left(S_{i}\right)$. A socially efficient allocation (among bidders with valuations v_{1}, \ldots, v_{n}) is an allocation with maximum social welfare among all allocations.

Issues
Computational complexity
Representation and communication
Strategic behavior

Applications: bichler.pdf newman.pdf parkes_iBundle.pdf

Single-Minded Case (N 11.2)

Definition 11.3 A valuation v is called single minded if there exists a bundle of items S^{*} and a value $v^{*} \in \mathfrak{R}^{+}$such that $v(S)=v^{*}$ for all $S \supseteq S^{*}$, and $v(S)=0$ for all other S. A single-minded bid is the pair $\left(S^{*}, v^{*}\right)$.

Definition 11.4 The allocation problem among single-minded bidders is the following:
INPUT: $\left(S_{i}^{*}, v_{i}^{*}\right)$ for each bidder $i=1, \ldots, n$.
OUTPUT: A subset of winning bids $W \subseteq\{1, \ldots, n\}$ such that for every $i \neq j \in$ $W, S_{i}^{*} \cap S_{j}^{*}=\emptyset$ (i.e., the winners are compatible with each other) with maximum social welfare $\sum_{i \in W} v_{i}^{*}$.

Intractability
Proposition 11.5 The allocation problem among single-minded bidders is NPhard. More precisely, the decision problem of whether the optimal allocation has social welfare of at least k (where k is an additional part of the input) is NP-complete.
(Proof is by reduction from Independent-Set)
Proposition 11.6 Approximating the optimal allocation among single-minded bidders to within a factor better than $m^{1 / 2-\epsilon}$ is $N P$-hard.

Incentive-Compatible Approximation

Definition 11.7 Let V_{sm} denote the set of all single-minded bids on m items, and let A be the set of all allocations of the m items between n players. A mechanism for single-minded bidders is composed of an allocation mechanism $f:\left(V_{\mathrm{sm}}\right)^{n} \rightarrow$ A and payment functions $p_{i}:\left(V_{\mathrm{sm}}\right)^{n} \rightarrow \Re$ for $i=1, \ldots, n$. The mechanism is computationally efficient if f and all p_{i} can be computed in polynomial time. The mechanism is incentive compatible (in dominant strategies) if for every i, and every $v_{1}, \ldots, v_{n}, v_{i}^{\prime} \in V_{\mathrm{sm}}$, we have that $v_{i}(a)-p_{i}\left(v_{i}, v_{-i}\right) \geq v_{i}\left(a^{\prime}\right)-p_{i}\left(v_{i}^{\prime}, v_{-i}\right)$, where $a=f\left(v_{i}, v_{-i}\right), a^{\prime}=f\left(v_{i}^{\prime}, v_{-i}\right)$ and $v_{i}(a)=v_{i}$ if i wins in a and zero otherwise.

Issue with VCG - loses incentive compatibility
Theorem 11.8 The greedy mechanism is efficiently computable, incentive compatible, and produces $a \sqrt{m}$ approximation of the optimal social welfare.

The Greedy Mechanism for Single-Minded Bidders:

Initialization:

- Reorder the bids such that $v_{1}^{*} / \sqrt{\left|S_{1}^{*}\right|} \geq v_{2}^{*} / \sqrt{\left|S_{2}^{*}\right|} \geq \ldots \geq v_{n}^{*} / \sqrt{\left|S_{n}^{*}\right|}$.
- $W \leftarrow \emptyset$.

For $\mathbf{i}=1 \ldots \mathbf{n}$ do: \quad if $S_{i}^{*} \cap\left(\bigcup_{j \in W} S_{j}^{*}\right)=\emptyset$ then $W \leftarrow W \cup\{i\}$.
Output:
Allocation: The set of winners is W .
Payments: For each $i \in W, p_{i}=v_{j}^{*} / \sqrt{\left|S_{j}^{*}\right| /\left|S_{i}^{*}\right|}$, where j is the smallest index such that $S_{i}^{*} \cap S_{j}^{*} \neq \emptyset$, and for all $k<j, k \neq i$, $S_{k}^{*} \cap S_{j}^{*}=\emptyset$ (if no such j exists then $p_{i}=0$).

Figure 11.1. The mechanism achieves a \sqrt{m} approximation for combinatorial auctions with single-minded bidders.
(For Payments, S_{j} is the first bundle after S_{i} with an element in common with S_{i}. Thus, S_{j} is the first bundle "disqualified" from W by $S_{i \text {. }}$)

Lemma 11.9 A mechanism for single-minded bidders in which losers pay 0 is incentive compatible if and only if it satisfies the following two conditions:
(i) Monotonicity: A bidder who wins with bid $\left(S_{i}^{*}, v_{i}^{*}\right)$ keeps winning for any $v_{i}^{\prime}>v_{i}^{*}$ and for any $S_{i}^{\prime} \subset S_{i}^{*}$ (for any fixed settings of the other bids).
(ii) Critical Payment: A bidder who wins pays the minimum value needed for winning: the infimum of all values v_{i}^{\prime} such that $\left(S_{i}^{*}, v_{i}^{\prime}\right)$ still wins.

Lemma 11.10 Let O PT be an allocation (i.e., set of winners) with maximum value of $\sum_{i \in O P T} v_{i}^{*}$, and let W be the output of the algorithm, then $\sum_{i \in O P T} v_{i}^{*} \leq$ $\sqrt{m} \sum_{i \in W} v_{i}^{*}$.

Walrasian Equilibrium and the LP Relaxation (N 11.3)
Winner Determination Problem $=$ Determine the Allocation
May be stated as a (integer/fractional) linear program (N p. 276)
Dual LP Relaxation also includes prices and utilities
Definition 11.11 For a given bidder valuation v_{i} and given item prices p_{1}, \ldots, p_{m}, a bundle T is called a demand of bidder i if for every other bundle $S \subseteq M$ we have that $v_{i}(S)-\sum_{j \in S} p_{j} \leq v_{i}(T)-\sum_{j \in T} p_{j}$.

Definition 11.12 A set of nonnegative prices $p_{1}^{*}, \ldots, p_{m}^{*}$ and an allocation $S_{1}^{*}, \ldots, S_{m}^{*}$ of the items is a Walrasian equilibrium if for every player i, S_{i}^{*} is a demand of bidder i at prices $p_{1}^{*}, \ldots, p_{m}^{*}$ and for any item j that is not allocated (i.e., $j \notin \cup_{i=1}^{n} S_{i}^{*}$) we have $p_{j}^{*}=0$.

Theorem 11.13 (The First Welfare Theorem) Let $p_{1}^{*}, \ldots, p_{m}^{*}$ and
$S_{1}^{*}, \ldots, S_{n}^{*}$ be a Walrasian equilibrium, then the allocation $S_{1}^{*}, \ldots, S_{n}^{*}$ maximizes social welfare. Moreover, it even maximizes social welfare over all fractional allocations, i.e., let $\left\{X_{i, S}^{*}\right\}_{i, S}$ be a feasible solution to the linear programming relaxation. Then, $\sum_{i=1}^{n} v_{i}\left(S_{i}^{*}\right) \geq \sum_{i \in N, S \subseteq M} X_{i, S}^{*} v_{i}(S)$.

Theorem 11.15 (The Second Welfare Theorem) If an integral optimal solution exists for LPR, then a Walrasian equilibrium whose allocation is the given solution also exists.

Corollary 11.16 A Walrasian equilibrium exists in a combinatorial-auction environment if and only if the corresponding linear programming relaxation admits an integral optimal solution.

Bidding Languages (N 11.4)
Atom: (S, p) - price p for a bundle S of items
($\{T V$, DVD player $\}, \$ 100$)
OR: any subset of the atoms may be satisfied, but an item may be matched only once

$$
(\{\mathrm{TV}\}, \$ 200) \mathrm{OR}(\{\mathrm{PC}\}, \$ 700)
$$

XOR: only one of the atoms may be satisfied

$$
(\{\mathrm{TV}\}, \$ 200) \mathrm{XOR}(\{\mathrm{PC}\}, \$ 700)
$$

Maximization:
More formally, both OR and XOR bids are composed of a collection of pairs $\left(S_{i}, p_{i}\right)$, where each S_{i} is a subset of the items, and p_{i} is the maximum price that he is willing to pay for that subset. For the valuation $v=\left(S_{1}, p_{1}\right) X O R, \ldots, X O R$ $\left(S_{k}, p_{k}\right)$, the value of $v(S)$ is defined to be $\max _{i \mid S_{i} \subseteq S} p_{i}$. For the valuation $v=$ $\left(S_{1}, p_{1}\right) O R, \ldots, O R\left(S_{k}, p_{k}\right)$, one must be a little careful and the value of $v(S)$ is defined to be the maximum over all possible "valid collections" W, of the value of $\sum_{i \in W} p_{i}$, where W is a valid collection of pairs if for all $i \neq j \in W, S_{i} \cap S_{j}=\emptyset$.

Combinations of OR and XOR
Definition 11.18 Let v and u be valuations, then $(v X O R u)$ and $(v O R u)$ are valuations and are defined as follows:

- $(v \times O R u)(S)=\max (v(S), u(S))$.
- $(v$ OR $u)(S)=\max _{R, T \subseteq S, R \cap T=\emptyset} v(R)+u(T)$

Negative results on "compactly representing" downward sloping valuations . .

Dummy Items
Representing XORs as ORs using dummy items:

$$
\left(S_{1}, p_{1}\right) \text { XOR }\left(S_{2}, p_{2}\right) \text { becomes }\left(S_{1} \cup\{\mathrm{~d}\}, p_{1}\right) \text { OR }\left(S_{2} \cup\{\mathrm{~d}\}, p_{2}\right)
$$

OR* - Implicitly augments each set of items with the same dummy item
Formally, we let each bidder i have its own set of dummy items D_{i}, which only he can bid on. An OR* bid by bidder i is an OR bid on the augmented set of items $M \cup D_{i}$. The value that an OR* bid gives to a bundle $S \subseteq M$ is the value given by the OR bid to $S \cup D_{i}$. Thus, for example, for the set of items $M=\{a, b, c\}$, the OR^{*} $\operatorname{bid}(\{a, d\}, 1) O R(\{b, d\}, 1) O R(\{c\}, 1)$, where d is a dummy item, is equivalent to $((\{a\}, 1) X O R(\{b\}, 1)) O R(\{c\}, 1)$.

An equivalent but more appealing "user interface" is to let bidders report a set of atomic bids together with "constraints" that signify which bids are mutually exclusive. Each constraint can then be converted into a dummy item that is added to the conflicting atomic bids. Despite its apparent simplicity, this language can simulate general OR/XOR formulae.

Theorem 11.21 Any valuation that can be represented by $O R / X O R$ formula of size s can be represented by $O R^{*}$ bids of size s, using at most s^{2} dummy items.

Iterative Auctions: The Query Model
Concept: Develop valuation over time rather than expecting complete elicitation upfront.
Value query: The auctioneer presents a bundle S, the bidder reports his value $v(S)$ for this bundle.

Demand query (with item prices ${ }^{2}$): The auctioneer presents a vector of item prices p_{1}, \ldots, p_{m}; the bidder reports a demand bundle under these prices, i.e., some set S that maximizes $v(S)-\sum_{i \in S} p_{i}$.

Relationship:
Lemma 11.22 A value query may be simulated by $m t$ demand queries, where t is the number of bits of precision in the representation of a bundle's value.

Lemma 11.23 An exponential number of value queries may be required for simulating a single demand query.

Linear programming for demand queries . .
N p. 286 (classes of CA solvers and quality of approximation) and 287 (classes of valuations)

Communication Complexity (N 11.6)
https://amturing.acm.org/award_winners/yao_1611524.cfm
Theorem 11.27 For every $\epsilon>0$, approximating the social welfare in a combinatorial auction to within a factor strictly smaller than $\min \left\{n, m^{1 / 2-\epsilon}\right\}$ requires exponential communication.

Ascending Auctions (N 11.7)
Ascending Item-Price Auctions
Definition 11.28 A valuation v_{i} satisfies the substitutes (or gross-substitutes) property if for every pair of item-price vectors $\vec{q} \geq \vec{p}$ (coordinate-wise comparison), we have that the demand at prices q contains all items in the demand at prices p whose price remained constant. Formally, for every $A \in$ $\operatorname{argmax}_{S}\left\{v(S)-\sum_{j \in S} p_{j}\right\}$, there exists $D \in \operatorname{argmax}_{S}\left\{v(S)-\sum_{j \in S} q_{j}\right\}$, such that $D \supseteq\left\{j \in A \mid p_{j}=q_{j}\right\}$.
(Goods may be substitutes or independent, but not complements.)
Also implies submodularity, for every two bundles S and T,
$v(S)+v(T) \geq v(S \cup T)+v(S \cap T)$
An item-price ascending auction for substitutes valuations:
Initialization:
For every item $j \in M$, set $p_{j} \leftarrow 0$.
For every bidder i let $S_{i} \leftarrow \emptyset$.
Repeat
For each i, let D_{i} be the demand of i at the following prices:
p_{j} for $j \in S_{i}$ and $p_{j}+\epsilon$ for $j \notin S_{i}$.
If for all $i S_{i}=D_{i}$, exit the loop;
Find a bidder i with $S_{i} \neq D_{i}$ and update:

- For every item $j \in D_{i} \backslash S_{i}$, set $p_{j} \leftarrow p_{j}+\epsilon$
- $S_{i} \leftarrow D_{i}$
- For every bidder $k \neq i, S_{k} \leftarrow S_{k} \backslash D_{i}$

Finally: Output the allocation S_{1}, \ldots, S_{n}.
Figure 11.3. An item-price ascending auction that ends up with a nearly optimal allocation when bidders' valuations have the (gross) substitutes property.

Definition 11.29 An allocation S_{1}, \ldots, S_{n} and a prices p_{1}, \ldots, p_{m} are an ϵ-Walrasian equilibrium if $\bigcup_{i} S_{i} \supseteq\left\{j \mid p_{j}>0\right\}$ and for each i, S_{i} is a demand of i at prices p_{j} for $j \in S_{i}$ and $p_{j}+\epsilon$ for $j \notin S_{i}$.

Theorem 11.30 For bidders with substitutes valuations, the auction described in Figure 11.3 ends with an ϵ-Walrasian equilibrium. In particular, the allocation achieves welfare that is within $n \epsilon$ from the optimal social welfare.

Claim 11.31 At every stage of the auction, for every bidder $i, S_{i} \subseteq D_{i}$.
$m \cdot v_{\max } l \in$ stages (iterations of Repeat)
Similar to the Uniform-Price Multi-Unit Auction for Budgeted Bidders, demand reduction to improve utility (payoff) is possible (N Example 11.32)

Ascending Bundle-Price Auction
$p_{i}(S)$ - personalized bundle price on bundle S for bidder i
Demand for bidder i are the bundles that maximize $v_{i}(S)-p_{i}(S)$

A bundle price auction:

Initialization: For every player i and bundle S, let $p_{i}(S) \leftarrow 0$.
Repeat

- Find an allocation T_{1}, \ldots, T_{n} that maximizes revenue at current prices, i.e., $\sum_{i=1}^{n} p_{i}\left(T_{i}\right) \geq \sum_{i=1}^{n} p_{i}\left(Y_{i}\right)$ for any other allocation Y_{1}, \ldots, Y_{n}.
(Bundles with zero prices will not be allocated, i.e., $p_{i}\left(T_{i}\right)>0$ for eve ry i.)
- Let L be the set of losing bidders, i.e., $L=\left\{i \mid T_{i}=\emptyset\right\}$.
- For every $i \in L$ let D_{i} be a demand bundle of i under the prices $\overrightarrow{p_{i}}$.
- If for all $i \in L, D_{i}=\emptyset$ then terminate.
- For all $i \in L$ with $D_{i} \neq \emptyset$, let $p_{i}\left(D_{i}\right) \leftarrow p_{i}\left(D_{i}\right)+\epsilon$.

Figure 11.4. A bundle price auction which terminates with the socially efficient allocation for any profile of bidders.

Definition 11.33 Personalized bundle prices $\vec{p}=\left\{p_{i}(S)\right\}$ and an allocation $S=\left(S_{1}, \ldots, S_{n}\right)$ are called a competitive equilibrium if:

- For every bidder i, S_{i} is a demand bundle, i.e., for any other bundle $T_{i} \subseteq M$, $v_{i}\left(S_{i}\right)-p_{i}\left(S_{i}\right) \geq v_{i}\left(T_{i}\right)-p_{i}\left(T_{i}\right)$.
- The allocation S maximizes seller's revenue under the current prices, i.e., for any other allocation $\left(T_{1}, \ldots, T_{n}\right), \sum_{i=1}^{n} p_{i}\left(S_{i}\right) \geq \sum_{i=1}^{n} p_{i}\left(T_{i}\right)$.

Definition 11.35 A bundle S is an ϵ-demand for a player i under the bundle prices $\overrightarrow{p_{i}}$ if for any other bundle $T, v_{i}(S)-p_{i}(S) \geq v_{i}(T)-p_{i}(T)-\epsilon$. An ϵ-competitive equilibrium is similar to a competitive equilibrium (Definition 11.33), except each bidder receives an ϵ-demand under the equilibrium prices.

Theorem 11.36 For any profile of valuations, the bundle-price auction described in Figure 11.4 terminates with an ϵ-competitive equilibrium. In particular, the welfare obtained is within $n \in$ from the optimal social welfare.

Finding each allocation is NP-hard.

R 8 and appendix to first chapter of Milgrom book https://www.amazon.com/dp/023117599x
https://www.fcc.gov/auctions
Goal: Reallocate 500 MHz from TV to wireless internet (and reduce US national debt)

Concepts:

Forward auction to allocate bandwidth (upload, download, interference)
Vendors need channels per "partial economic area"
Figure 1. Interference graph visualizing the FCC's constraint data ${ }^{9}$ (2 990 stations; 2575466 channel-specific interference constraints).

Reverse auction to acquire bandwidth
UHF stations get money and possibly VHF channel assignment
VHF stations get money and go out of business
Value index $=(\text { population served } \cdot \text { degree of interference })^{0.5}$
Opening bid total \$120B with goal of decreasing to \$86B
Use of SAT solver to check feasibility of "repacking"
(potassco.org Knuth: www.amazon.com/dp/0134397606)
Forward Auction Features:
Multiple Round Simultaneous Clock Auctions
Rule: If the price isn't increasing, can't decrease demand
Rule: May not increase overall activity from round to round

Rule: Up-front cash deposit to cover activity
Mandatory bid increments to avoid "signaling"
Bidders must avoid "exposure problem"

3.K. MATChing MARKETS

Maximum Weighted Matching (Assignment Problem) (KP 17.1)
Notes 1, p. 5 (KP 3.2) introduced:
Maximum matching (bipartite)
Minimum vertex cover
Hall's marriage theorem
Konig's Lemma: | maximum matching | = | minimum vertex cover |
Hide and Seek game
Matching market problem:
Input: valuations for n buyers on n items (one seller)
Find price vector p^{*} and maximum matching M to maximize the social surplus

$$
\sum_{i}\left(v_{i M(i)}-p_{M(i)}^{*}\right)+\sum_{j} p_{j}^{*}=\sum_{i} v_{i M(i)}
$$

Map this need to generalized König's Lemma:
Theorem 17.1.1. Given a nonnegative matrix $V=\left(v_{i j}\right)_{n \times n}$, let

$$
K:=\left\{(\mathbf{u}, \mathbf{p}) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: \quad u_{i}, p_{j} \geq 0 \text { and } u_{i}+p_{j} \geq v_{i j} \forall i, j\right\} .
$$

Then

$$
\min _{(\mathbf{u}, \mathbf{p}) \in K}\left\{\sum_{i} u_{i}+\sum_{j} p_{j}\right\}=\max _{\text {matchings } M}\left\{\sum_{i} v_{i, M(i)}\right\} .
$$

(\mathbf{u}, \mathbf{p}) is a minimum (fractional) cover. M is a maximum weight matching.
Observation: u_{i} and p_{j} cannot exceed the largest value in V.
Classic Algorithms for Matching:
Minimization instead of maximization . . .
Integers instead of floating-point

Trivial: $\mathrm{O}\left(n^{4}\right)$

Start with trivial matching
Iteratively find negative cycles to improve (Floyd-Warshall) Hungarian method: $\mathrm{O}\left(n^{3}\right)$

Papadimitriou \& Steiglitz https://www.amazon.com/dp/0486402584/
Knuth https://www-cs-faculty.stanford.edu/~knuth/sgb.html

Envy-Free Prices (KP 17.2)

Preferred item(s) - Based on price vector \mathbf{p} and buyer i, item j such that

$$
\forall k \quad v_{i j}-p_{j} \geq v_{i k}-p_{k} \text { and } v_{i j} \geq p_{j}
$$

Demand graph $D(\mathbf{p})$

Bipartite graph connecting buyers to their preferred items
\mathbf{p} is envy-free if $D(\mathbf{p})$ is a perfect matching
Lemma 17.2.2. Let $V=\left(v_{i j}\right)_{n \times n}, \mathbf{u}, \mathbf{p} \in \mathbb{R}^{n}$, all nonnegative, and let M be a perfect matching from $[n]$ to $[n]$. The following are equivalent:
(i) (\mathbf{u}, \mathbf{p}) is a minimum cover of V and M is a maximum weight matching for V.
(ii) The prices \mathbf{p} are envy-free prices, M is contained in the demand graph $D(\mathbf{p})$, and $u_{i}=v_{i M(i)}-p_{M(i)}$.

Corollary 17.2.3. Let \mathbf{p} be an envy-free pricing for V and let M be a perfect matching of buyers to items. Then M is a maximum weight matching for V if and only if it is contained in $D(\mathbf{p})$.

Lemma 17.2.4. The envy-friee price vectors for $V=\left(v_{i j}\right)_{n \times n}$ form a lattice: Let \mathbf{p} and \mathbf{q} be two vectors of envy-free prices. Then, defining

$$
a \wedge b:=\min (a, b) \quad \text { and } \quad a \vee b:=\max (a, b),
$$

the two price vectors

$$
\mathbf{p} \wedge \mathbf{q}=\left(p_{1} \wedge q_{1}, \ldots, p_{n} \wedge q_{n}\right) \quad \text { and } \quad \mathbf{p} \vee \mathbf{q}=\left(p_{1} \vee q_{1}, \ldots, p_{n} \vee q_{n}\right)
$$

are also envy-free.
Corollary 17.2.5. Let \mathbf{p} minimize $\sum_{j} p_{j}$ among all envy-free price vectors for V. Then:
(i) Every envy-free price vector \mathbf{q} satisfies $p_{i} \leq q_{i}$ for all i.
(ii) $\min _{j} p_{j}=0$.

Theorem 17.2.6. Given an $n \times n$ nonnegative valuation matrix V, let M^{V} be a maximum weight matching and let $\left\|M^{V}\right\|$ be its weight; that is, $\left\|M^{V}\right\|=$ $\sum_{i} v_{i M^{V}(i)}$. Write V_{-i} for the matrix obtained by replacing row i of V by $\mathbf{0}$. Then the lowest envy-free price vector \mathbf{p} for V and the corresponding utility vector \mathbf{u} are given by

$$
\begin{align*}
M^{V}(i)=j \Longrightarrow p_{j} & =\left\|M^{V_{-i}}\right\|-\left(\left\|M^{V}\right\|-v_{i j}\right), \tag{17.5}\\
u_{i} & =\left\|M^{V}\right\|-\left\|M^{V_{-i}}\right\| \quad \forall i . \tag{17.6}
\end{align*}
$$

COROLLARY 17.2.9 gives symmetric details for the highest envy-free price vector
Introducing seller value s_{j} (i.e. reserve price) (LP 17.2.2)
Replace each $v_{i j}$ by $\max \left(v_{i j}-s_{j}, 0\right)$
Envy-Free Division of Rent (KP 17.3; cake.sun.pdf cake.su.pdf)
Previous use of Sperner's lemma for cake division may be adapted to rent problem (indivisible rooms). P. 940 of cake.su.pdf alludes to this.

```
https://www.nytimes.com/interactive/2014/science/rent-division-calculator.html
```

Assuming that at least one matching has weights whose sum is no less than the sum for the lowest envy-free rent vector (THEOREM 17.2.6) and no more than the sum for the highest envyfree rent vector (COROLLARY 17.2.9), envy-free rent division may be achieved. (KP p. 305).
https://ranger.uta.edu/~weems/NOTES6319/AUCTION/fairRent.c
Maximum Matching by Ascending Auctions (KP 17.4)
V is a non-negative integer matrix
Much like "item-price ascending auction for substitutes valuations"

- Fix the minimum bid increment $\delta=1 /(n+1)$.
- Initialize the prices \mathbf{p} of all items to 0 and set the matching M of bidders to items to be empty.
- As long as M is not perfect:
- one unmatched bidder i selects an item j in his demand set

$$
D_{i}(\mathbf{p}):=\left\{j \mid v_{i j}-p_{j} \geq v_{i k}-p_{k} \quad \forall k \quad \text { and } v_{i j} \geq p_{j}\right\}
$$

and bids $p_{j}+\delta$ on it.
(We will see that the demand set $D_{i}(\mathbf{p})$ is nonempty.)

- If j is unmatched, then $M(i):=j$; otherwise, say $M(\ell)=j$, remove (ℓ, j) from the matching and add (i, j), so that $M(i):=j$.
- Increase p_{j} by δ.

Theorem 17.4.1. Suppose that the elements of the valuation matrix $V=\left(v_{i j}\right)$ are integers. Then the above auction terminates with a maximum weight matching M, and the final prices \mathbf{p} satisfy

$$
\begin{equation*}
M(i)=j \quad \Longrightarrow \quad v_{i j}-p_{j} \geq v_{i k}-p_{k}-\delta \quad \forall k \tag{17.11}
\end{equation*}
$$

Matching Buyers and Sellers (Assignment Games) (KP 17.5)

n buyers, n sellers, $v_{i j}$ is the value i assigns to house j (value to owner is 0)
j selling to i at price p_{j} gives utility of $u_{i}=v_{i j}-p_{j}$
Definition 17.5.1. An outcome ($M, \mathbf{u}, \mathbf{p}$) of the assignment game is a matching M between buyers and sellers and a partition $\left(u_{i}, p_{j}\right)$ of the value $v_{i j}$ on every matched edge; i.e., $u_{i}+p_{j}=v_{i j}$, where $u_{i}, p_{j} \geq 0$ for all i, j. If buyer i is unmatched, we set $u_{i}=0$. Similarly, $p_{j}=0$ if seller j is unmatched.

We say the outcome is stable ${ }^{2}$ if $u_{i}+p_{j} \geq v_{i j}$ for all i, j.

Proposition 17.5.2. An outcome ($M, \mathbf{u}, \mathbf{p}$) is stable if and only if M is a maximum weight matching for V and (\mathbf{u}, \mathbf{p}) is a minimum cover for V. In particular, every maximum weight matching supports a stable outcome.

Definition 17.5.3. Let $(M, \mathbf{u}, \mathbf{p})$ be an outcome of the assignment game. Define the excess β_{i} of buyer i to be the difference between his utility and his best outside option ${ }^{3}$; i.e., (denoting $x_{+}:=\max (x, 0)$),

$$
\beta_{i}:=u_{i}-\max _{k}\left\{\left(v_{i k}-p_{k}\right)_{+}:(i, k) \notin M\right\} .
$$

Similarly, the excess s_{j} of seller j is

$$
s_{j}:=p_{j}-\max _{\ell}\left\{\left(v_{\ell, j}-u_{\ell}\right)_{+}:(\ell, j) \notin M\right\} .
$$

The outcome is balanced if it is stable and, for every matched edge (i, j), we have $\beta_{i}=s_{j}$.

Theorem 17.5.5. Every assignment game has a balanced outcome. Moreover, the following process converges to a balanced outcome: Start with the minimum cover (\mathbf{u}, \mathbf{p}) where \mathbf{p} is the vector of lowest envy-free prices and a maximum weight matching M. Repeatedly pick an edge in M to balance, ensuring that every edge in M is picked infinitely often.

Lemma 17.5.6. Let $(M, \mathbf{u}, \mathbf{p})$ be a stable outcome with $\beta_{i} \geq s_{j} \geq 0$ for every $(i, j) \in M$. Pick a pair $(i, j) \in M$ with $\beta_{i}>s_{j}$ and balance the pair by performing the update

$$
u_{i}^{\prime}:=u_{i}-\frac{\beta_{i}-s_{j}}{2} \quad \text { and } \quad p_{j}^{\prime}:=p_{j}+\frac{\beta_{i}-s_{j}}{2},
$$

leaving all other utilities andd profits unchanged. Then the new outcome is stable and has excesses $\beta_{i}^{\prime}=s_{j}^{\prime}$ and $\beta_{k}^{\prime} \geq s_{\ell}^{\prime} \geq 0$ for all $(k, \ell) \in M$.

(LP 17.5.1 Positive seller values)

Application to Weighted Hide-and-Seek Games (KP 17.6)
Instead of $0 / 1$ weights (section 3.2), general payoffs $h_{i j}$ are used.
Theorem 17.1.1 is applied to obtain minimax result for zero-sum game.
Example 17.6.2

