CSE 6319 Notes 4: Adaptive Decision Making
(Last updated 4/16/24 3:08 PM)
R 16/17/18; N 4; KP 18
(Best. Book. Ever. on such things ... https://www.amazon.com/dp/0521841089/ )
(Best. 35 pages. Ever. on such things . .. Chapter 7 of http://www.masfoundations.org )
(If you don’t know him . . ., you should . . . https://en.wikipedia.org/wiki/Leslie valiant )
(Fun with convergence . . . https://en.wikipedia.org/wiki/Collatz_conjecture )

1 hear the voices, and I read the front page, and I know the speculation. But I'm the decider, and 1
decide what is best. George W. Bush

https://en.wikipedia.org/wiki/Fictitious_play 18 an early slow learning approach to Nash equilibria (
berger.pdf robinson.pdf ) Java code is on the Webpage.

4.A. BEST-RESPONSE DYNAMICS

While the current outcome s is not a pure Nash equilibrium
pick an arbitrary agent i and an arbitrary beneficial deviation s';
update the outcome to (s', -/)

Best-response dynamics converges for potential games (R p. 217), but possibly using an
exponential number of iterations.

Approximate Pure Nash Equilibria in Selfish Routing Games
(R) Definitions 14.5/16.2: e-Pure Nash Equilibrium

While the current outcome s is not a e-PNE
among all agents with an e-move, let i denote an
agent who can obtain the /argest cost decrease
update the outcome to (s', -/)

Theorem 16.3: Consider an atomic selfish routing game (Notes 2, p. 3) where:

1. All players have a common source vertex and a common sink vertex.

2. Cost functions satisfy the “a-bounded jump condition,” meaning c.(z + 1) € [c.(z), o -
ce(z)] for every edge e and positive integer x.

8. The MaxGain variant of e-best-response dynamics is used: in every iteration, among
players with an e-move available, the player who can obtain the biggest absolute cost
decrease moves to its minimum-cost deviation.

Then, an €-PNE is reached in (5% log M) iterations.

‘I)min



x - number of players using an edge

k - number of agents

€ - maximum deviation from PNE for any agent

@ - potential function for atomic selfish routing game

a - from the a-bounded jump condition, this constant implies that when a new player is added to an
edge, the cost to all players using that edge increases by a most a factor of «.

Fast Convergence for Smooth Potential Games (skip)
4.B. NO-REGRET DYNAMICS
The Model

At timet =1,2,...,T:

— A decision-maker picks a mixed strategy p' — that is, a probability distribution
— over its actions A.

— An adversary picks a cost vector ¢t : A — [-1, 1].

— An action a' is chosen according to the distribution p’, and the decision-maker
incurs cost ¢!(a*). The decision-maker learns the entire cost vector ¢, not just the
realized cost c'(at).

Universally consistent = Hannan consistent = No-regret (sublinear regret)

1 T
(External) Regret of an action sequence @ » - -+ -@" is (total loss - best single action)
1
Hyew-  Yew
t=1 min(aeA4) =1
(Important that min is outside the summation. See R p. 232)

Definition 17.3 (No-Regret Algorithm) . . . for every € > 0 there exists a sufficiently large time
horizon T(€) . . . the expected regret is at most €.

Online Decision Making

Binary prediction with expert advice and a perfect expert, KP example 18.1.1 - stock market
(R Problem 17.2)

Majority of leaders (those without any mistakes) - guarantees no more than lg » mistakes

Follow random leader (FRL) - guarantees no more than In n expected mistakes



Function of majority size:

Given any function p : [1/2,1] — [1/2,1], consider the trader algorithm A,:
When the leaders are split on their advice in proportion (x,1 — z) with 2z > 1/2,
follow the majority with probability p(x).

THEOREM 18.1.4. In the binary prediction problem with n experts including a
perfect expert, consider the trader algorithm A, that follows the majority of leaders
with probability p(x) = 1 + log, @ when that majority comprises a fraction z of
leaders. Then for any horizon T', the expected number of mistakes made by A, is
at most log, n.

Without perfect expert (KP 18.2)

Weighted Majority Algorithm
Fix € € [0,1]. On each day ¢, associate a weight w! with each
expert 1.
Initially, set w) = 1 for all i.
Each day t, follow the weighted majority opinion: Let U; be

the set of experts predicting up on day ¢, and D; the set predict-
ing down. Predict “up” on day t if

Wy(t—1) =Y wi™ >Wpt—1)= Y wi™’
€Uy i€ Dy

and “down” otherwise.
At the end of day t, for each 7 such that expert ¢ predicted
incorrectly on day t, set

=(1—euwi L.

Thus, w! = (1 —¢) Li where L} is the number of mistakes made
by expert i in the first ¢ days.

THEOREM 18.2.3. Suppose that there are n experts. Let L(T) be the number of
mistakes made by the Weighted Majority Algorithm in T steps with € < 1 5, and let
LT be the number of mistakes made by expert i in T steps. Then for any sequence
of up/down outcomes and for every expert i, we have

2lnn

L(T) <201+ ¢LT +



Multiplicative Weights (KP 18.3.2)

Fix € < 1/2 and n possible actions.
On each day t, associate a weight w! with the i*" action.
Initially, w? = 1 for all 4.
On day t, use the mixed strategy p?, where

L o
‘ Dok wltc_l ‘
For each action i, with 1 <i < n, observe the loss ¢! € [0,1] and
update the weight w! as follows:

wt = w! exp(—el?).

THEOREM 18.3.7. Consider the Multiplicative Weights Algorithm with n ac-
tions. Define

T

7

Lyw = E p'- £,
t=1

where £t € [0,1]". Then, for every loss sequence {£'}F_, and every action i, we

have
Te logn
e,

T
Lyw < LT
Mw S z+8 .

8logn
T

— 1
Lﬁw <LT+ A/ §Tlogn:
i.e., the regret Rp (MW, £) is at most \/%Tlog n.

Coarse Correlated Equilibria and No-Regret Dynamics (R p. 240)

where LT = Zthl ¢t In particular, taking € = , we obtain that for all i,

4.C. SWAP REGRET AND THE MINIMAX THEOREM

Swapping function 6:5 — 5

ESNU[Ci(S)] < ESNU[Ci((S(Si)7 S—i)]

Correlated Equilibrium:

Definition 18.2 (Swap Regret): Defined in terms of the more general notion of swapping function
mapping all occurences of an action to another action.

Definition 18.3 (No-Swap-Regret Algorithm): Similar to Definition 17.3
Proposition 18.4 (No-Swap-Regret Dynamics and CE)

Theorem 18-5 (Black-Box Reduction): [fthere is a no-external-regret algorithm, then there is a no-
swap-regret algorithm.

The substantial element of the proof is the stationary distribution of a Markov chain.



Theorem 18.7 (Minimax Theorem): Usually proven using a fixed-point theorem, but the no-regret
algorithm (e.g. multiplicative weights) reveals a mixed strategy.



