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Abstract

Statistical analysis on arbitrary surface meshes such as the cortical surface is an important approach
to understanding brain diseases such as Alzheimer’s disease (AD). Surface analysis may be able to
identify specific cortical patterns that relate to certain disease characteristics or exhibit differences
between groups. Our goal in this paper is to make group analysis of signals on surfaces more sen-
sitive. To do this, we derive multi-scale shape descriptors that characterize the signal around each
mesh vertex, i.e., its local context, at varying levels of resolution. In order to define such a shape
descriptor, we make use of recent results from harmonic analysis that extend traditional continu-
ous wavelet theory from the Euclidean to a non-Euclidean setting (i.e., a graph, mesh or network).
Using this descriptor, we conduct experiments on two different datasets, the Alzheimer’s Disease
NeuroImaging Initiative (ADNI) data and images acquired at the Wisconsin Alzheimer’s Disease
Research Center (W-ADRC), focusing on individuals labeled as having Alzheimer’s Disease (AD),
Mild Cognitive Impairment (MCI) and healthy controls. In particular, we contrast traditional uni-
variate methods with our multi-resolution approach which show increased sensitivity and improved
statistical power to detect a group-level effects. We also provide an open source implementation.
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1. Introduction

The cerebral cortex is a layer of highly convoluted surface of gray matter with spatially varying
thickness, and the distance between inner and outer cortical surface is known as the cortical thick-
ness, see Fig. 1. Within the last decade, numerous studies have shown how cortical thickness is an
important biomarker for brain development and disorders — the existing literature ties this measure
to brain growth (O’Donnell et al., 2005; Shaw et al., 2006a; Sowell et al., 2004; Lemaitre et al., 2012),

1Data used in preparation of this article were obtained from the Alzheimers Disease Neuroimaging Ini-
tiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to
the design and implementation of ADNI and/or provided data but did not participate in analysis or writ-
ing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how to apply/ADNI Acknowledgement List.pdf
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Figure 1: Illustration of cortical thickness. The inner
cortical surface (red) is covered by the outer cortical sur-
face (yellow), and the cortical thickness is measured by the
distance between the outer and the inner cortical surfaces.

autism (Chung et al., 2005), attention-deficit
(Shaw et al., 2006b), genetic influences (Paniz-
zon et al., 2009), amusia (Hyde et al., 2007),
osteoporosis (Hodsman et al., 2000), and even
gender (Sowell et al., 2007). Changes in the
cortical thickness (Newman et al., 1998; Pre-
vrhal et al., 1999) are particularly important in
the context of Alzheimer’s Disease (AD) (Erk-
injuntti et al., 1987; Thompson et al., 2004;
de Leon et al., 1989; Pachauri et al., 2011),
which will be the primary focus of analysis in
this paper. In this context, studies have ob-
served significant cortical thinning in temporal, orbitofrontal and parietal regions (Lerch et al.,
2005; Thompson et al., 2004) in patients with AD. Lehmann and colleagues (Lehmann et al., 2011)
used both voxel-based morphometry (VBM) and cortical thickness (CT) measures extracted by
Freesurfer to find significant patterns of variation between clinical populations including AD and
the related postrier cortex atrophy (PCA) group. They found cortical thinning in the occipital
and posterior pariental lobe in the PCA population, and in medial temporal regions in the AD
population. Similar results were found in (Thompson et al., 2011; Wirth et al., 2013) which related
it to other biomarkers also. In many other AD studies, researchers have used cortical thickness as
a biomarker to detect and classify AD cohorts from control subjects (Lerch et al., 2008; Wolz et al.,
2011; Cho et al., 2012; Querbes et al., 2009; Dickerson and Wolk, 2012).

The body of work above relating cortical thickness to cognitive decline is vast and tackles var-
ious neuroscientific questions; but these studies share a commonality in that once the thickness
measurement on the cortical mesh has been calculated via a pre-processing method, the main in-
terest is to employ statistical hypothesis testing to find regions that exhibit statistically significant
differences between the two groups — typically a clinic group and a control group — while ac-
counting for various confounds. But this workflow must take into account a few potential pitfalls.
The first order requirement, clearly, is to recruit a sufficient number of subjects to ensure that the
study has sufficient power. Now, if the expected variations are small, the cohort size must be large
enough to ensure we can reliably identify group-wise differences. However, in many cases this is
not feasible due to cost and/or the specific scope of the clinical question of interest (demographic
requirements, genetic profile etc). Therefore, it is imperative that the analysis procedure we choose
is sensitive and maximizes the likelihood of detecting signal variations between the groups. Other-
wise, in the small sample size regime, it is entirely possible that we will fail to discover an otherwise
real disease-specific effect. Notice that analysis of two very distinct groups that lie at the opposite
sides of the disease spectrum will obviously yield a strong statistical signal. But recent work, with
good reason, has almost entirely focused on detecting biomarkers pertaining to the early stages of
decline(Johnson et al., 2011), or on finer gradations of the clinical spectrum from control to AD.
Because of the more moderate effect size in this regime, even in larger studies, identifying group
differences may be challenging. Our interest then is in deriving representation schemes for the data,
which helps the downstream statistical test pick up subtle group differences with higher confidence
than would be possible otherwise.

Multiple Comparisons. Consider the standard pipeline for analyzing cortical thickness variations
in a neuroimaging study. Here, the data are defined on an intricate mesh domain (i.e., brain
surface), and as a result the number of vertices needed to represent the surface (and consequently,
the number of hypothesis tests) grows up to 100,000 or more. After vertex correspondences between
subjects have been found, the hypothesis test is performed at each cortical surface mesh vertex.
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Finally, one must perform a Bonferroni or other multiple comparison correction, such as FDR or
the method detailed in (Van De Ville et al., 2004). We can then conclude that the cortical regions
which correspond to the surviving vertices are indeed meaningful disease-relevant regions.

Observe that in such a vertex-wise statistical task on a surface domain, improved sensitivity
can be achieved by increasing the signal to noise ratio. One option may be to utilize a filtering
operation (such as Gaussian smoothing). But this relies on achieving a delicate trade-off between
smoothing the signal just enough to suppress noise but taking care not to blur out the signal of
interest. Instead, our key idea is to derive a descriptor for each mesh vertex that characterizes
its local context, at multiple scales (or resolutions) concurrently. Such multi-resolution ideas,
historically studied within image processing as scale space theory (Lindeberg, 1993) or via the
Wavelet transform (Daubechies, 1990; Mallat, 1989), have been used sparingly within the context
of statistical analysis on arbitrary meshes. The framework presented here gives an end to end
solution that makes these ideas implementable for cortical surface data, with improved sensitivity.

Recall that the Wavelet transformation, the obvious choice for multi-resolution analysis of the
form alluded to above, uses a centered oscillating function as the basis instead of the sine basis.
Therefore, it overcomes the key limitation of Fourier series in failing to capture sharp changes in
a function (i.e., Gibbs phenomena due to infinite support) via the localization property. Unfortu-
nately, the conventional formulation is defined only in the Euclidean space (e.g., a regular lattice).
This is not suitable for convoluted and arbitrary surface models where the mesh has a highly irregu-
lar geometry. In order to still make use of the main theoretical constructs, but in the non-Euclidean
setting, one must first decide a priori a “standard” coordinate system. Popular parameterization
techniques use a unit sphere and utilize the spherical harmonics (SPHARM) (Chung et al., 2007).
SPHARM defines Fourier bases using spherical Laplacian to parameterize a function mapped to a
sphere. This must involve a module which will ‘balloon’ out the the cortical surface on to a sphere
while preserving, to the extent possible, local distances, areas or angles. This is usually a lossy
or distortion prone process. Based on similar ideas, the spherical wavelet defines the wavelet on
a template sphere with discretized regular lattice (Freeden and Windheuser, 1996; Antoine et al.,
2002). Some studies have shown how spherical wavelets can be used to analyze complex cortical
surface development (Yu et al., 2007). But spherical wavelets, like spherical harmonics, by design,
cannot compensate for the metric distortion already introduced in the sphere mapping module. Of
course, there are some heuristic adjustments which offer varying levels of empirical performance in
practice. But theoretically, it will be satisfying to remove the restriction of a standardized coor-
dinate system completely, and derive a multi-resolution representation in the native domain itself.
Experimentally, we will show that this strategy yields substantial improvements.

By leveraging some recent results from the harmonic analysis literature (Hammond et al., 2011),
this paper proposes a framework to decompose a scalar function defined at each vertex of a surface
model into multiple scales using non-Euclidean Wavelets. It is easy to think of this process as
viewing each mesh vertex zoomed at various levels, and characterizing the set or union of all such
views within a vertex descriptor. Once such a representation is derived, we can simply analyze
the multi-scale signal using multi-variate statistical tests. This paper makes the case that the
performance of many cortical thickness analysis studies can be significantly improved, with little
additional work (of the form described above).

The main contributions of this paper2 are
a) We derive a highly sensitive multi-resolutional shape descriptor for performing group analysis

in a population of subjects on signals defined on surfaces/shapes;

2A preliminary version of this work was presented at the NIPS 2012 conference (Kim et al., 2012)
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b) We demonstrate the utility of the framework on two distinct Alzheimer’s disease (AD) datasets
and show rather significant performance improvements over the standard baseline. These ex-
periments give strong evidence that a large number of cortical thickness analysis studies can
immediately benefit from these ideas with negligible additional cost;

c) To facilitate adoption, we provide a toolbox implementing the framework. Our code is designed
to operate directly on Freesurfer generated files and will be available on NITRC concurrently
with the paper’s publication.

2. Preliminaries: Continuous Wavelet Transform in the Euclidean Space

To keep this paper self contained, this section briefly reviews Wavelets in the form common in
introductory image processing classes. Readers familiar with this content can skip ahead.

The wavelet transform is conceptually similar to the Fourier transform in that it decomposes a
given signal into a linear combination of oscillating basis functions, thereby facilitating frequency
analysis. Even though the Fourier and wavelet transforms are similar, the critical difference comes
from the shape of the basis functions. While the sine and cosine functions have infinite duration,
that is, they are infinite repetitions of the same wave function per period, the wavelet bases provide
a compact support that is localized at a specific position. The locality of the bases forms an
important property of wavelet — while the Fourier transform is localized in frequency only, wavelets
can be localized in both time and frequency (Mallat, 1989), and this behavior basically frees the
transformation from ringing artifacts.

The conventional construction of the wavelet transform is defined by the choice of a mother
wavelet ψ, and a related “scaling function” φ. The wavelet basis set is generated by parameterizing
ψ by scales s ∈ S and translations a ∈ A:

ψs,a(x) = |s|−2ψ
(
x− a
s

)
. (1)

Controlling s changes the dilation of the wavelet and changing a varies the translation of the
wavelet. The wavelet basis functions ψs,a essentially serve as localized band-pass filters in the
frequency domain, whereas φ acts as a low-pass filter that recovers the remaining low-frequency
components. Crucially, unlike the Fourier bases, wavelets have finite duration and localization, but
without spectral leakage or loss of frequency resolution as in windowed Fourier analysis.

The wavelet transform of a signal f(x) is defined by the inner product of f and the bases
function ψ as

Wf (s, a) =
1

s

∫
f(x)ψ∗(

x− a
s

)dx (2)

where ψ∗ is the complex conjugate of ψ, and results in wavelet coefficient Wf (s, a). If this trans-
formation satisfies the admissibility condition,

Cψ =

∫ |ψ̂(jω)|2
ω

dω <∞ (3)

where Cψ is the admissibility condition constant and ψ̂(jω) =
∫
ψ(x)e−jωxdx is the Fourier trans-

form of the mother wavelet with imaginary component. Such a wavelet transform is invertible, and
the inverse wavelet transformation reconstructs the original signal f from Wf (s, a) without any loss
of information as,

f(x) =
1

Cψ

x
Wf (s, a)ψs,a(x)da ds (4)
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Here, (4) is known as resolution of the identity and the key expression for multi-resolutional analysis
using the wavelet transform.

Remarks. Wavelet transform in the Euclidean space have been extensively used in image pro-
cessing (Mallat, 1989, 1999). Formalizing wavelets in a non-Euclidean space such as a graph,
however, is not straightforward due to the non-regularity of the domain. The next few sections
provide additional detail on these difficulties and then describe our main strategy.

3. Non-Euclidean Wavelets and a Multi-resolution mesh descriptor

Extending wavelets to the non-Euclidean setting, particularly to graphs, requires deriving a
representation of a function/signal defined on localized vertices, in a sense which will become clear
shortly. The first bottleneck is to come up with notions of scale and translation on the graph. Briefly,
the key idea motivated directly by recent results in harmonic analysis (Coifman and Maggioni, 2006;
Hammond et al., 2011) is as follows. Instead of defining a wavelet function in the original space,
one can define a mother wavelet in the frequency domain as band-pass filters where scale turns
out to be easier to define. Transforming it back yields the wavelet in the original domain which
can be localized by applying a delta function δ(n) on vertex n. To do this, an analogue of Fourier
transform is required between the space of the graph and the frequency space. Relying on spectral
graph theory (Chung, 1997), we obtain the necessary bases to define graph Fourier transform, and
then the spectral graph wavelet transform (SGWT) (Hammond et al., 2011) is derived using the
graph Fourier transform. Finally, using SGWT, we construct a wavelet multi-scale descriptor, which
is a multi-resolutional shape descriptor characterizing the shape/signal context at each vertex at
multiple resolutions. The following section includes common notations in graph theory (which are
defined in Appendix A for completeness).

3.1. Graph Fourier Transform

The spectrum of the graph Laplacian L forms a domain that provides information about the key
properties and geometry of the original graph. Defining a transformation using the eigenfunctions
χl as bases, the eigenvalues λl form a domain which is analogous to the frequency domain for the
Euclidean space, Rn. Since eigenvectors of a self-adjoint operator, including the Laplacian, form
an orthonormal basis, the bases from spectral graph theory are sufficient to form the bases for the
graph Fourier transform. Using these completely orthonormal bases, the forward and inverse graph
Fourier transformations of a function f(n) are defined as,

f̂(l) = 〈χl, f〉 =

N∑
n=1

χ∗l (n)f(n), (5)

f(n) =

N−1∑
l=0

f̂(l)χl(n) (6)

where f̂ is the function in the frequency domain and N is the number of vertices. Note that these
formulations are analogous to the formulations of Fourier transform, except that it uses different
bases.

3.2. Wavelet Transformation on Graphs

Wavelets are known to serve as band-pass filters in the frequency domain. Choosing a certain
type of band-pass filter function g determines the shape of the mother wavelet ψ, and from multiple
scales s of the filter in the frequency domain, one can obtain the wavelet function with control over
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dilation in the original graph domain. This is critical to the construction, and can be achieved
simply by defining an operator Tg = g(L) that acts on the function defined on each vertex of a
graph. Using the graph Fourier transform,

Tgf(m) =

N−1∑
l=0

g(λl)f̂(l)χl(m) (7)

Furthermore, applying an impulse function δ(n) will localize the wavelet to be centered at a
certain point n. Using these parameters, filtering operation on a impulse function by g in the
frequency domain defines a wavelet function at scale s defined on vertex m in the graph domain as,

ψs,n(m) = T sg δ(n) =
N−1∑
l=0

g(sλl)χ
∗(n)χl(m) (8)

This representation of ψ can be understood from the inverse Fourier transformation, where the
defined band-pass filter is realized in the original graph domain by the inverse transformation.
Similar to the definition of traditional wavelet transform, the transformation is defined by the
inner product of a signal f and wavelet basis function ψ as,

Wf (s, n) = 〈ψs,n, f〉 =

N−1∑
l=0

g(sλl)f̂(l)χl(n) (9)

which results in wavelet coefficients and is known as the recently proposed Spectral Graph Wavelet
Transform (SGWT) (Hammond et al., 2011). Note that this expression (9) corresponds to the
continuous wavelet transformation as shown in (2) with an integral of a set of coefficients and given
bases. If the kernel g satisfies the admissibility condition,

Cg =

∫ ∞
0

g2(x)

x
dx ≤ ∞ (10)

and g(0) = 0, then such a transform is invertible,

f(m) =
1

Cg

N∑
n=1

∫ ∞
0

Wf (s, n)ψs,n(m)
ds

s
(11)

which represents the original signal by superposition of wavelet coefficients and wavelet bases over
the full set of scales. (11) is equivalent to the following expression (where we use χl),

1

Cg

N−1∑
l=0

(∫ ∞
0

g2(sλl)

s
ds

)
f̂(l)χl(m). (12)

Equation (11) also corresponds to the inverse wavelet transform in the continuous setting given in
(4), which completes the connection of wavelets in continuous space and SGWT.

A few examples of wavelets on graphs are shown in Fig. 2, where a triangular mesh surface is
considered as the original graph domain — each node of a triangle is the vertex and each segment
is considered as an edge. On the mesh surface, localized Mexican hat wavelets at different scales
(dilation) are shown. If the domain were to satisfy the axioms of Euclidean geometry (i.e., a regular
lattice), the wavelet functions would also form a symmetric shape. But due to the irregularity in
shape of the domain, we can see that the shape of each wavelet is determined by the intrinsic
geometry of the graph domain. Intuitively, we can consider the wavelet function as a unit energy
localized at a vertex, and its propagation to its nearby vertices as a form of wave at different scales.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: An example of Mexican-hat wavelet on a sphere and a shark shaped mesh surfaces. The range of λ from
L of a sphere mesh was split into 5 different scales, and the mother wavelet ψ was built upon those scales. The
wavelet is localized at one vertex (i.e., vertex index 1). As the scale varies, the dilation of the wavelet changes. a) A
3-D triangular mesh domain (sphere) with 2562 vertices and 5120 faces, b) ψ1,1, c) ψ2,1, d) ψ3,1, e) A 3-D triangular
mesh domain (shark) with 2860 vertices and 5716 faces, f) localized ψ1,1 at the tip of a fin, g) localized ψ2,1 at the
tip of a fin, h) localized ψ3,1 at the tip of a fin.

3.3. Wavelet Multiscale Descriptor

Similar to Fourier analysis, wavelet analysis transforms a function defined in a non-Euclidean
space into an alternative basis in order to facilitate certain types of analysis. In the case of Spectral
Graph Wavelet analysis, this basis is derived from the eigen-spectrum of the graph Laplacian.
The central observation underpinning this work is that such a transform would greatly facilitate
statistical parametric mapping analyses of neuroimaging data. To this end, taking the spectral
wavelet transform yields the Wavelet Multiscale Descriptor (WMD). Here, we define the WMD as
a set of wavelet coefficients at each vertex n for each scale in S = {s0, s1, . . . , s|S|−1}, where s0
denotes the scaling function.

WMDf (n) = {Wf (s, n)|s ∈ S} (13)

The WMD on each vertex n can be interpreted as the original univariate (i.e., cortical thickness,)
signal being decomposed into various resolutions depending on the geometry of the original space.
WMD is suitable for analyzing any signal defined in a non-Euclidean space (e.g., brain mesh or
other 3-D shape mesh). In the following sections, we demonstrate how WMD enhances sensitivity
and statistical power of group analysis using general statistical parameteric mapping processes.
Since WMD is a multi-scale representation, we use Hotelling’s T 2 test, the multivariate version of
t-test, to derive the resultant p-values.

3.4. A Motivating Example

Before proceeding to our experimental setup, we first demonstrate a simple analysis using WMD
on a synthetically created star shaped graph. We define a function on the vertices in each graph
such that this function differs by group. Then, hypothesis tests are carried out at the vertex level.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Group analysis on a population of star-shaped graphs and functions defined on the vertices. a) The
star graph (domain), b) Mean of noisy data from group 0, c) Mean of noisy data from group 1, d) p-value from
hypothesis tests on the raw noisy data, e) p-value from hypothesis tests using MHS, f) p-value from hypothesis
test using WMD. While group analysis using general routine fails, using WMD detects all vertices correctly, and the
result is comparable with MHS. In d)-f), the p-values are visualized both in color and vertex sizes (larger vertex size
means a lower p-value) in log10 scale.

After a multiple comparison correction process such as false discovery rate (FDR), the resulting
p-values are shown on a template star graph. Using such a procedure, we see that hypothesis
testing using WMD seems to be more sensitive to the intrinsic group difference compared to group
analysis over the original function.

As shown in Fig. 3 (a), the star graph G consists of 5 vertices and 5 edges. We have two groups
of star graphs, G0 and G1, with 20 graphs in each. The index i = {1, · · · , 40} refers to specific
graphs in this set. A function f(n) is defined on the vertices of each graph: randomly drawn
from two different distributions, f(Gi ∈ G0) ∼ N(1, 0.1) and f(Gi ∈ G1) ∼ N(2, 0.1). Applying
standard hypothesis test easily reveals the group differences in all vertices. When there are very
small variations as well as a large signal (i.e., difference in group means), we obtain extremely
low p-values — numerically indistinguishable from 0 — after multiple comparison correction, as
expected.

Next, we introduce i.i.d. noise in the signal at each vertex n, and each observation hi(n) is
modeled as the sum of the true function fi(n) and noise εi,n ∼ N(0, 1),

hi(n) = fi(n) + εi,n (14)

In this case, the test fails to detect the true signal variations especially for this sample size. Fig. 3
(d) shows an example of this failure, detecting only 2 vertices out of 5 as significant. But applying
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multi-scale analysis using Hotelling’s T 2 test on WMD shown in Fig. 3(f) finds all 5 vertices as
showing significant group difference with much lower p-values. As a baseline for this experiment,
we considered the heat-kernel smoothing model proposed in (Chung et al., 2005). Here, we can
run the smoothing procedure at different bandwidths, collect the set of smoothed signals at these
bandwidths and derive a descriptor. We call this method, multi-scale heat-kernel smoothing (MHS),
which has design similarities to WMD but has distinct properties (WMD construction is based on
a ‘band-pass’ type filtering behavior, while heat-kernel smoothing is inherently low-pass filtering).
MHS in Fig. 3 (e) used the same scale parameters as in WMD, and the performance of WMD shows
a significant improvement in p-values attributable to the foregoing reasons. In Fig. 3(d)–(e), both
the color and the vertex size represent the significance level — colored larger vertex sizes mean
lower p-value, and those p-values are given in Table 1.

Table 1: p-values on each vertex from the group analysis of star graphs using signal with noise,
multiscale heat-kernel smoothing (MHS) and wavelet multiscale descriptor (WMD).

Vertex 1 2 3 4 5

Signal + Noise 7.3e−2 4.5e−2 0.08e−2 0.03e−2 0.04e−2

MHS 8.3e−6 0.5e−6 4.38e−6 0.54e−6 11.86e−6

WMD 1.99e−6 0.105e−6 1.159e−6 0.134e−6 2.82e−6

4. Experimental Setup

In this section, we describe datasets and implementation details for the experiment. We make
use of two different datasets, the publicly available Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset and data acquired at Wisconsin Alzheimer’s Disease Research Center (ADRC). In
both cohorts, the structural T1-weighted MRI data from the patients were processed by Freesurfer
(Fischl, 2012), the standard tool to obtain cortical surface data and overlay functional MRI data
on to the acquired brain surface. Once the MRI data is processed, it provides the brain surface
model as a 3-D triangular mesh and the cortical thickness values are defined on each vertex.

4.1. ADNI Data

From the ADNI dataset3, we selected 356 subjects from two different group populations, 160
AD and the 196 healthy controls. Demographic details of the subjects are given in Table 2. These

3Data used in the preparation of this article were obtained from the Alzheimers Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 by the National Institute on Aging (NIA), the
National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public-private partnership.
The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and early Alzheimers disease (AD). Determination of
sensitive and specific markers of very early AD progression is intended to aid researchers and clinicians to develop
new treatments and monitor their effectiveness, as well as lessen the time and cost of clinical trials. The Principal
Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center and University of California San
Francisco. ADNI is the result of efforts of many co-investigators from a broad range of academic institutions and
private corporations, and subjects have been recruited from over 50 sites across the U.S. and Canada. The initial
goal of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO and ADNI-2. To date these
three protocols have recruited over 1500 adults, ages 55 to 90, to participate in the research, consisting of cognitively
normal older individuals, people with early or late MCI, and people with early AD. The follow up duration of each
group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited for ADNI-1 and
ADNI-GO had the option to be followed in ADNI-2. For up-to-date information, see www.adni-info.org.
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two groups lie at the opposite ends of the AD spectrum and the number of subjects is sufficient for
group analysis. Therefore, we expect the standard method (apply hypothesis tests to the cortical
thickness signal directly) to perform well and yield significant group differences. It will nonetheless
provide a baseline to assess whether the multi-resolution representation yields any improvements
at all.

Table 2: Demographic details and baseline cognitive status measure of the ADNI dataset

ADNI data

Category AD (mean) AD (s.d.) Ctrl (mean) Ctrl (s.d.)

# of Subjects 160 - 196 -

Age 75.53 7.41 76.09 5.13

Gender (M/F) 86 / 74 - 101 / 95 -

Years of Education 13.81 4.61 15.87 3.23

CDR(SB) 4.32 1.59 0.03 0.13

MMSE at Baseline 21.83 5.98 28.87 3.09

CDR: Clinical Dementia Rating, SB: Sum of Boxes, MMSE: Mini Mental State Examination

4.2. Wisconsin ADRC Data

The Wisconsin ADRC dataset consists of a total of 269 subjects at this point (and increas-
ing), categorized by AD, controls, mild cognitive impairment (MCI). We used available data from
134 participants including 42 AD, 42 MCI and 50 older controls. These individuals were diag-
nostically characterized in the WADRC’s multidisciplinary consensus conferences using applicable
clinical criteria (McKhann et al., 1984; Petersen et al., 2001). All MCI cases were of the single or
multi-domain amnestic subtype whose etiology was attributed to AD. The University of Wisconsin
Institutional Review Board approved all study procedures and each participant provided signed
informed consent before participation.

Table 3: Demographic details and baseline cognitive status measure of the Wisconsin ADRC dataset

ADRC data

Category AD (mean) AD (s.d.) MCI (mean) MCI (s.d.) Ctrl (mean) Ctrl (s.d.)

# of Subjects 42 - 42 - 50 -

Age 76.69 10.01 75.62 7.9 76.32 5.5

Gender (M/F) 22 / 20 - 33 / 9 - 19 / 31 -

Years of Education 14.41 2.8 16.77 2.74 15.84 2.85

CDR(SB) 4.9 1.99 1.9 0.48 0.14 0.4

MMSE at Baseline 21.25 4.27 26.9 1.96 29 0.99

CDR: Clinical Dementia Rating, SB: Sum of Boxes, MMSE: Mini Mental State Examination

To acquire the data, the MRI scans were obtained in the axial plane on a GE x750 3.0-T
scanner with an 8-channel phased array head coil (General Electric, Waukesha, WI). 3-D T1-
weighted inversion recovery-prepared spoil gradient echo scans were collected using the following
parameters: inversion time (TI)/echo time (TE)/repetition time (TR)=450ms/3.2ms/8.2ms, flip
angle = 12◦, slice thickness = 1mm (no gap), field of view (FOV) = 256mm, matrix size =
256mm× 256mm× 156mm, and in-plane resolution = 1mm× 1mm.

4.3. Implementation Settings

Our framework is implemented using the spectral graph wavelet transform (SGWT) toolbox
from (Hammond et al., 2011) as a submodule. First, the graph representation G of a surface mesh
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is derived from its Delaunay triangulation, which gives a vertex set V as well as a set of faces, each
of which is comprised of a 3-tuple of vertices. From these we can extract a binary edge relation E .
The cortical thickness values are then computed on each vertex by Freesurfer (Fischl, 2012), which
is a function f(n) (or a signal) defined at each vertex n ∈ V.

In order to reduce noise in a way which will preserve the type of signal captured by WMD, we
apply heat-kernel smoothing (Zhang and Hancock, 2008; Chung et al., 2005) at t = 0.5 to the raw
cortical thickness values prior to computing WMD. Recall that this type of smoothing requires a
forward wavelet transform, followed by a scaling of coefficients according to the heat kernel function,
and finally an inverse transform to reconstruct the smoothed thickness function. We approximate
the inverse SGWT using a conjugate gradient method, stopping when an error tolerance of 10−6 is
achieved. The degree was set to 10 for the Chebyshev approximation of the wavelet transformation
in SGWT.

In our experiments, we used the default spline wavelet design provided by SGWT toolbox as
the kernel function g, which is a piecewise function,

g(x;α, β, x1, x2) =


x−α1 xα2 for x < x1

s(x) for x1 ≤ x ≤ x2
xβ2x

−β
2 for x > x2

(15)

where s(x) = −5 + 11x−6x2 +x3, α = β = 1, x1 = 1 and x2 = 2. Scales of g are defined as equally
spaced bands in log scale in the spectrum of graph Laplacian. Here, the choice of the number of
scales is important and must be made empirically (details below). We also note that since it is
not feasible to eigendecompose a graph Laplacian when there are more than 105 vertices within a
brain surface, we cannot easily access the full spectrum. What we can do instead is to find the
largest eigenvalue, and then divide the spectrum into a number of bins, giving the different scales.
Hence, the method has just one tunable parameter, which is the number of bins (i.e., the number of
scales). This has to be a small integer, meaning that there are a very small number of values that
this parameter can take, if one sets this parameter using a validation test empirically. Because noise
generally lies at high end of the spectrum, we only used the scales of lower end of the spectrum to
define the WMD. Those scales of interests are chosen by incrementally adding band of the scales
from the coarser scale until results are satisfactory, and the remaining scales are discarded.

Since we have multiple brain surfaces, the range of the entire spectrum is defined by the largest
eigenvalue of the graph Laplacians of all subjects. Defining wavelets in the common spectrum
ensures that we define the same wavelet transform over the group of subjects. The range of the
eigenvalue spectrum was [0, 25.7] for the ADNI dataset and [0, 30.13] for the ADRC dataset. To
divide up the spectrum, we ran experiments by setting the total number of scales to 5, 6 and 7.
We observed empirically that 5 and 7 scales respectively for ADNI and ADRC dataset were more
effective. Next, one must choose how many scales will be used to define the actual descriptor for
statistical analysis. We found that using the first four scales for both datasets yields reliably noting
that other choices for these parameters yield comparable results.

4.4. Experimental Framework and Statistical Analysis

The goal of our experiments was to assess the improvement in the ability to detect group
differences using WMD versus using cortical thickness on its own. The results of these experiments
will be described in the next section. As a proof of principle, we first performed group analysis
on synthetically constructed brain surface data to show that WMD enhances the sensitivity of
statistical analysis. Next, we present experiments on the ADNI and ADRC datasets.
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We follow the general analysis pipeline in SPM by plotting the corresponding p-values on the
template brain surface after FDR correction. We additionally apply heat-kernel smoothing on
the cortical thickness to compare the group analysis result. To compute the p-values, we use a
t-test on univariate variables (i.e., raw and smoothed cortical thickness) and Hotelling’s T 2 test
and Multivariate General Linear Model (MGLM) with Hotelling-Lawley trace on the multivariate
variables of interest (i.e., WMD). Using MGLM, we control for the effects driven by factors that
are not directly related to the disease (i.e., age or gender) to obtain a more accurate result.

Since our fundamental argument is that multivariate WMD is more sensitive than performing
statistical tests on univariate cortical thickness, one should expect to see a stronger signal than
results derived via smoothed or raw cortical thickness. Similarly, since the ADNI has a far larger
sample size than the ADRC, we hope to see stronger signal in the ADNI results, but similar cortical
regions should show up in the ADRC analysis as well.

5. Experimental Results

In this section, we give a detailed description of the experiments performed on synthetic data
as well as the two Alzheimer’s disease datasets described in the previous section.

5.1. Simulation of Surface-based Group Analysis and ROC Response

∼ N(µ1, σ
2
1) atrophy of mean 0.2mm

atrophy of mean 0.4mm

Figure 4: Simulation setup of synthetic cortical thickness and atrophies on brain surfaces. Blue regions correspond
to the default (non-diseased) cortical thickness signal, µ1 = 2mm,σ2

1 = 0.01. Green and red correspond to disease
regions which undergo atrophy affected on the default cortical thickness signal. These atrophy levels are about ∼ 25%
and ∼ 50% of the actual atrophies measured in AD specific regions of a real dataset.

We first demonstrate group analysis using WMD on a synthetically generated cortical thickness
(and atrophy) on a template brain surface. The template brain surface consists of 2790 vertices
and 5576 faces, and 20 diseased and 20 control subjects are artificially created using the template
brain. First, a synthetic baseline global cortical thickness signal of mean 2mm and variance 0.1 is
introduced. This is shown as the blue region in Fig. 4.

Note that this region is viewed as not affected by disease and so no group differences should be
identifiable in these regions. Next, we define two diseased regions (green and red) in Fig. 4. These
regions undergo varying levels of atrophy (relative to the ‘default’ cortical thickness signal in blue).
The green region corresponds to a mean atrophy of 0.2mm (variance 0.02mm) and the red region
corresponds to a mean atrophy of 0.4mm (variance 0.04mm) affected on the default (blue) cortical
thickness signal. The red and green regions cumulatively correspond to a total of 889 vertices (32%
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(a) (b) (c)

Figure 6: Simulation of surface based group analysis. The resultant p-values in − log 10 scale after FDR at q = 0.01
are mapped on the template brain surface. a) result using raw CT, b) result using heat-kernel smoothing (t = 0.5),
c) result using WMD (4 scales out of 6).

of the brain region). Finally, we add noise from N(0, 1) to the cortical thickness signal obtained
from the above procedure.

Figure 5: ROC curve using p-values from statisti-
cal group analysis on Raw CT, Smoothing and WMD
with AUC of 0.623, 0.892 and 0.971 respectively.

From the above data, we obtain smoothed CT
and WMD for comparison. Smoothing is performed
via heat-kernel smoothing with bandwidth of 0.5.
The spectrum of graph Laplacian is [0, 18.5], and
this range is divided into 6 bins including the scaling
function in order to define WMD. The spline kernel
function g from SGWT toolbox is used to obtain the
WMD.

For statistical group analysis, a t-test was used
for univariate raw data and smoothed data, and we
used Hotelling’s T 2 test for multivariate analysis for
WMD. The resultant p-values are shown on the tem-
plate surface in − log 10 scale for comparison, see
Fig. 6.

It is well known that filtering raw data improves
sensitivity, however, over-filtering of data may end
up detecting many false positives. Multiple compar-
isons correction is generally applied to control the
type I error in most studies. In this simulation, how-
ever, we know the ground truth from the synthetic atrophy model — a label for each vertex indicates
whether it atrophies or not; so, we can conduct an ROC analysis to observe the sensitivity and
specificity relationship. Here, the aim is to show that we are not only increasing the sensitivity, but
we also do not make specificity worse using WMD. From this group analysis, we obtain p-values
at each vertex, which tells us whether to reject the null hypothesis: the two distributions from the
data at each vertex are the same. When the null hypothesis is rejected, we find those vertices with
significant differences, and we can use (1− p) as a measure to determine the label for each vertex.
The resultant ROC curve is given in Fig. 5, and we measure the area under the curve (AUC). We
see that the raw data gives an AUC measure of 0.623, when heat-kernel smoothing is used the
AUC is increased to 0.892. But using WMD yields the best AUC of 0.971 suggesting that increased
sensitivity does not come at the cost of poor specificity.

Remark. Based on the simulation results, we may ask why a classical group analysis on the raw
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cortical thickness signal is not detecting stronger signal differences, especially since the atrophy
has a relatively large affectation. There are two reasons for this behavior relating to the level of
atrophy introduced in these simulations (which are not very large) and the small sample sizes.
Recall that the synthetic atrophy was set to ∼ 50% and ∼ 25% of the mean difference in atrophy
levels in disease specific regions measured in a real dataset (which was about 0.82mm). Also, the
sample sizes are relatively small (20 healthy controls and 20 diseased). We will see shortly that
when the atrophy differences and the sample sizes are larger, classical analysis on cortical thickness
can indeed detect regions exhibiting group-level differences.

5.2. ADNI Dataset

We performed four different analyses using different types of descriptors and statistical methods.
We used heat-kernel smoothing (Chung et al., 2005) to smooth the data, and compare the group
analysis result with the result using WMD. We applied t-test on the raw thickness and smoothed
thickness, when the given data are univariate, and Hotelling’s T 2 and MGLM on WMD, which
consists of multiple variables at each vertex. Using MGLM, we remove the effect of age and gender,
which are known to affect the in cortical thickness measurements regardless of the disorder. Fig.
7 shows the resulting p-values in increasing order from all four analysis on the left hemisphere of
the brain and the FDR threshold at q = 1e−5. We performed group analysis using 60%, 80%, and
100% of the total sample size (i.e., emulating the setting that the study size was smaller), and
observe that the curve from the sorted p-value is shifted with increase in the sample sizes. As a
result, the number of vertices that survive the FDR threshold increase with larger dataset, and a
much larger number of vertices survive using WMD than those analysis using raw and smoothed
cortical thickness. We further plot these p-values on a template brain surface to see which regions
of brain are affected, and whether these are meaningful for AD.

Group Analysis. The top row of Fig. 8 shows the standard hypothesis testing result on the
raw cortical thickness data, and we are able to find only small regions using this analysis. Using
smoothed cortical thickness, although it correctly finds the underlying signal (shown in the second
row of Fig. 8), the result using WMD (shown in the third and fourth rows of Fig. 8) detects
even larger regions of the brain with much improved statistical result (notice the red regions).
From these comparisons, it seems that WMD makes the underlying true signal more sensitive and
thereby improves results of the statistical analysis. Among 131076 vertices on both left and right

(a) (b) (c)

Figure 7: Plot of sorted p-values and FDR threshold from AD vs. Controls analysis according to different sample
sizes using ADNI dataset. a) using 60% of the total subjects, b) using 80% of the total subjects, c) using all subjects.
As the sample size increases, the number of surviving vertices increases. We can see that WMD is much more sensitive
than smoothing.
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Figure 8: Group analysis result (AD vs. Controls) on ADNI dataset. The resulting p-values (in − log10 scale) from
hypothesis tests after FDR at q = 1e−5 are shown on a template brain surface. First row: t-test on the raw cortical
thickness, Second row: t-test on smoothed data (SPHARM), Third row: Hotellings T 2 test on WMD, Fourth row:
MGLM on WMD (age and gender effect removed). We can see that smoothing the cortical thickness works better
than the raw data, but WMD improves the statistical result much more.

hemisphere, we find only 1228 vertices (0.9%) using the raw cortical thickness data. After applying
kernel smoothing method, the number of identified vertices as showing group differences goes up to
22464 (17.1%). Using Hotelling’s T 2 test on WMD gives 31078 (23.7%) vertices and after removing
age and gender effect, MGLM detected 34472 (26.3%) vertices. All four analyses using raw cortical
thickness, smoothed cortical thickness, WMD (Hotellings T 2 test and MGLM) revealed strong
signal on the anterior entorhinal cortex in the mesial temporal lobe, however, we can observe that
WMD is much more sensitive relative to the univariate analysis not only in this particular location,
but also in the posterior cingulate, precuneus, lateral parietal lobe and dorsolateral frontal lobe.
The identified regions are already well-known to be implicated in AD (Lerch et al., 2005; Thompson
et al., 2004; Lehmann et al., 2011).

5.3. ADRC Dataset

On the ADRC data, we compared AD vs. controls, AD vs. MCI, and MCI vs. controls. In the
AD vs. controls analysis, we expect to detect similar brain regions found in the result using the
ADNI. In the AD vs. MCI and MCI vs. controls analysis, we simply show which brain regions are
showing morphological changes between groups.
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(a) (b) (c)

Figure 9: Plot of sorted p-values and FDR threshold at q = 0.1 from AD vs. Controls analysis on the right
hemisphere of the brain according to different sample sizes using ADRC dataset. a) using 60% of the total subjects,
b) using 80% of the total subjects, c) using all subjects. As the sample size increases, the number of surviving vertices
increases. We can see that WMD increases the sensitivity.

5.3.1. AD vs. Controls

Group Analysis. We first analyze a group differences on AD and control subjects. Compared
to the ADNI dataset, here we have smaller number of subjects. Applying general hypothesis
testing directly fails to detect any group differences using the raw cortical thickness due to the
small sample size. Fig. 9 shows the resulting p-values in increasing order from student’s t-test
using cortical thickness and smoothed cortical thickness (heat-kernel smoothing at t = 0.5), and
Hotelling’s T 2 test and MGLM using WMD. FDR threshold at q = 0.1 is plotted in red dotted
line, and the number of vertices that are below the threshold level are considered as the signal
showing significant group differences. We see that while it is difficult to find a meaningful signal
using raw cortical thickness estimates on the ADRC dataset, WMD easily detects the underlying
difference. On 131076 vertices on both the right and left hemispheres of the brain surface (65538
tests on each hemisphere), we apply t-test on the cortical thickness data and heat-kernel smoothed
data, Hotelling’s T 2 test on WMD, and MGLM on WMD. After FDR at q = 0.05, we detect each
622, 5913, 12455, 13769 vertices from the t-test, Hotelling’s T 2 test, and MGLM respectively, which
corresponds to 0.47%, 4.51%, 9.5%, and 10.5% of the total number of tests performed.

In Fig. 10, we compare the four different results using different features and statistical techniques
on the template brain surface. In the top two rows, the result using raw cortical thickness and
smoothed cortical thickness are presented. The smoothed cortical thickness helps the test detect
some signal variation, but the result is weak and almost does not reveal any brain region. However,
WMD increases sensitivity, detecting many more regions with lower p-values (using Hotelling’s T 2

test); the result is shown in the third row of Fig. 10. Since variation of cortical thickness may be
caused by age or gender, we further utilize MGLM to remove the age and gender effects. As seen
in the bottom row of Fig. 10, the signal becomes more concentrated at specific regions.

Using cortical thickness and smoothing, we observe differences in a very small region in the right
inferolateral lobe only. However, using WMD, we find very strong group differences in the bilateral
inferolateral parietal as well as temporal pole and parahippocampal cortex. Other than those
regions, we also find isthmus cingulate, posterior cingulate, superior frontal, precuneus, entorhinal
cortex on both right and left hemisphere as showing group differences. Since we found similar
regions using ADNI dataset, it is reasonable to conclude that our results on ADNI and ADRC are
in agreement.
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Figure 10: Group analysis result (AD vs. Controls) on ADRC dataset. The resulting p-value (in − log10 scale)
from hypothesis tests after FDR at q = 0.05 is shown on a template brain surface. First row: t-test on the raw cortical
thickness data, Second row: t-test on the smoothed data, Third row: Hotelling’s T 2 test on WMD, Fourth row:
MGLM on WMD (without age and gender effect).

5.3.2. AD vs. MCI and MCI vs. Controls

Group Analysis. We also compare AD vs. MCI and MCI vs. controls group, and the results are
shown in Fig. 11 and Fig. 12. In these analysis, we show the uncorrected p-values using Hotelling’s
T 2 test and MGLM (removing age and gender effect) on WMD. The first row of Fig. 11 and
Fig. 12 represents the result using cortical thickness, the second row is the result using heat-kernal
smoothing (t = 0.5), and the third and fourth row shows the result using WMD by applying
Hotelling’s T 2 test and MGLM repectively. These comparisons provide additional evidence that
analysis with WMD is more sensitive, and more quantitative results are shown in section 6.

In both AD vs. MCI and MCI vs. controls analysis, we expect to see similar brain regions
identified by the AD vs. controls analysis, with small differences. By comparing MCI with AD
and controls, we may assess the longitudinal progression of the disease in specific brain regions.
On AD vs. MCI, the results showed differences in precuneus, inferior frontal and lateral occipital
on both hemispheres. Relatively weaker differences in the temporal pole and parahippocampal
regions are seen. As identified from the AD vs. controls analysis, the changes in cortical thickness
occur in the precuneus, inferior frontal, temporal pole and parahippocampal regions as a subject
enters MCI. In the MCI vs. CN analysis, we observed changes in the precuneus, isthmus cingulate,
inferior parietal, inferior temporal, superior temporal and temporal pole. Although not reported in
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Figure 11: Group differences (AD vs. MCI) on ADRC dataset. First row: p-values (uncorrected) from t-test using
CT, Second row: p-values (uncorrected) from t-test on smoothed data, Third row: p-values (uncorrected) from
Hotelling’s T 2 test on WMD, Fourth row: p-values (uncorrected) from MGLM on WMD (age and gender effect
removed.)

previous works, the MCI and CN comparison showed potential changes in the postcentral region
as well.

5.4. Power Analysis

Next, we assess the improvement in group analysis in terms of statistical power and calculate
the number of subject required to identify the differences. We first select the vertices that show
p < 0.05 from the ADNI dataset, and these vertices are used to evaluate the statistical power in
the ADRC dataset. We use the mean and variance from the selected vertices from each subject in
ADRC dataset to perform power analysis. Following (Hinrichs et al., 2012), the sample size per
group n at a certain confidence level α and power level 1− β is computed as

n =
2σ2(Z1−α/2 + Z1−β)2

δ2
(16)

where Z1−α is the upper α/2 percentile from the standard Normal distribution, σ2 is the variance
of the descriptor, 1 − β is the desired power and δ is the effect size. As a result, we obtain the
number of samples needed in order to get a significant result to observe the induced variations (i.e.,
at power 80%) using cortical thickness and WMD.
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Figure 12: Group differences (MCI vs. controls) on ADRC dataset. First row: p-values (uncorrected) from t-test
using CT, Second row: p-values (uncorrected) from t-test on smoothed data, Third row: p-values (uncorrected)
from Hotelling’s T 2 test on WMD, Fourth row: p-values (uncorrected) from MGLM on WMD (age and gender effect
removed).

Table 4: Estimated sample sizes to observe the differences between AD and controls using cortical thickness and
WMD at α = 0.05 and 1 − β = 0.8. The scales in WMD were analyzed both separately and in average.

Power CT(univariate) WMD (concatenated) WMD (scale 1) WMD (scale 2) WMD (scale 3) WMD (scale 4)

Right Hemisphere
0.8 22 18 18 19 21 24
0.9 29 24 24 25 28 33

Left Hemisphere
0.8 20 16 17 18 16 18
0.9 27 22 22 24 22 23

The summarized result is shown in Table 4. The power analysis was carried out on the cortical
thickness and 4 scales of WMD used in other experiments, both concatenated and individually.
Since WMD results from a filtering operation from the wavelet transformation, suppressing high
frequency components has the effect of reducing noise and variation. Consequently, WMD decreases
the required sample size in most cases as shown in Table 4.
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Figure 13: Sensitivity brain map using R2 (AD vs. CN) on ADRC dataset. Top row: R2 using raw cortical
thickness, Bottom row: R2 using WMD. We can see that the model fits WMD better than cortical thickness,
therefore WMD is more sensitive to the group difference than the raw cortical thickness.

Figure 14: Sensitivity brain map using R2 (AD vs. MCI) on ADRC datset. Top row: R2 using raw cortical
thickness, Bottom row: R2 using WMD. We can see that the model fits WMD better than cortical thickness,
therefore WMD is more sensitive to the group difference than the raw cortical thickness.

6. Goodness of Fit Results on the ADRC dataset

In order to quantitatively assess the improvement in sensitivity, we compare the R2 using raw
cortical thickness and WMD from a linear model which is,

Y = BX (17)

where Y is the response variable (i.e., cortical thickness or WMD), and X is the model (i.e., group).
For the multivariate response variable WMD, we used Wilk’s Lambda to compute the R2. The R2

indicates how well the data fit the given model, and the result shown in Fig. 13 tells us that our
WMD fits the model or explains more variance in the model much better than cortical thickness
in the AD vs. controls analysis. This shows the improvement in sensitivity using WMD even to
subtle effects. Further analysis on AD vs. MCI and MCI vs. controls are shown in Fig. 14 and
15. These results also indicate that WMD is more sensitive, and can reveal group differences which
may be too weak to detect with the classical analysis.
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Figure 15: Sensitivity brain map using R2 (MCI vs. controls) on ADRC datset. Top row: R2 using raw cortical
thickness, Bottom row: R2 using WMD. We can see that the model fits WMD better than cortical thickness,
therefore WMD is more sensitive to the group difference than the raw cortical thickness.

7. Discussion

Surface based mapping analysis is a widely deployed procedure in neuroimaging where we use
mass univariate tests, (e.g., t-test or GLM type analysis) along with multiple comparisons correction
to detect and assess statistically significant differences between clinical, genotype, or other groups
of interest. The aim then is to derive maps showing the degree of significance of group level effects
so as to localize regions of interest. This approach works very well when there are a sufficient
number of subjects in the study, and when the analysis method is sensitive enough to identify
such group differences. However, these assumptions may not always hold, which necessitates the
design of mechanisms that are sensitive enough to identify variations even in the smaller sample
size regime. In this work, we have focused on improving the sensitivity of the extracted features,
so as to mitigate the dependence on sample size.

To this end, we derived wavelet based multi-scale descriptors (WMDs) of the cortical thickness
signals which are sensitive both to surface geometry/topology, as well as variations at different spa-
tial scales. As noted above, a graph (typically) defines a non-Euclidean space, and the appropriate
tools completely capture its geometry and topology. Therefore, wavelet theory lends itself nicely
to the problem of deriving useful scale-dependent features. This construction is based on a set of
elegant results in the harmonic analysis literature dealing with the Spectral Graph Wavelet Trans-
form (Hammond et al., 2011) and Diffusion Wavelets (Coifman and Maggioni, 2006). This allows
us to propose a multivariate approach for group analysis of surface based signals in Neuroimaging
settings.

Instead of mapping the data onto a sphere, as in traditional spherical harmonic (SPHARM)
based methods, our multi-scale shape descriptor is directly defined on the cortical surface graph
itself, completely bypassing the ballooning process. Further, the WMD method is sensitive to
signals at different scales unlike SPHARM based methods. In our WMD construction, each scale
represents a different level of support over the harmonic basis. By varying a window over the
harmonic spectrum, the method of WMD efficiently characterizes both local and global context
around each vertex. As the window moves toward to the lower frequency spectrum, the wavelet
frame becomes more overcomplete. To avoid this, subsampling is done in grid based Euclidean
spaces. However, when dealing with non-Euclidean spaces, without making any assumption on the
nature of the graph, there is not necessarily a clear concept of subsampling. We note, for instance,
that the method described in (Narang and Ortega, 2012) gives a method of subsampling, but only
in bipartite graphs, and other methods can do this by making other assumptions. For instance,
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the method in (Coifman and Maggioni, 2006) assumes that the spectrum decays. Because there
is no subsapling scheme on graphs, spatial correlations are induced between nearby vertices in the
lower frequency range. The authors in (Van De Ville et al., 2004) propose to deal with the spatial
correlation issue by leveraging the compact, localized support of wavelets. In various situations,
the above decimated strategy is preferable, however, the subsampling needed in such a scheme
makes interpreting the specific band-pass filtering behavior difficult. Instead, the non-decimated
scheme adopted here is more convenient for analysis purposes because avoiding subsampling enables
deriving a descriptor precisely at the given set of vertices.

Through our experiments we demonstrated that such a multi-resolutional shape descriptor
defined in a graph space can be a powerful and flexible tool for identifying group difference signals.
Indeed, a method with greater sensitivity to group differences would require recruitment of fewer
subjects. We primarily evaluated the WMD framework on cortical surface signals, comparing group
analysis results with WMDs against classical methods. We first compared these models using ROC
curves for group analysis on synthetic brain surface data. Relative to raw uni-scale measurements,
or with smoothing, we identified brain regions with much stronger group differences with global
FDR correction, and in some cases these were detected when classical methods fail. In the ADNI
dataset, we obtained pronounced group differences in the anterior entorhinal cortex, posterior
cingulate, precuneus, lateral parietal lobe and dorsolateral frontal lobe. Similar regions were found
using the distinct W-ADRC dataset as well. It is encouraging that these independent results are
in agreement; we also note that these regions are consistent with the literature (Lehmann et al.,
2011; Thompson et al., 2011; Wirth et al., 2013). In addition to these results, we applied MGLM
analysis to control for factors such as age and gender and show how these factors change the results.
The FDR-curves suggest that up to twenty-eight times more vertices using WMD than using raw
cortical thickness can survive global correction. Using the W-ADRC dataset, we further analyzed
the effect from MCI. We showed that WMDs obtain lower p-values than raw cortical thickness, and
displayed whole-brain sensitivity map using the R2 metric of effect size. Finally, the power analysis
on AD and controls using cortical thickness and WMD indicates that WMD is more sensitive, giving
smaller sample size estimates. By applying our framework on two different datasets: the ADNI
dataset (a large and well characterized dataset) and the W-ADRC dataset (central to a number of
local studies,) we have demonstrated that the methodology is broadly applicable.

We believe, for several reasons, that the improved sensitivity is attributable to the filtering
effect achieved by separating high-frequency information from low-frequencies. First, anatomical
brain features, and neurodegenerative morbidity effects, tend to exhibit a certain degree of spatial
cohesion and locality (Braak and Braak, 1995; Hinrichs et al., 2009). In addition, most noise
processes, whether derived from scanner effects or post-processing, tend to be distributed across
all scales. Gaussian smoothing and filtering is therefore quite common for this and other reasons.
Note however, that a non-adaptive Gaussian blur kernel is oblivious to anatomical divisions such
as sulci and cortical boundaries, and may inappropriatly mix signals which are close spatially,
but not anatomically. Heat-kernel smoothing attempts to resolve this issue by first expanding the
cortices to a spherical surface (ballooning) and then smoothing, but in doing so it smoothes all
scales with the same fixed-bandwidth kernel. A key feature of the WMD approach is that each
scale corresponds to a particular band-pass filter in the spatial domain, which can be thought of
as smoothing only certain frequencies. In graph-based methods, smoothing can, and indeed must,
be done separately for each scale because there is a strong dependence on the unique topology of
each subject’s cortical surface mesh. In the interest of space, we do not report the effect of using
all seven scales, (as opposed to treating the upper three as “high-frequency” signal and discarding
them as noise,) but briefly, doing so uniformly weakened results and lessened significance. Moreover,
the high frequency components simply did not correspond with any identifiable brain regions, and
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visually resembled a random “speckle” pattern. This is an important observation because in some
image processing domains high-frequency information can give well-defined edges, but this did not
appear to be the case in this application.

One may be concerned about using the binary edge weights in the adjacency matrices (the
distance between vertices is not reflected) is that results from non-uniform sampling (based on the
underlying topology of the surface and/or the signal) and from a uniform or grid-like sampling will
be different. In principle, this is true. However, for actual datasets, assuming that the sampling
resolution is fine/high enough to capture variations in the shape topology of the brain surface
and the signal distributed on it, the final results of the statistical analysis are not much different.
Empirically, the default sampling in Freesurfer (Fischl, 2012) seems to be sufficient for our analysis
using binary adjacency matrices. A discussion of this phenomenon with a toy example is shown in
Appendix B.

Although we have demonstrated that our framework is able to obtain strong and robust results
in group analysis, there are nevertheless a few shortcomings. Our method leaves it to the user to
define the scales, and we note that this is often the case in wavelet-based methods. Ideally, one
would like to eigen-decompose the entire graph Laplacian, and divide the spectrum into portions
of roughly equal mass. However, when there are ∼ 105 nodes in the graph, this becomes infeasible.
A more practical approach is to find the largest eigenvalue, and simply divide the spectrum into a
fixed number of equal-width bins, which is the approach we followed. It still remains to choose how
many such bins to use, but we found empirically that a small number, on the order of five to ten,
works well. This choice is driven by several considerations. Primary among these is computational
burden. Consider that WMDs contain information not only about the function defined on vertices,
but also about the distinct topology of each subject’s vertex mesh. Therefore, resampling to a
grid must be done subsequent to any calculation of WMDs, and it must be done independently
for each scale. For a large number of scales this cost becomes a bottleneck. Moreover, we do
not wish to incur the curse of dimensionality any more than is necessary. That is, while multi-
resolution descriptors can effectively separate out some signals that are scale-dependent, if we allow
the descriptors to unduly proliferate then we may dilute the underlying signal by spreading it too
thinly over a large number of scales. Thus, while some signals genuinely exist only at a particular
scale, if we choose too many scales in some neighborhood of the true signal, then this signal may
“leak” between them due to sampling artifacts. Taking these issues into consideration, we avoid
choosing too many scales. In our evaluations, we found that seven scales gives satisfactory results,
though we did not perform an exhaustive grid search because of the above mentioned constraints.
In addition to the choice of number of bins is the choice of which ones to discard as high-frequency
noise, and which to treat as low-frequency signal. Following a similar line of reasoning as above,
we simply chose the first four bins as signal and the last three as noise. This is corroborated by the
fact that the distribution of p-values of the WMDs corresponding to high frequency portions of the
spectrum followed a roughly uniform distribution, and visual inspection showed no recognizable
spatial cohesion. This is exactly as we expect, and is in fact the intended effect — considering that
the CT signal can be recovered as a deconvolution and summation of the WMDs, and that the
high frequency WMDs are designed to serve as a model of “noise”, then it is not surprising that
the overall CT signal is weaker.

There is an important increase of interest in wavelet based neuroimaging analysis methodologies.
A number of works have expanded the basic framework as well as adapted it to various statistical
issues. Van De Ville and colleagues (Van De Ville et al., 2004) approach the problem of selecting
thresholds for both wavelet and spatial domains, which is important because without addressing
this issue, spatial statistical maps are uninterpretable. They tackle this issue by balancing the two
thresholds in the wavelet and the spatial domain, and apply statistical testing in the spatial domain
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instead of the wavelet domain. The authors of (Leonardi and Van De Ville, 2013) explored the
ramifications of using tight (or Parseval) wavelet frame which more closely resembles an orthonormal
basis while retaining basic wavelet properties. Among the advantages of using a tight frame is
that the inverse transform is easy to compute; this plays an important role in pre-processing the
raw data. In addition, it is efficient because it preserves the energy in the transformed domain.
Although the tight frame formulation is preventing spectral leakage between scales and proposes a
much cleaner strategy than re-normalizing the coefficients, the t and T 2 statistics we used in the
analysis automatically re-scale the coefficients regarding the difference in ranges between scales.
The authors above also noted that the construction in (Hammond et al., 2011) does not give
a tight frame, however it is nonetheless feasible for our particular application (as shown in our
experiments) because we are primarily interested in the forward transform which is essential to
obtaining the descriptors.

Lastly, we observe that there is an issue of whether to account for subject specific variations in
global cortical thickness. Adjustments for global effects in volumetric analyses are premised on the
finding that individuals who overall have bigger heads also tend to have larger regional brain struc-
tures (e.g., hippocampus) than persons with smaller heads. Normalization of regional volumes by
means of whole brain volume (whether via regression approaches or proportional scaling) is there-
fore necessary to control for this potential confound. In contrast, available evidence convergently
indicates that cortical thickness is only minimally or not at all related to sex, height, or overall
brain size. Therefore, adjusting for brain size/global thickness while performing vertex-wise cortical
thickness analyses risks introducing error variance into the model. (Salat et al., 2004; Dickerson
et al., 2009; Palaniyappan, 2010; Whitwell et al., 2013)

Despite these unresolved issues, our results suggest that the method may be highly suitable to
traditional group analysis in most cases, as is shown throughout the paper. The procedure can be
easily adapted to analyze data with arbitrary topologies (Kim et al., 2012; Chung et al., 2005) and
for studies dealing with other neurodegenerative disorders involving morphological measurement
on the brain surface or on brain networks. We hope that the companion toolbox to this paper
(available on NITRC and http://pages.wisc.edu/∼wonhwa) will facilitate such developments.

Acknowledgments

This research was supported by funding from NIH R01AG040396, NIH R01AG021155, NSF RI
1116584, NSF CAREER grant 1252725, UW ADRC P50 (AG033514), the Wisconsin Partnership
Program, UW ICTR (1UL1RR025011), NIH grants P30 AG010129, K01 AG030514, and Chris
Hinrichs was supported by a CIBM pre-doctoral fellowship via NLM grant 5T15LM007359. We
appreciate N. Maritza Dowling, Jennifer Oh, Vamsi Ithapu, Joon H. Lee and Gun W. Park for
their kind help for consulting and processing the data.

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Depart-
ment of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute
on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous
contributions from the following: Alzheimers Association; Alzheimers Drug Discovery Foundation;
BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuti-
cals, Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genen-
tech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy
Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development
LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Novar-
tis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda

24



Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to sup-
port ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation
for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern
California Institute for Research and Education, and the study is coordinated by the Alzheimer’s
Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated
by the Laboratory for Neuro Imaging at the University of Southern California.

References

Antoine, J.-P., Demanet, L., Jacques, L., Vandergheynst, P., 2002. Wavelets on the sphere: implementation
and approximations. Applied and Computational Harmonic Analysis 13 (3), 177–200.

Braak, H., Braak, E., 1995. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiology of
aging 16 (3), 271–278.

Cho, Y., Seong, J.-K., Jeong, Y., Shin, S. Y., 2012. Individual subject classification for Alzheimer’s dis-
ease based on incremental learning using a spatial frequency representation of cortical thickness data.
Neuroimage 59 (3), 2217–2230.

Chung, F. R., 1997. Spectral graph theory. Vol. 92. AMS Bookstore.

Chung, M., Dalton, K., Li, S., et al., 2007. Weighted Fourier series representation and its application to
quantifying the amount of gray matter. Med. Imaging, IEEE Trans. on 26 (4), 566 –581.

Chung, M., Robbins, S., Dalton, K., et al., 2005. Cortical thickness analysis in autism with heat kernel
smoothing. NeuroImage 25 (4), 1256 – 1265.

Coifman, R., Maggioni, M., 2006. Diffusion wavelets. Applied and Computational Harmonic Analysis 21 (1),
53 – 94.

Daubechies, I., 1990. The wavelet transform, time-frequency localization and signal analysis. Information
Theory, IEEE Transactions on 36 (5), 961–1005.

de Leon, M. J., George, A. E., Reisberg, B., Ferris, S., Kluger, A., Stylopoulos, L. A., Miller, J., La Regina,
M. E., Chen, C., Cohen, J., 1989. Alzheimer’s disease: longitudinal CT studies of ventricular change.
American Journal of Roentgenology 152 (6), 1257–1262.

Dickerson, B. C., Feczko, E., Augustinack, J. C., Pacheco, J., Morris, J. C., Fischl, B., Buckner, R. L., 2009.
Differential effects of aging and Alzheimer’s disease on medial temporal lobe cortical thickness and surface
area. Neurobiology of aging 30 (3), 432–440.

Dickerson, B. C., Wolk, D. A., 2012. MRI cortical thickness biomarker predicts AD-like CSF and cognitive
decline in normal adults. Neurology 78 (2), 84–90.

Erkinjuntti, T., Ketonen, L., Sulkava, R., Sipponen, J., Vuorialho, M., Iivanainen, M., 1987. Do white matter
changes on MRI and CT differentiate vascular dementia from Alzheimer’s disease. Journal of Neurology,
Neurosurgery & Psychiatry 50 (1), 37–42.

Fischl, B., 2012. Freesurfer. NeuroImage 62 (2), 774–781.

Freeden, W., Windheuser, U., 1996. Spherical wavelet transform and its discretization. Advances in Compu-
tational Mathematics 5 (1), 51–94.

Hammond, D., Vandergheynst, P., Gribonval, R., 2011. Wavelets on graphs via spectral graph theory. Applied
and Computational Harmonic Analysis 30 (2), 129 – 150.

25



Hinrichs, C., Dowling, N. M., Johnson, S. C., Singh, V., 2012. MKL-based sample enrichment and customized
outcomes enable smaller AD clinical trials. In: Machine Learning and Interpretation in Neuroimaging.
Springer, pp. 124–131.

Hinrichs, C., Singh, V., Mukherjee, L., Xu, G., Chung, M. K., Johnson, S. C., 2009. Spatially augmented
lpboosting for ad classification with evaluations on the adni dataset. Neuroimage 48 (1), 138–149.

Hodsman, A., Kisiel, M., Adachi, J., Fraher, L., Watson, P., 2000. Histomorphometric evidence for increased
bone turnover without change in cortical thickness or porosity after 2 years of cyclical hpth (1-34) therapy
in women with severe osteoporosis. Bone 27 (2), 311–318.

Hyde, K. L., Lerch, J. P., Zatorre, R. J., Griffiths, T. D., Evans, A. C., Peretz, I., 2007. Cortical thickness
in congenital amusia: when less is better than more. The Journal of Neuroscience 27 (47), 13028–13032.

Johnson, S. C., Rue, A. L., Hermann, B. P., Xu, G., Koscik, R. L., Jonaitis, E. M., Bendlin, B. B., Hogan,
K. J., Roses, A. D., Saunders, A. M., Lutz, M. W., Asthana, S., Green, R. C., Sager, M. A., 2011. The
effect of TOMM40 poly-T length on gray matter volume and cognition in middle-aged persons with APOE
ε3/ε3 genotype. Alzheimer’s and Dementia 7 (4), 456 – 465.

Kim, W. H., Pachauri, D., Hatt, C., Chung, M. K., Johnson, S., Singh, V., 2012. Wavelet based multi-
scale shape features on arbitrary surfaces for cortical thickness discrimination. In: Advances in Neural
Information Processing Systems 25. pp. 1250–1258.

Lehmann, M., Crutch, S. J., Ridgway, G. R., Ridha, B. H., Barnes, J., Warrington, E. K., Rossor, M. N.,
Fox, N. C., 2011. Cortical thickness and voxel-based morphometry in posterior cortical atrophy and typical
Alzheimer’s disease. Neurobiology of aging 32 (8), 1466–1476.

Lemaitre, H., Goldman, A. L., Sambataro, F., Verchinski, B. A., Meyer-Lindenberg, A., Weinberger, D. R.,
Mattay, V. S., 2012. Normal age-related brain morphometric changes: nonuniformity across cortical thick-
ness, surface area and gray matter volume. Neurobiology of aging 33 (3), 617–e1.

Leonardi, N., Van De Ville, D., 2013. Tight wavelet frames on multislice graphs. Signal Processing, IEEE
Transactions on 61 (13), 3357–3367.

Lerch, J. P., Pruessner, J., Zijdenbos, A. P., Collins, D. L., Teipel, S. J., Hampel, H., Evans, A. C., 2008.
Automated cortical thickness measurements from MRI can accurately separate Alzheimer’s patients from
normal elderly controls. Neurobiology of aging 29 (1), 23–30.

Lerch, J. P., Pruessner, J. C., Zijdenbos, A., Hampel, H., Teipel, S. J., Evans, A. C., 2005. Focal decline
of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy. Cerebral cortex
15 (7), 995–1001.

Lindeberg, T., 1993. Scale-space theory in computer vision. Springer.

Mallat, S., 1999. A wavelet tour of signal processing. Academic press.

Mallat, S. G., 1989. A theory for multiresolution signal decomposition: the wavelet representation. Pattern
Analysis and Machine Intelligence, IEEE Transactions on 11 (7), 674–693.

McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan, E. M., 1984. Clinical diagnosis
of Alzheimer’s disease report of the nincds-adrda work group under the auspices of department of health
and human services task force on Alzheimer’s disease. Neurology 34 (7), 939–939.

Narang, S. K., Ortega, A., 2012. Perfect reconstruction two-channel wavelet filter banks for graph structured
data. Signal Processing, IEEE Transactions on 60 (6), 2786–2799.

Newman, D., Dougherty, G., Al Obaid, A., Al Hajrasy, H., 1998. Limitations of clinical CT in assessing
cortical thickness and density. Physics in medicine and biology 43 (3), 619.

26



O’Donnell, S., Noseworthy, M. D., Levine, B., Dennis, M., 2005. Cortical thickness of the frontopolar area
in typically developing children and adolescents. Neuroimage 24 (4), 948–954.

Pachauri, D., Hinrichs, C., Chung, M., et al., 2011. Topology-based kernels with application to inference
problems in Alzheimer’s disease. Medical Imaging, IEEE Transactions on 30 (10), 1760 –1770.

Palaniyappan, L., 2010. Computing cortical surface measures in schizophrenia. The British Journal of Psy-
chiatry 196 (5), 414–414.

Panizzon, M. S., Fennema-Notestine, C., Eyler, L. T., Jernigan, T. L., Prom-Wormley, E., Neale, M.,
Jacobson, K., Lyons, M. J., Grant, M. D., Franz, C. E., et al., 2009. Distinct genetic influences on cortical
surface area and cortical thickness. Cerebral Cortex 19 (11), 2728–2735.

Petersen, R., Stevens, J., Ganguli, M., Tangalos, E., Cummings, J., DeKosky, S., 2001. Practice parameter:
Early detection of dementia: Mild cognitive impairment (an evidence-based review) report of the quality
standards subcommittee of the american academy of neurology. Neurology 56 (9), 1133–1142.

Prevrhal, S., Engelke, K., Kalender, W. A., 1999. Accuracy limits for the determination of cortical width
and density: the influence of object size and CT imaging parameters. Physics in medicine and biology
44 (3), 751.

Querbes, O., Aubry, F., Pariente, J., Lotterie, J.-A., Démonet, J.-F., Duret, V., Puel, M., Berry, I., Fort,
J.-C., Celsis, P., et al., 2009. Early diagnosis of Alzheimer’s disease using cortical thickness: impact of
cognitive reserve. Brain 132 (8), 2036–2047.

Salat, D. H., Buckner, R. L., Snyder, A. Z., Greve, D. N., Desikan, R. S., Busa, E., Morris, J. C., Dale,
A. M., Fischl, B., 2004. Thinning of the cerebral cortex in aging. Cerebral cortex 14 (7), 721–730.

Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., Evans, A., Rapoport, J., Giedd,
J., 2006a. Intellectual ability and cortical development in children and adolescents. Nature 440 (7084),
676–679.

Shaw, P., Lerch, J., Greenstein, D., Sharp, W., Clasen, L., Evans, A., Giedd, J., Castellanos, F. X., Rapoport,
J., 2006b. Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with
attention-deficit/hyperactivity disorder. Archives of General Psychiatry 63 (5), 540.

Sowell, E. R., Peterson, B. S., Kan, E., Woods, R. P., Yoshii, J., Bansal, R., Xu, D., Zhu, H., Thompson,
P. M., Toga, A. W., 2007. Sex differences in cortical thickness mapped in 176 healthy individuals between
7 and 87 years of age. Cerebral Cortex 17 (7), 1550–1560.

Sowell, E. R., Thompson, P. M., Leonard, C. M., Welcome, S. E., Kan, E., Toga, A. W., 2004. Longitudinal
mapping of cortical thickness and brain growth in normal children. The Journal of Neuroscience 24 (38),
8223–8231.

Thompson, P. M., Hayashi, K. M., Sowell, E. R., Gogtay, N., Giedd, J. N., Rapoport, J. L., De Zubicaray,
G. I., Janke, A. L., Rose, S. E., Semple, J., et al., 2004. Mapping cortical change in Alzheimer’s disease,
brain development, and schizophrenia. Neuroimage 23 (Suppl 1), S2–S18.

Thompson, W. K., Hallmayer, J., O’Hara, R., 2011. Design considerations for characterizing psychiatric tra-
jectories across the lifespan: Application to effects of apoe-e4 on cerebral cortical thickness in Alzheimer’s
disease. American Journal of Psychiatry 168 (9), 894–903.

Van De Ville, D., Blu, T., Unser, M., 2004. Integrated wavelet processing and spatial statistical testing of
fmri data. NeuroImage 23 (4), 1472–1485.

Whitwell, J. L., Tosakulwong, N., Weigand, S. D., Senjem, M. L., Lowe, V. J., Gunter, J. L., Boeve, B. F.,
Knopman, D. S., Dickerson, B. C., Petersen, R. C., Jr., C. R. J., 2013. Does amyloid deposition produce
a specific atrophic signature in cognitively normal subjects? NeuroImage: Clinical 2 (0), 249 – 257.

27



Wirth, M., Madison, C. M., Rabinovici, G. D., Oh, H., Landau, S. M., Jagust, W. J., 2013. Alzheimer’s
disease neurodegenerative biomarkers are associated with decreased cognitive function but not β-amyloid
in cognitively normal older individuals. The Journal of Neuroscience 33 (13), 5553–5563.

Wolz, R., Julkunen, V., Koikkalainen, J., Niskanen, E., Zhang, D. P., Rueckert, D., Soininen, H., Lötjönen,
J., et al., 2011. Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease. PloS one
6 (10), e25446.

Yu, P., Grant, P. E., Qi, Y., Han, X., Ségonne, F., Pienaar, R., Busa, E., Pacheco, J., Makris, N., Buckner,
R. L., et al., 2007. Cortical surface shape analysis based on spherical wavelets. Medical Imaging, IEEE
Transactions on 26 (4), 582–597.

Zhang, F., Hancock, E. R., 2008. Graph spectral image smoothing using the heat kernel. Pattern Recognition
41 (11), 3328–3342.

28



Appendix A. Basic Notations and Spectral Graph Theory

A graph G = {V, E , ω} is a set of vertices V, an edge set E , and the corresponding edge weights
ω. For a graph G with N vertices, its adjacency matrix A is defined as a N × N matrix whose
elements aij are given as,

aij =

{
ωij if ith and jth vertices are connected
0 otherwise

(A.1)

If G is undirected, the matrix is positive symmetric, however if G is directed, A is asymmetric;
the elements aij may represent the direction of connectivity. The degree matrix D is defined as
a N ×N diagonal matrix whose ith diagonal is

∑
j ωij , the sum of edge weights connected to the

ith node. When the edge weights are binary and represent solely the connectivity information
with ωij ∈ {0, 1}, A is a binary matrix and the degree matrix D represents how many edges are
connected to each vertex. From these two matrices that characterizes the geometric property of a
graph, a graph Laplacian L is derived as:

L = D−A (A.2)

and the normalized version is given as,

Lnorm = I −D−
1
2 AD−

1
2 = D−

1
2 LD−

1
2 (A.3)

Illustrative examples of A,D and L of a star shaped undirected graph with 5 vertices and 5 edges
are shown in Fig. A.16.

Note that L � 0 and so has a complete set of orthonormal eigenfunctions χl, and the corre-
sponding eigenvalues λl for l = 0, 1, . . . , N − 1 are ordered as

0 = λ0 ≤ λ1 ≤ · · · ≤ λN−1 (A.4)

(a) (b) (c) (d)

Figure A.16: An example of A,D,L. a) A star shaped graph G with 5 vertices and 5 edges. b)
Adjacency matrix A, c) Degree matrix D, d) graph Laplacian L.

Appendix B. Effect of Non-uniform versus uniform mesh sampling

This section shows an additional experiment to address the effect of sampling schemes. Briefly,
if the edge weights in the adjacency matrices are binary, non-uniform/uniform sampling of a domain
(which is a brain surface in our case) may affect the group analysis result depending on the sampling
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure B.17: An example showing the effect of uniform vs. non-uniform sampling in different resolutions in our
framework. A signal is defined as a circular region with radius 10 centered at (50, 50) in a 2D space, and group
analysis is performed using our framework on two different groups if images where only one group contains the signal.
The resultant p-values are shown in − log scale. a) Delaunay triangulation from 2000 uniformly sampled vertices, b)
Delaunay triangulation from 2000 non-uniformly sampled vertices (Gaussian distribution at various grid-points), c)
result using mesh a), d) result using mesh b), e) Delaunay triangulation from 10000 uniformly sampled vertices, f)
Delaunay triangulation from 10000 non-uniformly sampled vertices (Gaussian distribution at various grid-points), g)
result using mesh e), h) result using mesh f).

resolution. If the sampling is coarse, then a binary adjacency matrix is likely to yield a poorer result
because it assigns a unit edge weight to all neighboring vertices regardless of their distances. But
if the sampling resolution is high enough such that neighboring vertices are sufficiently close and
dense enough to characterize the brain surface, then the effect of binary edge weights becomes far
less important.

This phenomenon is demostrated in Fig. B.17. We simulate two groups of 20 images each (40
images in all). The images in the first group have a signal which we hope to identify later in group
analysis. Signal measurements come from a Gaussian distribution 1+N(0, 0.01) in a circular region
of radius 10 at the center of a 2D domain ([0, 100] for each axis). Such a signal is not introduced
in the second group of images. Finally, we add Gaussian noise from N(0, 0.5) to all images. Given
this data, we evaluate various sampling schemes and their effect on group analysis results using our
WMD framework. We evaluate two different sampling schemes: 2000 (coarse) and 10000 (dense)
vertices from the 2D domain. For each sampling scheme, we draw samples uniformly and non-
uniformly and then measure the differences at each vertex to identify regions that are statistically
different. For the non-uniform sampling, we used a Gaussian distribution centered at various grid
points (multiples of 20, see Fig. B.17) in the [0, 100] domain in the x, y axes with variance (2, 2).
This means we will sample more points which lie closer to such grid-points. With the sampled
vertices, we generate Delaunay triangular meshes to create the underlying graph. These graphs
(meshes) are shown in Fig. B.17a), b), e) and f). Once we defined these graphs, we applied our
framework to find group differences, which is a circle of radius 10 at (50, 50). The resultant p-
values after Bonferroni correction at 0.01 are shown in Fig. B.17c), d), g) and h). For 2000 vertices,
the group analysis result from the uniform sampling yields moderate results (in terms of visual
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overlap of detected differences with true differences), whereas the non-uniform sampling returns a
relatively weaker result in terms of visual overlap. However, as the resolution of sampling improves
to 10000 vertices, it is sufficiently dense and both uniform and non-uniform sampling methods
reliably identify the true difference between the two groups.
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