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Abstract
Statistical analysis of longitudinal or cross sectional

brain imaging data to identify effects of neurodegenerative
diseases is a fundamental task in various studies in neuro-
science. However, when there are systematic variations in
the images due to parameter changes such as changes in the
scanner protocol, hardware changes, or when combining
data from multi-site studies, the statistical analysis becomes
problematic. Motivated by this scenario, the goal of this pa-
per is to develop a unified statistical solution to the problem
of systematic variations in statistical image analysis. Based
in part on recent literature in harmonic analysis on diffu-
sion maps, we propose an algorithm which compares oper-
ators that are resilient to the systematic variations. These
operators are derived from the empirical measurements of
the image data and provide an efficient surrogate to captur-
ing the actual changes across images. We also establish a
connection between our method to the design of wavelets in
non-Euclidean space. To evaluate the proposed ideas, we
present various experimental results on detecting changes
in simulations as well as show how the method offers im-
proved statistical power in the analysis of real longitudinal
PIB-PET imaging data acquired from participants at risk
for Alzheimer’s disease (AD).

1. Introduction

Statistical analysis of a cohort of brain imaging scans to
assess the long term effects of trauma/stress and identify ge-
netic, demographic and lifestyle factors for neurodegenera-
tive diseases is a cornerstone of current research in neuro-
science. Typically, the population will consist of two clin-
ically disparate groups/classes: say, diseased and healthy
(cross-sectional) or a set of subjects imaged several years
apart (longitudinal). Once all images are ‘registered’ to a
common template space, the statistical analysis can proceed
in a number of ways. For instance, at each voxel one may

perform a hypothesis test (e.g., Student’s t-test) to ask if
the distribution of intensities at that voxel across the two
distinct groups are the same [10]. If there is sufficient ev-
idence to reject the null hypothesis, we can conclude with
some confidence (0.05 α level) that the voxel is relevant for
the disease. By repeating this procedure across all voxels,
we can obtain a heat map of p-values to identify potential
regions affected by the disease.

There are two basic but important issues we should em-
phasize here. First, our ability to conclude that (at a specific
voxel) the observed empirical intensity distributions are dif-
ferent across groups depends on the sample size and how
distinct the distributions are (i.e., the effect size). Second,
this analysis assumes that the absolute image intensity mea-
surements are meaningful. In other words, we assume that
the only differences between the groups is due to the ef-
fect of the clinical phenomena under study (i.e., age, dis-
ease and so on), and not other global systematic variations
coming from modifications in acquisition parameters. Gen-
erally, in small to medium sized studies where the data is
acquired at a single site (with the same scanner), this is not
a problem. But as scientific studies investigate more subtle
scientific questions where the group differences are weaker,
we need larger sample sizes — logistic constraints necessi-
tate multi-site studies. Changes in the hardware and pulse
sequences (and many other factors) across sites introduce
systematic variations in the dataset. In fact, even in small
studies, a hardware upgrade (between baseline and follow-
up acquisitions) may be a nuisance for analysis, requiring
ad-hoc normalization which may affect statistical power of
detecting true group effects. When the effect sizes are poor,
performing inference on the data without appropriate ad-
justments could affect the success or failure of the scientific
hypothesis under investigation.

The above problem is common across various imaging
modalities in medical imaging. For instance, in neuroimag-
ing uses of positron emission tomography (PET), a nuclear
imaging modality (where an injected radiotracer binds to
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specific pathologies), image measurements vary consider-
ably, even for the same subject, due to a variety of reasons.
So, before any statistical analysis can be performed, these
images must be “normalized”. Possible approaches include
global normalization (mean intensity) or regional scaling
(by a reference region). This process converts the inten-
sities into a physiological range of interpretable values. But
if the global average or the mean intensity of the reference
region used is not independent of the condition being stud-
ied, the analysis will invariably suffer. In these cases, incor-
rect normalization can lead to an inability to identify real
group differences, or worse, one may obtain paradoxical or
“opposite” findings. In various other imaging modalities, a
normalization strategy may not even be viable. For exam-
ple, if the systematic variations are the result of changes in
the acquisition parameters at different sites, one must ana-
lyze the smaller datasets separately. The goal of this paper
is to develop a unified statistical solution to this problem.

A high level description of the strategy. Let f denote an
unknown function. Let α and β denote two parameters such
that they modify the form of the function f(·) yielding fα
and fβ . Now, consider that we are only given access to mea-
surements of fα and fβ . It is clearly not possible to verify
whether they were both derived from the same latent func-
tion, f unless we also know the relationship between the
transformations of f induced by α and β (if the respective
inverse transformations are unique). Assume that an oracle
provides us an operator T (to be described in detail) with
the interesting property that it is invariant to the parameter
space P from which α and β are drawn. That is, if we con-
struct a pair of operators from the empirical measurements
of fα and fβ , the operators will be the same: T fα ≡ T fβ if
they share the same latent function, f .

Next, consider a slightly more complicated setup. The
latent function f has now been modified to f ′. We are now
provided with the measurements, fα and f ′β , i.e., both the
parameter and the function change. Since the operator T
only offers invariances to the parameter space P (and as-
sumes that the latent function is the same), in this case, the
operators T fα and T f ′

β
cannot be compared. Nonetheless,

we can see that the operators provide a mapping to two dif-
ferent spaces, say Sfα and Sf ′

β
, since f and f ′ are distinct.

Interestingly, because of the invariance toP , if we now plug
in a known function (such as an impulse function) at all
locations in the original space into the two operators, we
will obtain its transformed representations in Sfα and Sf ′

β
.

Once these transformed forms of the impulse functions are
mapped from Sf ′

β
to Sfα , we can calculate the distance. If

the distance is near zero, then f ' f ′; otherwise, it charac-
terizes the discrepancy between f and f ′ since the operators
are, by design, invariant to P .

The main contribution of this paper is to formalize
this idea for immunity to systematic variations in statistical

analysis of imaging data, based on a new method in the har-
monic analysis literature by Coifman and Hirn [6]. In par-
ticular, we a) Derive the operators T using the recent work
in Diffusion Maps [7, 6] and show how the corresponding
invariance allows performing statistical analysis of system-
atically varying images, i.e., fα and fβ for α, β ∈ P . Note
that it may not otherwise be possible to even compare fα
and fβ ; b) Describe how the lower dimensional mapping
obtained by the operators relate to a Wavelet transform in
non-Euclidean spaces; c) Provide experimental evidence in
that the method facilitates statistical analysis of Pittsburgh
compound B PET (PIB-PET) [20] images and offers im-
provements over standard normalization methods used in
the community.

1.1. Related Work
There are several broadly related ideas in vision and

medical imaging that can serve as a reasonable starting
point for comparing functions that cannot otherwise be
compared [8]. The most natural choice is a statistical
measure that is, by construction, invariant to image inten-
sities: Mutual Information (MI). Mutual information has
been extensively used in both computer vision (e.g., stereo
[12, 16, 13]) and in medical imaging (e.g., non-linear reg-
istration [32, 22, 26, 33]) and offers precisely the type of
invariance we desire. While MI is a good loss function to
optimize when searching for a non-linear transformation or
disparity map, once such a transformation has been found
and the images have been aligned, MI does not make the
statistical analysis any easier. For instance, consider a set of
ten participants whose images were acquired twice, a few
years apart, and the intensities in the second acquisition are
systematically different (e.g., affine scaling). While MI can
characterize the joint entropy of a pair of intensities, it can-
not be used to quantify the voxel-wise change from one time
point to the other.

An alternative to the MI approach is based on dictionary
learning/patch regression inspired idea called image synthe-
sis [14, 28, 25]. Broadly, one may use image synthesis to
synthetically generate the image that has been corrupted, as-
suming a large set of training examples is available. While
this approach is suitable for addressing missing data, apply-
ing it in the above longitudinal setting will entail generating
the entire set of images at the second time point. The learn-
ing task will broadly correspond to inferring the parame-
ters of a generative model that explains temporal change
across the population, given only the baseline acquisition
— clearly difficult regardless of how well characterized the
training dataset is. Given these issues, to our knowledge,
there is no universally applicable solution offering the same
capabilities as the algorithm we propose here. In situations
where the structural variations in the intensities are related
by a simple transformation, one may normalize the entire
image by a suitable normalization constant. In medical



(a) (b) (c) (d) (e) (f) (g)
Figure 1: Comparing two different functions on four data points. a) f(p) = fα(p) = (1, 1, 1, 1)T , b) f ′(p) = (1, 1, 3, 1)T , c) f ′β(p) = 3− f ′(p) =
(2, 2, 0, 2)T , d) |fα − f ′β |, e), f) graphs from fα and f ′β respectively (edge thickness denotes to edge weight), g) WKD using structure from e) and f).
The true change between a) and b) is (0, 0, 2, 0), but a simple subtraction in d) is inaccurate. The proposed algorithm can capture the true change in g).

imaging, this is often difficult because it must be derived
from a region not affected by disease, age, or the clinical
phenomena under study. If this is sub-optimal, it can affect
the statistical analysis in unexpected ways. Later, we will
show experiments using the above approach as a baseline
and demonstrate how the new method offers improvements.

2. A Multi-resolutional Perspective
Our framework considers the case where fα and fβ cor-

respond to images. Here we assume that the two images are
spatially registered so that the only variations in the mea-
surements comes from the parameters, α, β ∈ P . Although
we cannot compare fα and fβ due to parameter differences,
the latent function is the same, so the overall behavior of the
functions are similar modulo the variation introduced by the
parameters drawn from P . Formally, we assume that the re-
lationship of measurements at each grid point to measure-
ments at other grid points in the same image is preserved
and is independent of changes in the parameter space, P . In
other words, if we place a unit mass of energy at position p
in the first image, then the overall pattern of dissipation to
its surroundings (e.g., governed by the form of the function)
will be similar to that observed in the second image. Now,
imagine that fα changes to f ′α, which alters the relationship
between the sample points in subtle ways. When we place
a unit energy at location (or grid point) p, the propagation
of the energy will now show different patterns for the two
image-derived operators: capturing the difference between
those patterns is an excellent surrogate for detecting the dif-
ference between the two original functions f and f ′.

In the previous section, we proposed that this procedure
should be carried out by operators T fα and T f ′

β
derived

from the measurements of respective functions. We know
that these operators define a mapping to lower dimensional
spaces Sf and Sf ′ [2]. The unit energy at position p can be
simulated by an impulse function δp. Now, when T fα and
T f ′

β
are applied to the same δp, the energy propagation will

be characterized in the spaces Sf and Sf ′ . Interestingly, the
reader will see that this process is exactly like the construc-
tion of a mother wavelet function [23, 30], which involves
applying a Wavelet transformation operator on a delta func-
tion to characterize dissipation of a unit energy in a lower
dimensional space. Traditionally, a mother wavelet function
ψs,p corresponds to scale s and location p — while the for-

mer defines the dilation, the latter corresponds to individual
sample grid points in the image. This discussion immedi-
ately suggests the possibility of using the Wavelet transform
in place of the operator, T .

One important issue here is that wavelets are classically
defined in Rn, where the space is represented as a grid graph
with equally weighted connections to the neighbors. In-
stead, in this application, we want the energy to spread un-
evenly in all possible directions, strongly modulated by the
strength of the connections between the data points. This
corresponds to a non-Euclidean space where the design of
Wavelets is poorly investigated. Shortly, we will describe
how the wavelet transform on graphs [11, 7] provides a so-
lution to this problem by building Wavelet basis in such ar-
bitrary structured spaces.

The Spectral Graph Wavelet transform (SGWT) [11].
The construction of a wavelet transform is problematic in a
non-Euclidean space because of the two main properties of
the Wavelet bases: translation and scaling. For instance, be-
cause of the arbitrary connections between the grid-points,
it is difficult to imagine what the “shift” or “dilation” of a
function means. But instead of defining the mother wavelet
in the original domain, wavelets can be simply defined as
band-pass filters in the frequency domain. SGWT defines a
Wavelet basis based on spectral graph theory to first trans-
form the data into the frequency domain. Then, operations
analogous to scaling can be accomplished by band-pass fil-
teringand then transforming the data back — this one shot
backward/forward process gives a Wavelet basis for graphs.

Consider a graph G = {V,E, ω} defined by a vertex
set V , an edge set E and corresponding edge weight ω.
A convenient representation of the graph is a N × N ad-
jacency matrix A where N is the number of vertices and
each element aij in A denotes the edge between the ith
and jth vertices by the weight ω. A diagonal N × N ma-
trix D, known as degree matrix, characterizes the degree
of each vertex, as the ith diagonal element is defined as∑

(i,j)∈E aij . From these two matrices, a graph Laplacian
L is derived as L = D − A which is a self-adjoint opera-
tor and upon decomposition provides a full set of orthonor-
mal bases. SGWT uses these orthonormal bases to define
the graph Fourier transformation which in turn provides the
graph Wavelet transformation.

Based on the given λ and χ, SGWT is determined by a



wavelet kernel function g : R+ → R+, which behaves as a
band-pass filter. Then, the SGWT operator T g on a function
h(p) is defined as

(T g h)(p) =
N−1∑
l=0

g(λl)βlχl(p) (1)

where βl = 〈h, χl〉. Note that there is no notion of scaling
in (1). But we know that the Fourier transform has a scaling
property which can be incorporated in the kernel function,
g(). Then, the corresponding operation (but now with scal-
ing property) is given as

Wh(s, p) = (T sg h)(p) =
N−1∑
l=0

g(sλl)βlχl(p). (2)

which results in the wavelet coefficient Wh(s, p). The ac-
tual mother wavelet ψs,p at scale s centered at p is realized
by a delta function δp as

ψs,p(q) = T sg δp =

N−1∑
l=0

g(sλl)χl(p)χl(q) (3)

and this satisfies the conventional transform Wh(s, p) =
〈ψs,p, h〉. This wavelet function is considered as a kernel
function ψs(p, q) between vertices p and q, serving as a key
ingredient in defining the notion of “change” between fα
and f ′β independent of the parameters α, β ∈ P

3. Change Detection in Non-Euclidean Space
3.1. Wavelet Map and Wavelet Kernel Distance

Defining a kernel function in a square integrable mea-
sure space (X,µ) enables one to measure local similarities
withinX at small scales [6]. In our case, we define a mother
wavelet function as such a kernel function using an operator
T s. The operator T s is constructed using empirical mea-
surements of function fα which are given. A wavelet func-
tion ψs,p(q) can be viewed as if it were a kernel function
written as ψs(p, q), defining a relationship between vertex
p and q [3]. Following [6], we can define a kernel func-
tion ψs(p, q). For our application, this yields Wavelet Ker-
nel Distance (WKD) ds(p, q) at scale s, a measure between
two points p and q defined as `2−norm of the wavelet den-
sity difference over the space X as

ds(p, q)
2 = ||ψs(p, ·)− ψs(q, ·)||22 (4)

=

∫
X
(ψs(p, r)− ψs(q, r))2µ(r) (5)

In the graph setting, using the SGWT operator T sg de-
fined by a set of a set of eigenvalues and eigenfunctions
as in Section 2, observe that (4) can be rewritten using a
wavelet kernel function g() in the spectral domain as

ds(p, q)
2 =

N−1∑
l=0

g(sλl)
2(χl(p)− χl(q))2 (6)

The expression in (6) lies at the heart of the idea devel-
oped in this paper. It can be interpreted as if we were com-
paring the effect of the same wavelet function dissipating
from different locations p and q to their neighbors by the
wavelet kernel function g(), thereby measuring the effect
of the propagation. Further, we can also define a mapping
of δp at each grid-point to a lower dimensional Euclidean
space spanned by χ defined as the wavelet map γ : X → `2

at scale s as

γs(p) = (g(sλl)χl(p))l=0,1,...,N−1 (7)

characterizing the local relationship of the graph with the
wavelet kernel function g(). Note that when gs(λl) = λsl ,
the wavelet map exactly becomes diffusion map proposed
earlier in [7].

A toy example is shown in Fig. 1: the objective here
is to compare two different functions fα and f ′β defined
on four data points, and find the true difference between
them. Given latent functions f = (1, 1, 1, 1)T and f ′ =
(1, 1, 3, 1)T , the true difference (i.e., |f − f ′|) here is
(0, 0, 2, 0). Given the latent functions, fα remains the same
as f while f ′β is defined to be f ′β(p) = 3 − f ′(p). Clearly,
a direct comparison of fα and f ′β (i.e., |fα − f ′β |), as illus-
trated in Fig. 1 d), fails to detect the true difference. On the
other hand, computing WKD from graphs constructed us-
ing fα and f ′β at each data point yields the true difference
as shown in Fig. 1 g).

We can now formally establish the relationship between
wavelet map, WKD, and the construction of Wavelets using
the following two results.

Proposition 1. The squared WKD ds defined between two
vertices p and q on the same graph is equivalent to the
`2−norm of the difference between the respective wavelet
maps of vertices p and q.

Proof. Taking the `2−norm of the difference over wavelet
map on vertices p and q yields,

ds(p, q)
2 = ||γs(p)− γs(q)||22 =

N−1∑
l=0

(g(sλl)χl(p)− g(sλl)χl(q))2

=

N−1∑
l=0

g(sλl)
2(χl(p)− χl(q))2.

From Proposition 1, we can see that WKD defines a Eu-
clidean distance of the wavelet maps between vertices p and
q in the space formed by χ. But is there a relationship be-
tween Wavelet maps and an actual wavelet function?

Proposition 2. Let V = [χ0 χ1 . . . χN−1] denote a ma-
trix where χi corresponds to columns. The projection of a
wavelet map γs(p) at vertex p to the row space of V pre-
cisely constructs a mother wavelet function ψs,p(q).



Proof. Given χ(q), the qth row of V , taking inner product
of the wavelet maps γs(p) and χ(q) becomes

〈γs(p), χ(q)〉 =
N−1∑
l=0

g(sλl)χl(p)χl(q) = ψs,p(q)

which defines a wavelet function at q centered at p exactly
in the form given in (3).

Summary. We see that Proposition 2 establishes the con-
nection between the construction of Wavelet functions from
Section 2 and the wavelet map. It shows that a Wavelet
function can be constructed from the wavelet map at each
vertex. Further, this result ties the wavelet map to kernel
signatures on graphs, variants of which have been used for
graph matching and surface segmentation (but using diffu-
sion [9, 31]). When the wavelet map of p is projected to
the pth row of V , we get a wave-type kernel descriptor in
[1, 17]. Separately, when gs(λl) = exp(−sλl), we obtain
the heat kernel signature in [4].

3.2. Generalization of Wavelet Kernel Distance

So far, we have shown how two different vertices on the
same image/graph can be compared using a Wavelet opera-
tor T fα that has been derived from empirical measurements
of a function fα. But our main interest in facilitating statis-
tical analysis of longitudinal systematically varying data is
in comparing the same measurement location across the two
images. We now derive such a generalization.

Consider two individual graphs I and J , constructed us-
ing functions (or images) fα and f ′β , where the number of
vertices in each is N . We assume that the vertices are spa-
tially registered and that we are operating on a square inte-
grable space X . On these graphs, WKD between a vertex
pI from I and a vertex qJ on J is defined as

ds(p
I , qJ )2 = ||ψIs (p, ·)− ψJs (q, ·)||22 (8)

=

∫
X
(ψIs (p, r)− ψJs (q, r))2µ(r) (9)

using wavelet kernel functions ψIs and ψJs .
Our basic recipe is to construct two operators T fα and

T f ′
β

, and obtain two sets of orthogonal bases χI and χJ

from each operators to compare the vertex-wise differences.
Note that while the expansion of (8) does not simplify as in
(6) since the eigenvectors χI and χJ are no longer orthog-
onal to each other, it nonetheless reduces to a meaningful
expression defining a mapping between the lower dimen-
sional spaces defined by the two operators as described by
the following result.

Proposition 3. Let λI , λJ and χI and χJ denote the eigen-
values and eigenvectors from graphs of I and J respec-

tively. Then, the WKD ds(p
I , qJ) can be written as,

ds(p
I , qJ )2 =

N−1∑
l1=0

g(sλIl1 )
2χIl1 (p)

2 +

N−1∑
l2=0

g(sλJl2 )
2χJl2 (q)

2 (10)

− 2

N−1∑
l1,l2=0

g(sλIl1 )χ
I
l1
(p)g(sλJl2 )χ

J
l2
(q)〈χIl1 , χ

J
l2
〉

The proof of Proposition 3 is given in the extended ver-
sion. It is instructive to tease apart the various terms in (10)
to understand their behavior. The first two terms in (10)
form the WKD on a single graph whereas the last term com-
pensates for the discrepancy caused by the variations of the
inherited spaces once the first space has been mapped to the
other. By inspection, we see that this generalizes Proposi-
tion 1. When I and J are the same, we can verify,

Proposition 4. When I and J are equal, then (10) reduces
to (6).
Proof. Since I and J are the same graph, they share the
eigenvalues λl and eigenvectors χl, therefore

ds(p
I , qJ )2 =

N−1∑
l1=0

g(sλIl1 )
2χIl1 (p)

2 +

N−1∑
l2=0

g(sλJl2 )
2χJl2 (q)

2

− 2

N−1∑
l1,l2=0

g(sλIl1 )χ
I
l1
(p)g(sλJl2 )χ

J
l2
(q)〈χIl1 , χ

J
l2
〉

=

N−1∑
l=0

g(sλl)
2(χl(p)

2 − χl(q)2)

with 〈χIl1 , χ
J
l2
〉 = 0 when l1 6= l2.

4. Experimental Result
We demonstrate three sets of experimental results: two

of these correspond to a situation where the ground truth
variations are known whereas the third one is focused on
a real statistical analysis problem on brain imaging data
(real longitudinal PIB images). The first experiment evalu-
ates whether the proposed method can detect actual changes
across two different images where there are substantial sys-
tematic variations. In the second experiment, we carry out
a statistical group analysis on synthetically generated PIB
images, where we expect to detect true group differences
from a model of the first and the second groups, in the pres-
ence of systematic variations. Finally, we run the proposed
algorithm on a real longitudinal PIB-PET image dataset.
Here, the images are normalized in a certain sense, how-
ever, because of the characteristics of the imaging modality
we still expect systematic variations (depending on the ac-
curacy of the normalization) which decreases the statistical
power. Our goal here is to detect those regions in the brain
that show high correlation between (a) the PIB changes over
time and (b) known risk factors for Alzheimer’s disease.
Since the ground truth here is unavailable, we expect re-
gions identified by our method to be consistent with those
reported in the literature.



Figure 2: Results from NASA Earth Observatory images. We detect the changes between two images (in different scales) of Lake Powell (first row),
Sierra Nevada (second row) and Aral Sea (third row). First column: images taken in 2013, Second column: images taken in 2014 (inverted), Third column:
ground truth, Fourth column: changes identified using WKD.

4.1. Simulation on NASA Satellite Images

We obtained real satellite images from NASA Earth
Observatory (http://earthobservatory.nasa.
gov), which shows changes (due to various factors) over
time at various locations worldwide. For each scene, we
have two longitudinally acquired images which should
reveal how the region has changed over time. To simulate
‘systematic variations’, we invert one of the images by mul-
tiplying all intensities by −1, providing fα and f ′β . Notice
that direct comparison of these images yields nonsensical
results. One can use Mutual information to derive a joint
entropy of each pair of intensity values. Unfortunately,
this scheme does not directly yield a ∆t-image showing
change over time. The key here is to notice that instead
of comparing pixel intensities, we are detecting changes
of local structures at each pixel between the two images
in a lower dimensional Euclidean space, therefore we are
able to identify the high-level differences meaningfully.
Representative results are demonstrated in Fig. 2.

4.2. Group Analysis of Synthetic PIB images
We now present results of statistical analysis on a popu-

lation of synthetically generated 2-D Pittsburgh Compound
B (PIB) image data. The experiment design is as follows.
We assume we have two groups: diseased and healthy (con-
trols). We simulate brain images of 20 diseased and 20 con-
trol subjects, using a template 2-D PIB image with size of
79× 95. We assume that each subject was imaged longitu-
dinally providing a t0 (baseline) and t1 (follow-up) image.

At t0, the images Yt0 in both (diseased and control) groups
are modeled as a random field with mean µcontrol with added
Gaussian noise N(0, 0.1) as

Yt0 = µcontrol +N(0, 0.1) (11)

where µcontrol is given by the template PIB image slice
shown in Fig 3 (a). At t1, we consider two types of changes:
the first is an increase of PIB values by 20% in certain re-
gions of the brain in the diseased group characterized by
µdisease, and the other is systematic variation simulated as
an arbitrary affine transformation with scale s ∈ [1, 2] and
translation a ∈ [0, 1] applied to the image intensities.

Yt1 =

{
sµcontrol + a+N(0, 0.1) if normal
sµdisease + a+N(0, 0.1) if diseased

In this scenario, we would like to detect the changes ∆Y =
Yt1 − Yt0 from the two time points across the two groups
by comparing the distribution of ∆Y across groups. In the
standard procedure, performing a statistical hypothesis test
at each pixel (a total of 7505 tests) yields a p-value at each
pixel, that tells us whether the distribution of the ∆Y are the
same. Applying Bonferroni correction at 0.05 removes false
positives and identifies the regions with significant changes
between the two groups. This process works well when s =
0 and a = 0, however, systematic variations may reduce
or bias the effect sizes and diminish the statistical power.
Using our method, we expect to detect the group differences
even in the presence of systematic variation.

The resultant p-value maps from this simulation is dis-
played in Fig. 3 b), c) and d) at the same scale (− log10

http://earthobservatory.nasa.gov
http://earthobservatory.nasa.gov


(a) (b) (c) (d)

Figure 3: Result from a group analysis on diseased vs. normal groups using synthetic PIB images. a) a template PIB image used for the mean µ, b)
p−value map in − log10 scale from the group analysis using images without the systematic variation (serving as the ground truth), c) p−value map in
− log10 scale from the group analysis using images with systematic variation, d) p−value map in − log10 scale from the group analysis using WKD on
images with systematic variation. We can see that using WKD, we can detect group differences even when there is a systematic variations in the images.

scale), which shows three cases of this experiment: using
the standard hypothesis testing procedure on (i) the given
data without systematic variations (i.e., ground truth), (ii)
with systematic variations and (iii) WKD for the data with
systematic variations. As seen in Fig. 3 (b), there is a strong
signal showing group differences between the two groups
(diseased and controls), easily identified using standard hy-
pothesis testing. This serves as the ground truth. In contrast,
when there are systematic variations in the data, the tradi-
tional approach fails to detect the true differential signal as
shown in Fig. 3 c). We computed WKD at each pixel of the
images with systematic variations instead of computing ∆Y
directly, and then applied hypothesis testing on WKD. This
process successfully detects the region as shown in Fig. 3
d) showing excellent consistency with the actual changes
between t0 and t1. Therefore, in this sanity check experi-
ment, our method correctly picks up the true variations and
makes the downstream statistical analysis more sensitive
even when systematic variations exist.

4.3. Analysis of Longitudinal PIB Changes
In this section, we demonstrate results from a longitu-

dinal PIB-PET image analysis, where we use the ratio of
total τ protein and amyloid-β-142 (Aβ(1-42)) as a predic-
tor for the increase in voxel-wise PIB values at two different
time points. PIB values are used as a measure of brain amy-
loid deposition, a core pathological feature of Alzheimer’s
disease (AD), and it is known that such increase is closely
correlated with AD. The Aβ(1-42) interacts with the sig-
naling pathways to control the phosphorylation of τ protein
[21, 15] and their ratio is widely used as a sensitive feature
of AD pathology.

Dataset: The dataset of 84 participants used here in-
cludes subjects that are otherwise healthy but may have po-
tential risk factors for AD. The cohort is comprised of 26
males and 58 females, and the mean age is 67.4. The PIB
images are a 3-D volume spatially registered to the Mon-
treal Neurological Institute (MNI) space, then blank bound-
aries were cropped to obtain images of size 79 × 95 ×
68. The image intensities represent standard uptake value

Figure 4: Plot of sorted correlation (descending) with respect to
the number of voxels. The correlation using WKD (green) and
SUVR images (red) show that WKD shows stronger correlation
and larger number of vertices above the threshold (blue).

(SUV), which is the ratio of the tissue radioactivity con-
centration and injection divided by the body weight. These
values are scaled with the intensity from a reference region
(i.e., cerebellum), generating standard uptake value ratio
(SUVR) images. The PIB intensities, by nature, only in-
crease when affected by a disease factor. However, when
the SUVR images (normalized using a reference region) be-
tween two time points are compared, various brain regions
show decrease in the PIB values. This suggests that there
are systematic variations in the two images that have not
been account for by the normalization process.

Experimental setup: For the graph representation of
each volume image, we used a grid graph with six neighbors
for each voxel in 3-D space. The connection between voxels
were defined by exp(−||I(p) − I(q)||2/σ2) where I(p) is
the PIB intensity at voxel p and σ = 0.1. The graph Lapla-
cian for each subject had dimension of 510340 × 510340,
which was too big for standard solvers, we therefore used a
Jacobi-Davison conjugate gradient method [24] to compute
the first fifty eigenvalue/eigenvector pairs of the matrix. For
the wavelet kernel function g, we used the cubic spline func-



Figure 5: Montage of axial view of the correlation between the PIB changes and the ratio of total τ -protein and Aβ(1-42) on a template T1-
weighted brain image. The red-yellow intensities indicate correlation using WKD, and the blue-light blue intensities indicates correlation
using SUVR images in the range of [0.3 0.5].

tion provided in SGWT [11].
Result: A high positive correlation between the PIB

changes and the ratio between total τ protein and Aβ(1-
42) indicates that the increase of the PIB values are highly
related to the increase of the ratio. When compared to the
result using SUVR images, the correlation from WKD is
stronger, and we also find larger regions of the brain. To
quantitatively compare them, among the total of 510340
voxels, WKD identifies 21101 voxels (4.13%) with corre-
lations above 0.3 — a common threshold for moderate cor-
relation. On the other hand, using SUVR images, we find
only 14655 voxels (2.87%) above 0.3. These correlations
are sorted and shown in Fig. 4, indicating that WKD is more
sensitive than the differences found via SUVR images.

Fig. 5 shows the resultant correlation overlayed on a T1-
weighted template, where the correlations using WKD and
SUVR images are shown in red-yellow and blue-light blue
maps in the same range respectively. The result shows
that both our analysis and the one performed on SUVR
images agree on moderate correlations in lateral temporal
lobe regions, which are well-known to be affected by AD
[5, 29, 18, 19] — but our algorithm shows higher correla-
tion and larger regions. Interestingly, WKD framework also
picks up the bilateral cerebellum regions which is known to
show loss of volume with dementia [27]. Note that this re-
gion is very close to regions that are used as the ‘reference’
for the SUVR normalization — therefore will not be identi-
fied in the standard analysis even if affected by disease.

Remark. There are some potential limitations of the
method from the neuroscience point of view. For instance,
one issue is that the analysis may miss out on some regions
that are found by the standard analysis. In these situations, it

is difficult to assess whether this is an artifact of our method
or a consequence of the normalization process in the stan-
dard analysis. We believe that a conservative option is to use
our proposed algorithm as the first stage of analysis, which
can be followed up by more specific region of interest based
approaches common in neuroimaging.

5. Conclusion
This paper provides a solution to a problem where sta-

tistical analysis of imaging data in brain imaging studies
is problematic due to systematic variations caused due to
a variety of factors. Motivated from recent literature in
harmonic analysis, we propose to compare operators as a
means of detecting changes across images, when the abso-
lute measurements cannot be compared on their own. These
operators are derived from empirical measurements of im-
ages and provide invariance to the systematic variations.
Using our framework, we showed experiments on synthetic
as well as real datasets, demonstrating that the algorithm
works well in a regime where few alternatives are currently
available. In particular, in an interesting application to brain
imaging data from subjects at risk for Alzheimer’s disease,
we show that the sensitivity and power of statistical analysis
of PIB-PET images can be improved by using the proposed
method. The code will be made publicly available.
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