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Abstract. Consider an experimental design of a neuroimaging study,
where we need to obtain p measurements for each participant in a set-
ting where p’(< p) are cheaper and easier to acquire while the remaining
(p — p’) are expensive. For example, the p’ measurements may include
demographics, cognitive scores or routinely offered imaging scans while
the (p — p’) measurements may correspond to more expensive types of
brain image scans with a higher participant burden. In this scenario, it
seems reasonable to seek an “adaptive” design for data acquisition so
as to minimize the cost of the study without compromising statistical
power. We show how this problem can be solved via harmonic analysis
of a band-limited graph whose vertices correspond to participants and
our goal is to fully recover a multi-variate signal on the nodes, given the
full set of cheaper features and a partial set of more expensive measure-
ments. This is accomplished using an adaptive query strategy derived
from probing the properties of the graph in the frequency space. To
demonstrate the benefits that this framework can provide, we present
experimental evaluations on two independent neuroimaging studies and
show that our proposed method can reliably recover the true signal with
only partial observations directly yielding substantial financial savings.

1 Introduction

Consider an experimental design setting which involves a cohort S comprised of
N individuals (or examples) in total. We are allowed to obtain a maximum of p
measurements (or features) for each participant (or example) in S. Depending
on the application, these p measurements may be variously interpreted — for
example, in a machine learning experiment, we may have p distinct numerical
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preferences a user assigns to each item whereas in computer vision, the measure-
ments may reflect p specific requests for supervision or indication on each image
in § [1-4]. In a neuroscience experiment, the cohort corresponds to individual
subjects — the p measurements will denote various types of imaging and clinical
measures we can acquire. Of course, independent of the application, the “cost”
of measurements is quite variable: while features such as gender and age of a
participant have negligible cost, requesting a user to rate an image in abstract
terms, “How natural is this image on a scale of 1 to 57”, may be more expen-
sive. In neuroimaging, acquiring some clinical and cognitive measures is cheap,
whereas certain image scans can cost several thousands of dollars [5, 6].

In the past, when datasets were smaller, these issues were understandably
not very important. But as we move towards acquiring and annotating large
scale datasets in machine learning and vision [7-9], the cost implications can be
substantial. For instance, if the budget for a multi-modal brain imaging study in-
volving several different types of image scans for ~200 subjects is $3M+ and we
know a priori which type of inference models will finally be estimated using this
data, it seems reasonable to ask if “adaptive” data acquisition can bring down
costs by 25% with negligible deterioration in statistical power. While experiment
design concepts in classical statistics provide an excellent starting point, they
provide little guidance in terms of practical technical issues one faces in address-
ing the question above. Outside of a few recent works [10-12], this topic is still
not extensively studied within mainstream machine learning and vision.

In this paper, we study a natural form of the experimental design problem
in the context of an important brain imaging application. Assume that we have
access to a cohort S of n subjects. In principle, we can acquire p measurements
for each participant. But all p measures are not easily available — say, we start
only with a default set of p’ measures for each subject which may be considered
as “inexpensive”. This yields a matrix of size N x p’. We are also provided the
remaining set of (p — p’) measurements but only for a small subset S’ of n’ sub-
jects — possibly due to the associated expense of the measurement. We can, if
desired, acquire these additional (p—p’) measures for each individual participant
in §\ &', but at a high per-individual cost. Our goal is to eventually estimate a
statistical model that has high fidelity to the “true” model estimated using the
full set of p measures/features for the full cohort S. The key question is whether
we can design an adaptive query strategy that minimizes the overall cost we in-
cur and yet provides high confidence in the parameter estimates we obtain. The
problem statement is quite general and models experimental design considera-
tions in numerous scientific disciplines including systems biology and statistical
genomics where an effective solution can drive improvements in efficiency.

1.1 Related Work

There are three distinct areas of the literature that are loosely related to the
development described in this paper. At the high level, perhaps the most closely
related to our work is active learning which is motivated by similar cost-benefit
considerations, but in terms of minimizing the number of queries (seeking the
label of an example) [13]. Here, one starts with a pool of unlabeled data and
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picks a few examples at random to obtain their labels. Then, we repeatedly fit
a classifier to the labeled examples seen so far and query the unlabeled example
that is most uncertain or likely to decrease overall uncertainty. This strategy is
generally successful though may asymptotically converge to a sub-optimal clas-
sifier [14]. Adaptive query strategies have been presented to guarantee that the
hypothesis space is fully explored and to obtain theoretically consistent results
[15,16]. Much of active learning focuses on learning discriminative classifiers;
while the Bayesian versions of active learning can, in principle, be applied to far
more general settings, it is not clear whether such formulations can be adapted
for the stratified cost structure we encounter in the motivating example above
and for general parameter estimation problems where the likelihood expressions
are not computationally ‘nice’.

Within the statistics literature, the problem of experiment design has a rich
history going back at least four decades [17-19], and seeks to formalize how
one deals with the non-deterministic nature of physical experiments. In con-
trast to the basic setting here and even data-driven measures of merit such as
D-optimality [20,21], experiment design concepts such as the Latin hypercube
design [22] intentionally assume very little about the relationship between input
features and the output labels. Instead, with d features, such procedures will gen-
erate a space-filling design so that each of the dimensions is divided into equal
levels — the calculated configuration merely provides a selection of inputs at
which to compute the output of an experiment to achieve specific goals. Despite
a similar name, the goals of these ideas are quite different from ours.

Within machine learning and vision, papers related to collaborative filtering
(and matrix completion) [23-26] share a number of technical similarities to the
development in our work. For instance, one may assume that in a matrix of size
N x p (subjects x measurements), the first p’ columns are fully observed whereas
multiple rows in the remaining (p — p’) columns are missing. This clearly yields
a matrix completion problem; unfortunately, the setup lies far from incoherent
sampling and the matrix versions of restricted isometry property (RIP) that
make the low-rank completion argument work in practice [27, 28]. This observa-
tion has been made in recent works where collaborative filtering was generalized
to the graph domain [29] and where random sampling was introduced for graphs
in [30]. However, these approaches, which will serve as excellent baselines, do not
exploit the band-limited nature of measurements in frequency space. Separately,
matrix completion within an adaptive query setting [31,32] yields important
theoretical benefits but so far, no analogs for the graph setting exist.

The contribution of this paper is to provide a harmonic analysis inspired
algorithm to estimate band-limited signals that are defined on graphs. It turns
out that such solutions directly yield an efficient procedure to conduct adaptive
queries for designing experiments involving stratified costs of measurements, i.e.,
where the first subset of measures is free whereas the second set of (p — p’) mea-
sures is expensive and must be requested for a small fraction of participants. Our
framework relies on the design of an efficient decoder to recover the band-limited
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original signal involving multiple channels which was only partially observed. In
order to accomplish these goals, the paper makes the following contributions.
(i) We propose a novel sampling and signal recovery strategy on a graph that
is derived via harmonic analysis of the graph.
(ii) We show how a band-limited multi-variate signal on a graph can be recon-
structed with only a few observations via a simple optimization scheme.
(iii) We provide an extensive set of experiments on two independent datasets
which demonstrate that our framework works well in estimating expensive
image-derived measurements based on (a) a partial set of observations (in-
volving less expensive image-scan data) and (b) a full set of measurements
on only a small fraction of the cohort.

2 Preliminaries: Linear Transforms in Euclidean and
Non-Euclidean Spaces

Well known signal transforms in the forward/inverse directions such as the
wavelet and Fourier transforms (in non-Euclidean space) are fundamental to
our proposed framework. These transforms are well understood in the Euclidean
setting, however, their analogues in non-Euclidean spaces have not been stud-
ied until recently [33]. We provide a brief overview of these transforms in both
Euclidean and non-Euclidean spaces.

2.1 Continuous (Forward) Wavelet Transform
The Fourier transform is a fundamental tool for frequency analyses of a signal
by transforming the signal f(x) into the frequency domain as

flw) = (f, &7y = / F@)e ™ da (1)

where f (w) is the resultant Fourier coefficient. Wavelet transform is similar to
the Fourier transform, but it uses a different type of oscillating basis function
(i.e., mother wavelet). Unlike Fourier basis (i.e., sin()) with infinite support, a
wavelet ¢ is a localized function with finite support. One can define a mother
wavelet 9 o(z) = %w(’”—;“) with scale and translation properties, controlled by s
and a respectively. Here, changing s controls the dilation and varying a controls
the location of . Using 15, as bases, a wavelet transform of a function f(z)

results in wavelet coefficients Wy (s, a) at scale s and at location a as
1 w, T —
Wis,0) = (f0) = ¢ [ Flapw ("5 de )

where ¥* is the complex conjugate of ¢ [34].

Interestingly, 1, is localized not only in the original domain but also in the
frequency domain. It behaves as a band-pass filter covering different bandwidths
corresponding to scales s. These band-pass filters do not cover the low-frequency
components, therefore an additional low-pass filter ¢, a scaling function, is typ-
ically introduced. A transform with the scaling function ¢ results in a low-pass
filtered representation of the original function f. In the end, filtering at multiple
scales s of the wavelet offers a multi-resolution view of the given signal.
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2.2 Wavelet Transform in Non-Euclidean Spaces

Defining a wavelet transform in the Euclidean space is convenient because of the
regularity of the domain (i.e., a regular lattice). In this case, one can easily define
the shape of a mother wavelet in the context of an application. However, in non-
Euclidean spaces (e.g., graphs that consists of a set of vertices and edges with
arbitrary connections), an implementation of a mother wavelet becomes difficult
due to the ambiguity of dilation and translation. Due to these issues, the classical
definition of the wavelet transform has not been suitable for analyses of data in
non-Euclidean spaces until recently when [33, 35] proposed wavelet and Fourier
transforms in non-Euclidean spaces.

The key idea in [33] for constructing a mother wavelet ¢ on the nodes of a
graph is simple. Instead of defining it in the original domain where the properties
of 1 are ambiguous, we define a mother wavelet in a dual domain where its
representation is clear and then transform it back to the original domain. The
core ingredients for such a construction are 1) a set of “orthonormal” bases
that provide the means to transform a signal between a graph and its dual
domain (i.e., an analogue of the frequency domain) and 2) a kernel function A()
that behaves as a band-pass filter determining the shape of 1. Utilizing these
ingredients, a mother wavelet is first constructed as a kernel function in the
frequency domain and then localized in the original domain using a ¢ function
and the orthonormal bases. Such an operation will implement a mother wavelet
1) on the original graph. Defining a kernel function in the 1-D frequency domain
is simple, and one can rely on spectral graph theory to obtain the orthonormal
bases of a graph [33] which can be used for graph Fourier transform.

A graph G = {V, &} is formally defined by a vertex set V with N number
of vertices and a edge set £ with edges that connect the vertices. Such a graph
is generally represented by an adjacency matrix Ayyxn where each element a;;
denotes the connection between ith and jth vertices by a corresponding edge
weight. Another matrix that summarizes the graph, a degree matrix Dy« n, is
a diagonal matrix where the ith diagonal is the sum of edge weights connected
to the ith vertex. A graph Laplacian is then defined from these two matrices
as L = D — A, which is a self-adjoint and positive semi-definite operator. The
matrix £ can be decomposed into pairs of eigenvalues A; > 0 and corresponding
eigenvectors x; where [ =0,1,--- , N — 1. The orthonormal bases x can be used
as analogues of Fourier bases in the Euclidean space to define the graph Fourier
transform of a function f(n) defined on the vertices n as

N—-1

FO =3 xi(m)f(n) and f(n)= fO)x(n) ®3)

l

where the forward transform yields the graph Fourier coefficient f (1) and the
inverse transform reconstructs the original function f(n). If the signal f(n) lies
in the spectrum of the first k¥ number of x; in the dual space, we say that f(n)
is k band-limited. Just like in the conventional Fourier transform, this graph
Fourier transform offers a mechanism to transform a signal on graph vertices
back and forth between the original and the frequency domain.
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Fig. 1: Examples of bases functions on a graph. a) Cat shaped graph, b) A graph Fourier basis

x2, ¢) Graph wavelet bases 1 at two different locations (ear and paw), d) Graph wavelet basis 14
as in c¢). Notice that wavelet bases in ¢) and d) are localized while x2 is spread all over the mesh.

Using the graph Fourier transform, a mother wavelet i is implemented by
first defining a kernel function h() and then localizing it by a Dirac delta function
0n in the original graph through the inverse graph Fourier transform. Since
(0n, x1) = X7 (n), the mother wavelet )5 ,, at vertex n at scale s is defined as

N—
ws n h S>‘l Xl (m) (4)

1=0

,_.

Here, using the scaling property of Fourier transform [36], the scale s can be
defined as a parameter in the kernel function h() independent from the bases x.
Representative examples of a graph Fourier basis and graph wavelet bases are
shown in Fig. 1. A cat shaped graph is given in Fig. 1 a), and one of its graph
Fourier basis 2 is shown in b). Also, graph wavelets at two different scales (i.e.,
dilation) at two different locations (ear and paw) are shown in Fig. 1 ¢) and d).
Notice that x in Fig. 1 b) is diffused all over the graph, while the wavelet bases
in ¢) and d) are localized with finite support.

Once the bases i are defined, the wavelet transform of a function f on graph
vertices at scale s follows the classical definition of the wavelet transform:

N-—-1

Wi(s,n) = (fitbsn) = D h(sh)f(Dxa(n) (%)

=0

resulting in wavelet coefficients W(s,n) at scale s and location n. This trans-
form offers a multi-resolution view of signals defined on graph vertices by multi-
resolution filtering. Our framework, to be described shortly, will utilize the defi-
nition of the mother wavelet in (4) for data sampling strategy on graphs as well
as the graph Fourier transform for signal recovery.

3 Adaptive Sampling and Signal Recovery on Graphs

Suppose there exists a band-limited signal (of p channels/features) defined on
graph vertices, and we have limited access to the observation on only a few of
the vertices in the graph. Our goal is to estimate the entire signal using only the
partial observations. Since the signal is band-limited, we do not need to sample
every location in the native domain (i.e., Nyquist rate). Unfortunately, we do not
have powerful sampling theorems for graphs. In this regime, in order to recover
the original signal, we need an efficient sampling strategy for the data. In the
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following, we describe how the vertices should be selected for accurate recovery
of the band-limited signal and propose a novel decoder working in a dual space
that is more efficient than alternative techniques.

3.1 Graph Adaptive Sampling Strategy

In order to derive a random sampling of the data measurement on a graph (i.e.,
signal measurement on vertices), we first need to assign a probability distribution
p on the graph nodes. This probability tells us which vertices are more likely to
be sampled for measurements, and needs to satisfy the definition of a probability
distribution as ZnN:1 p(n) = 1 where p > 0. The construction of p is based on
how the energy spreads over the graph vertices, given the graph structure. It
means that it is easier to reconstruct a given signal with limited number of
bases at some vertices than other vertices, and prioritizing those vertices for
sampling will yield better estimation of the original signal.

In order to define the probability distribution p over the vertices, we make
use of the eigenvalues and eigenvectors from spectral graph theory to describe
the energy propagation on the graph. In [30], the authors show how well a 4,
can be reconstructed at a vertex n with k& number of eigenvectors and normalize
them to construct a probability distribution as

k—1
> xi(n)® (6)

x| =

1
p(n) = I[Vi¥ 613 =

where V4 is a matrix with column vectors as Vi, = [xo - - Xx—1]- Their solution
puts the same weight on each eigenvector to compute the distribution, assuming
that the signal is uniformly distributed in the k-band (i.e., the spectrum of the
first k eigenvectors). Such a strategy uses the graph Fourier bases to reconstruct a
delta function, which typically is not desirable in many applications since Fourier
bases suffers from ringing artifacts. Moreover, in many cases, the signal may be
localized even within the k-band, and it necessitates a scaling (i.e., filtering) of
the signal at multiple scales in the frequency domain.

Interestingly, it turns out that the definition of p above can be viewed entirely
via a non-Euclidean wavelet expansion described in Section 2. Recall that a
mother wavelet 15 ,, is implemented by localizing a wavelet operation at scale s
as in (4). It constructs a mother wavelet at scale s localized at n as a unit energy
propagating from n to neighboring vertices as a diminishing wave function. When
we look at ¥, ,(n), the self-effect of a mother wavelet at vertex n is written as

N—

,_.

h(sA)xi(n)?. (7)
=0

At the high level, (7) tells us how much of the unit energy is maintained at n
itself at scale s. Notice that (7) is a kernelized version of (6) using a kernel func-
tion h(). Depending on the design of the kernel function h(), we may interpret it
as robust graph-based signatures such as heat-kernel signature (HKS) [37], wave
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Flg 2: Sampling probability distribution ps in different scales derived from “Meyer” wavelet on
Minnesota graph. Left: at scale s = 1, Middle: at scale s = 2, Right: at scale s = 3.

kernel signature (WKS) [38], global point signature (GPS) [39] and wavelet ker-
nel descriptor (WKD) [40], which were introduced in computer vision literature
for detecting interest points on graphs and mesh segmentation.

Our idea is to make use of the wavelet expansion to define a probability
distribution at scale s as

2

p(n) = - Un(sim) = - 3 hlsh)(n)’ ®)

Il
)

where Z, = 25:1 ¥n(s,n). Then p; is used as a sampling probability distribu-
tion which drives how we adaptively query the measurements at the unobserved
vertices. Depending on application purposes, h() can be designed as any known
filters for wavelets such as Morlet, Meyer, difference of Gaussians (DOG) and so
on. Examples of ps using Meyer wavelet are shown in Fig. 2.

Our formulation in (8) is especially useful when we know the distribution of
A prior to the analysis by imposing higher weights on the band where signal is
concentrated. We also work with only & eigenvectors when a full diagonalization
of L is expensive. We will see that this observation is important in the next
Section, where we utilize a low dimensional space spanned by the k eigenvectors
for an efficient solver, while other methods require the full eigenspectrum.

3.2 Recovery of a Band-limited Signal in a Dual Space

Consider a setting where we observe only a partial signal y € R™*P of a full signal
f € RNXP where m < N, and our goal is to recover the original signal f given .
Suppose that our budget allows querying m vertices (to acquire measurements)
in the setting phase. Let the locations where we observe the signal be denoted as
2 ={w1, - ,wn} yielding y(i) = f(w;), Vi€ {1,2,---,m}. Now the question
is how {2 should be selected for optimal (or high fidelity) recovery of f. Our
framework uses the strategy described in section 3.1 to sample data according
to a sampling probability. Based on the m samples (observations), we can build
a projection operator M,y (i.e., a sampling matrix) yielding M f = y as

1 if j=w;
Mi,]-—{ v )
0 o.w.

Using the ideas described above, a typical decoder would solve for an esti-
mation g of the original signal f using a convex problem as

_1
9" =arg min [Py * (Mg —y)|l3 + 79" h(L)g (10)
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(a) ﬂ (b) H (@) ﬂ

o 0

Flg 31 A toy example of our framework on a cat mesh (N = 3400). a) Band-limited random signal
in [0, 1] with noise, b) Sampling probability p; derived from (8), ¢) Sampled signal at m = 340
locations out of 3400, d) Recovered signal using our method with only k = 50.

where Py, = diag(p(2)) and h(L) = figl h(M\)xixi - Taking a close look at the
formulation above, it prioritizes minimizing the error between an estimation at
the sampled locations (with weights of \/%), and the remaining missing elements
are filled in by the regularizer representing graph smoothness. Such a recovery
explained in [30] has three weaknesses. 1) It does not take into account whether
the recovered signal is band-limited. 2) The main objective function (i.e., the first
term) in (10) suggests that it does not matter whether the estimated elements in
the unsampled locations are correct. 3) Finally, the analytic solution to the above
problem is not easily obtainable without the regularizer or when the regularizer
is not full rank. This becomes computationally problematic in real cases when
the given graph is large, since the filtering operation in (10) requires a full
eigendecomposition of the graph Laplacian L.

To deal with the problems above, we propose to encode the band-limited
nature of the recovered signal as a constraint. Our framework solves for a solution
to (10) entirely in a dual space by projecting the problem to a low dimensional
space where we search for a solution of size k < N.

Let g(I) = Zﬁlzl g(n)xi(n) be the graph Fourier transform of a function g
and g, be the first k coefficients, then reformulating the model in (10) using
g = Vigr, (assuming that g is k-band limited) yields

-1
Gi- = arg min, |[Pg? (MVigs =yl +(Veg) "h(L)Vigu (1)
Ik

An analytic solution to this problem can be achieved by taking the derivative of
(11) and setting it to 0. The optimal solution g; must satisfy the condition

(V& MTPG  MVi +4Vil h(L)Vi)gi = Vi MT Pty (12)
which reduces to
(V& MTPG MV +vh(AR))gr = Vil MT PGty (13)

where Ay, is a k x k diagonal matrix where the diagonals are the first k£ eigenvalues
of L. Using the optimal g;, we can easily recover a low-rank estimation g* = V4g;;
that reconstructs f. Notice that we only need to find a solution of a much
smaller dimension which is significantly more efficient. Moreover, the filtering
operation h() in the regularizer in (12) becomes much simpler, and concurrently
the solution natively maintains the k-band limited property of the original signal.
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Connection name Description(count)
Forceps Major (FMajor) inter-hemispheric (1)
Forceps Minor (FMinor) inter-hemispheric (1)
Fornix inter-hemispheric (1)
Cingulum Bundle Frontal (CingAnt) bi-lateral (2)
Cingulum Bundle Hippocampal (CingHipp) bi-lateral (2)
Cortico-spinal Tracts (CST) bi-lateral (2)
Inferior Fronto-occipital (IFO) bi-lateral (2)
Inferior Longitudinal Fasciculus (ILF) bi-lateral (2)
Superior Longitudinal Fasciculus (SLF) bi-lateral (2)
Uncinate Fasciculus (UF) bi-lateral (2)

Flg 4: Top: The 17 major white matter pathways analyzed in the HCP study [41], Bottom: ROIs
and measures analyzed in the WRAP study (Left: A sample FA map and the 162 gray matter ROIs
for DTI, Right: Sample ''C PiB DVR map and the 16 gray matter ROIs).

A toy example demonstrating this idea is shown in Fig. 3. Given a cat mesh
with N = 3400 vertices, we first define a random signal f € [0, 1] that is band-
limited in the spectrum of £ with Gaussian noise of N(0,0.1). We take p; for the
sampling distribution and sample m = 340 (10% of the total) vertices without
replacement. Our estimation g using only k = 50 bases is shown in Fig. 3 d),
where the error between the true f and g is extremely small despite using such
little data to begin with. We also can see that our method is robust to noise.

4 Experiment Design in Neuroimaging

In this section, we present proof of principle experimental results on two different
neuroimaging studies: 1) the Human Connectome Project (HCP) dataset and
2) Wisconsin Registry for Alzheimer’s Prevention (WRAP) dataset. In both
studies, we demonstrate the performance of our method in estimating expensive
neuroimage-derived measurements at regions of interests (ROI) in the brain using
1) a set of p’ less expensive measures of all p measures available to the full cohort
S of N subjects and 2) a set of (p — p’) expensive measures available to a small
cohort subset S’ which includes m subjects. Given these datasets, the goal of
these experiments is to see if we can get accurate estimates of the (p — p’)
expensive measures of the full cohort S of N subjects in a way that statistical
power for the follow-up analysis is not greatly compromised.

4.1 Experimental Setup

We compare the performance of our method with two other state-of-the-art
methods, 1) Collaborative filtering by Rao et al. [29] and 2) Random sampling
of band-limited signals by Puy et al. [30]. For all three methods: (a) We derived
adjacency matrices A using data from the full set S of N samples and p’ econom-
ical measures (i.e., more widely available and/or less expensive modalities) and
the radial basis function exp(—||z — y||*/o?). We then constructed normalized
graph Laplacians £ = D~1/2(D — A)D~1/2 used in our framework. (b) We set
h(\;) = A} for h(L) for the filtering operation in the regularizer and set v = 0.01
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—B- Ours (HCP) Dataset‘ Method‘ 20% 40% 60%
—@— Ours (WRAP)
Puy et al. (HCP)

Puy et al. (WRAP) HCP Ours 2.83 2.22 1.79

3 @ Rao et al. (HCP)

3 = gt WRAP) HCP |Puy et al| 3.46 270 2.08
g HCP |Rao et al|3.00 24 1.97

5 @Iizzz=a... WRAP | Ours |1.12 0.79 0.65
, e T TEeegsssnssedens ) WRAP |Puy et al.| 1.82 1.30 1.06
S it bttt bt st - WRAP [Rao et al.| 1.61 1.36 1.18

20 30 50 60

40
Fig. 5: Sampling ratio vei:Tlpgngefﬁ)or plot (left) on the HCP dataset (dashed lines) and the WRAP
dataset (straight lines). The corresponding values are in the table on the right.

n (11). (c¢) We show estimation results of the (p — p’) expensive measures using
R € {20,40,60}% of total N samples for both studies and assess the ¢3-norm
error of the difference between the estimated and observed measures. Because of
the stochastic nature of the sampling step, we ran the estimation 100 times and
use the average of the corresponding errors for comparisons. In addition, we also
compare the predicted values of the (p —p’) neuroimaging measures at each ROI
(averaged across subjects) against true values and the estimates of the other two
baseline methods. For example, given a cohort of N = 100 subjects, suppose we
have full data for p’ = 10 low-cost measurements. Then, the goal is to acquire
the p — p’ = 5 measurements on only m = 20 subjects (i.e., 20% of the cohort)
and estimate the (p — p’) measurements on the remaining N — m subjects.

4.2 Prediction on the Human Connectome Project

Dataset. The diffusion weighted MR images (DW-MRI) from HCP ([42]) were
acquired on custom built hardware using advanced pulse sequences [43] and for a
lengthy scan time (~ 1 hour). It allows estimating microstructural properties of
the brain, accurate reconstruction of the white matter pathways ([44]) (e.g., see
Fig. 4) which form a crucial component in mapping the structural connectome
of the human brain [45-48]. Typically, such an acquisition of DW-MRI is not
feasible in many research sites due to limitations of hardware and software. On
the other hand, the set of non-imaging measurements are cheaper and easier
to acquire. Hence the ability to predict such high quality diffusion metrics (e.g.
fractional anisotropy (FA)) from only a small sample of the DW-MRI scans and
the non-imaging measurements has value. HCP provides several categories of
non-imaging covariates for the subjects [49] covering factors spanning several
different categories. (The full list of covariates is given in the appendix.) We
demonstrate the performance of our model on the task of FA prediction in 17
widely studied fiber bundles (shown in Fig. 4) [41, 50] using 27 variables related
to cognition, demographics, education and so on.

Results. Given the full cohort S of N = 487 subjects from the HCP dataset with
the selected p’ = 27 low-cost covariates, we recovered high-cost FA measures in
p —p' = 17 ROIs (i.e. pathways) using p’ covariates and the FA values from
m < N participants. The p’ measures were used to construct £ with o = 5
and k = 100 for generating the sampling distribution p for our framework.
We analyzed three cases by sampling 20%, 40%, 60% of the total population
according to p for m observations to predict FA on N subjects.
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Fig. 5 (dashed lines) summarizes the overall estimation errors using R =
{20, 40,60} % samples of the total population. For all three methods, the errors
decreased with an increase in sample size, and our method (red) consistently
outperformed the other two methods (blue and green). When we look at the
distribution of errors, shown in the top row of Fig. 6, the center of the error dis-
tribution using our framework (red) is far lower than the other methods (blue and
green). Anatomical specificity of the estimation measures (using 40% samples) is
illustrated on the top panel of Fig. 7 where the location of spheres represents the
position of the ROIs and their sizes and colors correspond to the mean errors.
As seen in Fig. 7, our method (top-left) clearly has smaller and blue spheres
compared to the other methods (middle and right). The quantitative error for
individual ROIs used for the spheres are provided in left table of Tab. 1, and the
predicted FA for all ROIs (averaged across subjects) are presented in Fig. 8. For
all 17 FA measures, with 40% sampling, we see that our results (blue) are closest
to the ground truth (red) while other methods under/over estimate. (Additional
results shown in supplement.) When the ¢s—norm error is small, we expect re-
sults from downstream statistical analysis (e.g., p-values) will be accurate since
the distributions of measurements are closer to the true sample distribution.

4.3 Prediction on a Preclinical Alzheimer’s Disease Project

Dataset. Alzheimer’s disease (AD) is known as a disconnection syndrome [51,
52] because connectivity disruption can impede functional communication be-
tween brain regions, resulting in reduced cognitive performance [53,54]. Cur-
rently, positron emission tomography (PET) using radio-chemicals such as 1C
Pittsburgh compound B (PiB) is important in mapping functional AD pathol-
ogy. Distribution volume ratios (DVR) of PiB in the brain offer a good measure
of the plaque pathology which is considered specific to AD. Unfortunately these
PET scans are costly and involve lengthy procedures. WRAP dataset consists
of partipants in preclinical stages of AD [55,54] and contains 140 samples with
both low-cost FA measures and high-cost PiB DVR (examples shown in Fig. 4).
Utilizing the FA values over the entire set of subjects and a partial observa-
tion of the PiB measures from a fraction of the population, we investigate the
performance of our model for the recovery of PiB measures.
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Flg 7: Spherical representations of the prediction errors (£2-norm) in the HCP study (top) and
in the WRAP study (bottom). Left: errors using Ours, Middle: errors using Puy et al, Right:
errors using Rao et al. The spheres are centered at the center-of-mass of the specific bundle/regional
volumes, and the radius of the spheres are proportional to the prediction error.

Remark. From a neuroimaging perspective, predicting PiB measures accu-
rately enough for actual scientific analysis is problematic. Utilizing a modality
(e.g., cerebrospinal fluid) will be more appropriate for predicting PiB measures,
and such results are available on the project homepage. The results below demon-
strate that such a prediction task yields results numerically feasible compared to
baseline strategies although not directly deployable for neuroscientific studies.
Results. For this set of experiments, we selected p’ = 17 pathways with most
reliable FA measures to construct a graph with N = 140 vertices (i.e., subjects).
Utilizing the graph and a partial set of PiB DVR measurements from m <
N participants (20%, 40% and 60% of the total population), we predicted the
expensive PiB DVR values on 16 ROIs over the whole subjects. To define £ and
p, we used o = 3 and k = 50. As shown in Fig. 5 in straight lines, our estimation
(red) yields the smallest error compared to [30] (green) and [29] (blue) for all
three sampling cases. The bottom row in Fig. 6 shows that the centers of error
distribution using our algorithm (red) have lower errors than those of other
methods (green and blue). As seen in the bottom panel of Fig. 7, similar to the
HCP results in section 4.2, we observe smaller errors in every ROI, where the
actual region-wise errors are given in the right table of Tab. 1. Fig. 8 presents
the predicted regional PiB DVR values against the ground truth where our
prediction in blue are consistently closer to the ground truth in red. Additional
results using 20% and 60% of the subjects are presented in the appendix.

HCP ROIs [| Ours [Puy et al.[Rao et al. PiB ROIs [ Ours [Puy et al.[Rao et al.
FMajor 1.15 1.93 1.70 Angular L 2.89 3.42 2.98
FMinor 1.21 1.99 1.75 Angular R 2.73 3.20 2.82
Fornix 1.20 1.84 1.65 Cingulum_Ant_L 3.19 3.73 3.30
LCingAnt || 0.95 1.49 1.33 Cingulum_Ant R 3.18 3.78 3.32
Lcu:ngpp 1.17 }87 1.65 Cingulum_Post_L 3.29 4.10 3.49
LCST 1.25 | 2.06 1.82 Cingulum_Post R || 3.20 | 4.03 3.43
o TR o Frontal Med Orb_L|| 2.90 | 3.44 3.05
LSLF 1:08 1:77 1:56 Erontal,l\{cg,Orb,R g(s)g gg(r) ggg
) recuneus_ . 3.45 3.03
Iﬁgﬁfg Ant 8:33 i:ié }gg Precuneus_R 3.03 | 3.61 3.15
ReingHipp || 1.20 192 171 S‘upraMarg}naLL 2.43 309 2.67
RCST 1.25 2.07 1.83 rb}lpral\'largu}al,R 2.51 3.13 2.70
RIFO 1.11 1.82 1.61 Temporal Mid_L 2.47 3.13 2.68
RIFL 1.12 1.83 1.62 Temporal Mid_R 2.59 3.22 2.78
RSLF 1.04 1.69 1.50 Temporal_Sup_L 2.42 3.14 2.68
RUnc 1.05 1.70 1.50 Temporal _Sup_R 2.52 3.21 2.75

Table 1: Region-wise mean £3-norm of 100 runs of HCP-FA (left) and PiB DVR (right) with 40%
samples. Errors from our method are the lowest shown in bold.
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5 Conclusion

In this paper, we presented an adaptive sampling scheme for signals defined
on a graph. Using a dual space of these measurements obtained via a non-
Euclidean wavelet transform, we show how signals can be recovered with high
fidelity based on a stratified set of partial observations on the nodes of a graph.
We demonstrated the application of this core technical development on accu-
rately estimating diffusion imaging and PET imaging measures from two inde-
pendent neuroimaging studies, so that one can perform standard analysis just
as if the measurements were acquired directly. We presented experimental re-
sults demonstrating that our framework can provide accurate recovery using
observations from only a small fraction of the full samples. We believe that this
ability to estimate unobserved data based on a partial set of measurements can
have impact in numerous computer vision and machine learning applications
where acquisitions of large datasets often involve varying degrees of stratified
human interaction. Many real experiments involve entities that have intrinsic
relationships best captured as a graph. Mechanisms to exploit the properties of
these graphs using similar formulations as those presented in this work may have
important practical and immediate ramifications for many experimental design
considerations in numerous scientific domains.
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