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Overview

Multi-resolution

Wavelets

Wavelets on Graph

Graph Data in Medical Imaging

Applications
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What is Multi-resolution View?

Simple zoom (in or out) of a function
Scale space theory
Gaussian / Laplacian Pyramid

Figure: Example of Multi-resolution view of an image. Top: Images in fine to
coarse scales are shown from left to right, Bottom: Laplacian of Images
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Why Multi-resolution?

Invariant Shape Descriptors (e.g., SIFT)

Context Analysis (e.g., texture analysis)

Edge Detection

Compression

Figure: Left: SIFT features, Middle: Cancer vs Normal tissue, Right: Edge
detection.
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Why Multi-resolution?

Graph structured data in neuroimaging

Vertices and Edges

Figure: Left: cortical thickness, Right: neuron fiber between ROIs.
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Why Multi-resolution?

Can we adopt Multi-resolution on functions on Graphs?

Wavelet?
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Fourier Transform

Fourier Series: Superposition of sinusoidal functions ejωt

Fourier Transform of f(x) yields Fourier coefficients:

f̂(ω) =

∫
f(x)e−jωxdx (1)

Inverse Fourier Transform reconstructs the original function:

f(x) =
1

2π

∫
f̂(ω)ejωxdω (2)
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Fourier Basis vs. Wavelet Basis

Fourier bases: Not localized in time, therefore causes artifacts.

Wavelet bases: Localized in both time and frequency

Figure: Left: Fourier basis, Middle: Haar Wavelet, Right: Mexican hat
wavelet
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Mother Wavelet

Mother wavelet ψ:

ψs,a(x) =
1

s
ψ(
x− a
s

) (3)

Function with scale s and translation a

Scales (dilation s) of mother wavelet ψ:
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Mother Wavelet

Mother wavelet ψ:

ψs,a(x) =
1

s
ψ(
x− a
s

) (4)

Function with scale s and translation a

Translation (localization a) of mother wavelet ψ:
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Mother Wavelet in the Frequency Domain

ψ (blue) in the frequency domain: band-pass filters

φ (red) in the frequency domain: low-pass filter

Figure: Example of a scaling function (red) and band-pass filters (blue) in the
frequency domain.

Won Hwa Kim Multi-resolution on Graphs in NeuroImaging



Introduction Fourier Transform Wavelet Transform on Graph Structured Data Wavelet Transform on Graphs Application Summary

Continuous Wavelet Transform

Wavelet Transform of f(x):

Wf (s, a) = 〈f, ψs,a〉 =
1

s

∫
f(x)ψ∗(

x− a
s

)dx (5)

- Outcome: wavelet coefficient Wf (s, a)

Inverse wavelet transform (with Cψ =
∫ |Ψ(jω)|2

|ω| dω <∞)

f(x) =
1

Cψ

∫∫
Wf (s, a)ψs,a(x)dads (6)

- Ψ(jω) =
∫
ψ(t)e−jωtdt

- Outcome: reconstructed function f(x)
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Graph Structured Data in NeuroImaging

Neuroimaging modalities with graph structures
- Cortical thickness on a brain surface
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Graph Structured Data in NeuroImaging

Neuroimaging modalities with graph structures
- Tractography using Diffusion Tensor Imaging (DTI)
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Wavelet Transform on Graphs

Wavelets in Euclidean Space

Wavelets on Graphs
- Scale? Translation?
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Wavelet Transform on Graphs

Domain: G = {V,E, ω}
- V : vertex set, E: edge set, ω: edge weight

Construct filters in the frequency domain, and transform back
to the original domain

Ingredients: Filters and Orthogonal Basis
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Wavelet Transform on Graphs

Spectral Graph Theory
Adjacency Matrix A: am,n for connectivity information
Degree Matrix D: diagonal matrix with the sum of weights
Graph Laplacian: L = D −A
Eigenvector χl and eigenvalue λl of L

0 = λ0 ≤ λ1 ≤ · · · ≤ λN−1 (7)

Figure: a) Star-shaped graph G, b) Adjacency matrix A of G, c) Degree
matrix D, d) Graph Laplacian L.
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Wavelet Transform on Graphs

Graph Fourier transform of f(n)

f̂(l) = 〈f, χl〉 =

N∑
n=1

f(n)χ∗
l (n), (8)

Inverse graph Fourier transform

f(n) =

N−1∑
l=0

f̂(l)χl(n), (9)
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Wavelet Transform on Graphs

Define a kernel function g – band-pass filters

Wavelet function at node m, localized at node n (with δn)

ψs,n(m) =

N−1∑
l=0

g(sλl)χ
∗
l (n)χl(m) (10)

Example of mother wavelets on a graph (surface mesh)

Figure: 3-D sphere mesh and Mexican hat wavelets in different scales localized
at one vertex.
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Wavelet Transform on Graphs

Forward and inverse wavelet transform of f(n)

Wf (s, n) =

N−1∑
l=0

g(sλl)f̂(l)χl(n) (11)

f(n) =
1

Cg

N∑
n=1

∫ ∞
0

Wf (s, n)ψs,n(m)
dt

t
(12)

〈 , 〉 =

Figure: Example of wavelet basis on a brain surface, wavelet coefficients.
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Wavelet Transform on Graphs

Forward and inverse wavelet transform of f(n)

Wf (s, n) =

N−1∑
l=0

g(sλl)f̂(l)χl(n) (13)

f(n) =
1

Cg

N∑
n=1

∫ ∞
0

Wf (s, n)ψs,n(m)
dt

t
(14)

〈 , 〉 =

Figure: Example of wavelet basis on a brain surface, wavelet coefficients.
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Wavelet Transform on Graphs

Forward and inverse wavelet transform of f(n)

Wf (s, n) =

N−1∑
l=0

g(sλl)f̂(l)χl(n) (15)

f(n) =
1

Cg

N∑
n=1

∫ ∞
0

Wf (s, n)ψs,n(m)
dt

t
(16)

〈 , 〉 =

Figure: Example of wavelet basis on a brain surface and wavelet coefficients.
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Wavelet Transform on Graphs

Forward and inverse wavelet transform of f(n)

Wf (s, n) =

N−1∑
l=0

g(sλl)f̂(l)χl(n) (17)

f(n) =
1

Cg

N∑
n=1

∫ ∞
0

Wf (s, n)ψs,n(m)
dt

t
(18)

Figure: Inverse wavelet transform.
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Cortical Thickness Analysis

Cortical thickness is the distance between inner and outer
cortical surfaces.

Data structure: cortical thickness values (∼ 5mm) on each
vertex of a brain surface mesh (∼ 160000 vertices)

Figure: Cortical thickness on a brain surface. Left: brain surface mesh, Right:
cortical thickness.
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Application: Cortical Signal Smoothing

Cortical surface and thickness smoothing
Incrementally add coarse to fine scale components

Figure: Cortical surface and thickness smoothing via wavelets on graphs
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Statistical Group Analysis

Given: distributions of measurements from two groups
(e.g., diseased vs. controls)

Hypothesis testing by two sample t-test

H0 : µ1 − µ2 = 0 vs. H1 : µ1 − µ2 6= 0

Compute a test statistic and a p-value.

Reject if p-value is under certain threshold (e.g., 0.05 level)

Figure: Distribution of signal measurements from two different groups.
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Application: Cortical Thickness Discrimination

Given: measurements at each vertex

Wavelet Multi-scale Descriptor (WMD): a set of wavelet
coefficients at each vertex n

WMDf (n) = {Wf (s, n)|s ∈ S} (19)

Group analysis on AD vs. Control

Increase in sensitivity, decrease in sample sizes
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Application: Cortical Thickness Discrimination

Perform hypothesis testings at each vertex

Project the resultant p-values on a template
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Application: Cortical Thickness Discrimination

ADNI dataset: 356 subjects (160 AD, 196 CN)

Hotelling’s T 2-test / False discovery rate (FDR)

Precuneus, temporal/parietal regions, posterior cingulate, etc.
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Application: Brain Connectivity Discrimination

Data structure: 162× 162 adjacency matrix
- Nodes: regions of interest (ROI)
- Edges: 13401 connections with Fractional Anisotropy (FA)
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Application: Brain Connectivity Discrimination

Analysis on functions on the edges, not on the vertices

Requires transformation of the given data

Line (dual) graph transform

Figure: Examples of line graphs. Edges (weight: thickness) are represented as
vertices (function: size) after transformation.
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Application: Brain Connectivity Discrimination

ADRC dataset: 102 subjects (44 AD, 58 CN) with FA

GLM controlling for age / gender and Bonferroni (α = 0.05)

Very few connections showing significant group difference

Figure: Significant group difference between AD and control groups. Color
gives sign of strength: red (and blue) are stronger in controls (and AD group).
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Application: Brain Connectivity Discrimination

ADRC dataset: 102 subjects (44 AD, 58 CN) with WMD

MGLM controlling for age / gender and Bonferroni (α = 0.05)

Total of 81 connections showing significant group difference

Figure: Significant group difference between AD and control groups. Color
gives sign of strength: red (and blue) are stronger in controls (and AD group).
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Application: Brain Connectivity Discrimination

Hub regions: ROI with connected edges ≥ 5
- Left superior and transverse occipital sulcus, Right hippocampus,

Left superior parietal lobule, Right transverse occipital sulcus, Right

precuneus, Right medial occipito-temporal gyrus.

Figure: Illustration of the hub ROIs with connections identified as showing
significant group difference between AD and control groups Color gives sign of
strength: red (and blue) are stronger in controls (and AD group).
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Summary

Multi-resolution

Continuous wavelet transform

Wavelet transform on graphs

Application of wavelets in non-Euclidean space
- Cortical thickness discrimination
- Brain connectivity discrimination
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